
Fast Energy Evaluation of Embedded Applications
for Many-core Systems

Felipe Rosa1, Luciano Ost2, Thiago Raupp3, Fernando Moraes3, Ricardo Reis1,

1 UFRGS - Instituto de Informática - PGMicro/PPGC
Av. Bento Gonçalves 9500 Porto Alegre, RS - Brazil

{frdarosa,reis}@inf.ufrgs.br

2 LIRMM – 161 rue Ada, Cedex 05 - 34095 Montpellier, France
ost@lirmm.fr

3 FACIN-PUCRS - Av. Ipiranga 6681- 90619-900, Porto Alegre, Brazil

{thiago.raupp, fernando.moraes}@pucrs.br

Abstract— The growing concerns of energy efficiency and
performance scalability motivate research in the area of many-
core embedded systems. The software development of such
systems plays an important role on the system performance,
while accounting for a significant part of the total energy
consumption. Thus, it becomes imperative to consider the
software energy consumption at early stages of the software
development. This paper proposes an instruction-driven energy
analysis approach that provides an accurate and practical way of
evaluating software energy cost at the speed of up to 1.8 MIPS.
Results show that the accuracy of our approach varies from
0.06% to 8.05% when compared to a gate-level implementation.
Keywords – Instruction-driven energy model, fast and accurate
energy evaluation, JIT-based simulation, OVP.

I. INTRODUCTION

Many-core embedded systems must execute different

applications in parallel, requiring high performance allied to
low energy consumption, which is more critical than high-
speed operation in battery-driven devices [1]. With 200-core
chips available in the market [2], energy-efficiency software
development becomes a challenge of paramount importance in
many-core system design, since it has a significant contribution
to the overall system energy budget. To assess the energy
impact of complex software stacks (operating system - OS,
drivers, etc.), several software and hardware parameters must
be tuned and evaluated properly, considering a large design
space.

The resulting complexity restricts the use of board-oriented
and detailed simulation approaches for software energy
evaluation, especially for many-core architectures. While
specialized board designs produce accurate results, they require
a substantial development effort to setup/port the software
stacks. Further, physical boards can be expensive, with limited
resources (e.g. number of CPUs, memory), as well as poor
debuggability due the lack of internal observability and

controllability of its components. Compared with board-
oriented approaches, transistor or gate-level simulators are
typically slower and the amount of memory required by these
approaches is too high. Nevertheless, they facilitate the
analysis of various architectural and software options,
enabling to identify performance/energy bottlenecks of the
target system.

To achieve efficient exploration of many-core systems, the
use of virtual platforms is a key tool for adequate design-time
assessment of the performance-oriented and energy-efficiency
strategies. Such frameworks support concomitant hardware
and software development, while providing more flexibility
and debuggability.

While producing accurate results, quasi-cycle virtual
platforms achieve limited simulation speed (around 200 KIPS
– kilo instructions per second [3]). In contrast, simulators such
as the Open Virtual Platforms (OVP) OVPsim can achieve
simulation speeds of up to 100 MIPS, at the cost of limited
accuracy. Such simulators target software development and
rely on just-in-time (JIT) dynamic binary translation, i.e.,
dynamic translation and optimization of target machine code
to host machine code.

This paper contributes by including an accurate energy
model in the OVPSim simulator, making it suitable for fast
software energy cost estimation at early design stage. Another
contribution is an extensive model evaluation by using several
benchmarks, while comparing it to a gate-level
implementation.

The rest of this paper is organized as follows. Section 2
discusses related work in instruction-driven energy models.
Section 3 provides the fundamental concepts of proposed
instruction-driven energy model. Section 4 gives an extensive
evaluation of speedup, accuracy and cost of our simulation.
Finally, Section 5 points out conclusions and directions for
future work.

978-1-4799-5412-4/14/$31.00 ©2014 IEEE

2014 24th International Workshop on Power and Timing Modeling, Optimization and Simulation (PATMOS)

II. RELATED WORK
To speed up the energy cost evaluation at early stages of

the software development, authors are investigating
alternatives for fast energy/power estimation using high-level
models. Each of these entails different reference models;

calibration practices and simulation speed/accuracy tradeoffs,
allowing the exploration of different design space aspects. For
instance, proposed models are calibrated from prototyping
boards or simulation of detailed CPUs descriptions (e.g., gate-
level, RTL).

Table I State-of-Art in instruction-driven energy models.

Approach Reference
model

Claimed
Accuracy Benchmark suite Description

Lee et al.
2001 [6] ARM7TDMI

Average 2,5%
and worst case

6,33%

36 randomly-
generated

instructions
Model based in a linear regression analysis.

Garcia et al.
2002 [8]

Gate-level
estimation using

an ARM920
Not available MPEG-4 video

decoder
Inclusion of a power model calibrate in gate-level activity in a
System-level Cycle-Accurate simulator

Kalla et al.
2003 [10]

Synthesizable
RTL of a
SPARC

Energy less than
5% and per-
cycle power

inside 15% of
error

Bubble Sort, Heap
Sort, Insertion Sort,
Key 3 and 3D image

processing

Model based in Active and Stall consumption for each
individual module of the architecture, refined with inter-
instruction effect. Additionally provides the maximum and the
minimum of power.

Nikolaidis et al
2003 [7] ARM7TDMI 5% A few instructions Abstract model for pipeline with static, inter-instruction, and

pipeline power.
Konstantakos
et al. 2006 [5]

Motorola
HC908GP32 Not available Not available The instructions are divided in groups by the cycle’s length.

D. Lee et al.
2006 [11]

Gate-level
estimation for
M32R-II and

SH3-DSP

Average 3% and
worst case 16%

JPEG and MPEG2
encoders, compress,

FFT and DCT

Training benchmarks are used in conjunction with a gate level
simulator and liner optimization to generate several parameters
to describe frames of instructions. Afterward this parameters
are utilize together with ISS.

Castillo et al.
2007 [12]

Arm ISS, arm-
elf-gdb, for a
ARM9TDMI

and ARM TRM

Less than 11%
Bubble Sort, FIR,
Array, Fibonacci

and Quicksort

An online analysis of the source-code without requiring
simulation or even compilation. Based in the mean energy per
instruction calculate from values provide by ARM Manual.
Detailed study about the operators in C e.g. + = >> and their
costs in meter of instructions.

Sultan et al.
2009[9]

Synthesizable
RTL of a
LEON3

Not available Not available

Propose of an instruction level power model profiling each
instruction in different stages of a pipelined processor. The aim
is measure the activity generate in the processor and taking in
count the capacitance to calculate the power.

Callou et al.
2011 [13]

NXP LPC2106
with an

ARM7TDMI-S
7% in average 5 applications Stochastic approach based on Coloured Petri nets and source

code analysis

Bazzaz et al.
2012 [4] AT91 Less than 6% 8 MiBench

benchmark
 ISS Model calibrated from real measures. Complete model
with static, inter-instruction, and pipeline power.

Proposed
approach

2014

Gate-level
estimation

Between 0,06%
and 8%

19 benchmarks from
WCET and in house

applications

Instruction-driven model calibrated from the switching activity
of the processor internal components. Run-time model
developed on the basis of OVP API that monitors the
instructions executed by a given CPU.

In the case of prototyping boards, the power information is

captured from a precision resistor positioned between the
power supply and the power input pin [4]–[7]. The use of
physical information can aggregate precision to the high-level
models (error varying from 2.5% to 7% as presented in the
third column of Table I). However, to measure the power of
each instruction, additional and expensive hardware (e.g. high
performance oscilloscopes) are required. Another drawback of
this approach is the difficulty of accessing/isolating individual
modules inside the processor due to internal structure and
connections (e.g. Flash, Rom, SPI, AD, and DC).

In simulated-based techniques, the required information is
extracted from low-level simulators (e.g. SPICE, gate-level),

in which a hardware description is used to execute input
benchmark applications and to profile the power of each
instruction. For example, in [8] an instruction set simulator
(ISS) is enriched with an energy model based on the mean
switching activity of the processor, which is modeled by two
states, active and NOP. A similar approach is presented in [9],
which considers the average switching activity of an LEON3
processor simulated at RTL level. In this work, the power is
computed according to the number of transitions generated in
response to a certain instruction that is fetched from
BootROM of LEON3.

In [10] is developed a tool called SEA targeting power and
energy estimation for an SPARC processor. This work uses a

2014 24th International Workshop on Power and Timing Modeling, Optimization and Simulation (PATMOS)

gate-level simulation to provide energy information to their
model. In this approach, the instructions are classified in
memory, not-memory and specials, while we adopted seven
groups. In turn, the work proposed in [11] combines linear
programming, gate-level and ISS simulation to extract energy
parameters. The reference energy values are computed
according to a fixed number of instructions pre-defined during
the energy characterization flow.

Authors in [12] propose obtaining energy values directly
from the analysis of the source-code without requiring
simulation or even compilation. A further higher-level
approach is proposed in [13], in which the source-code is
converted in a Colored Petri net model, which is used to
estimate the energy cost of a given application.

Reviewed approaches focus on creating instruction-driven
models, which compute energy/power values by observing the
sequence of executed instructions. One difference between
such approaches is the calibration process. For instance, in [4]
authors evaluate instructions individually to feed the
instruction-driven model, while in [6] fixed length instruction
groups are used. Authors argue that different transition
scenarios may significantly affect the energy estimation. For
that reason, some works such as [4][7][10] also calculate the
inter-instruction energy, i.e. the energy required to switch
from one to another.

Another distinction lies in the energy evaluation process.
For instance, the approach proposed in [12], differs from the
other works in the sense that it translates the source code in an
intermediary code representation, which is used to estimate
the application energy consumption. This approach does not
require simulation that may decrease the energy evaluation
effort. However, to predict the behavior of loops and branches
only by code inspection is not a trivial task that may pose
other design/evaluation challenges.

Our contribution distinguishes from previous works by
enhancing the OVPSim (JIT-based simulator) with energy
evaluation capability allowing faster and accurate exploration
of energy-efficiency software development for large-scale
architectures. Contrary to the most of reviewed approaches,
our approach is ISA/CPU-oriented, and it relies on a run-time
approach, thus everything is transparent to the software
engineer. Therefore, once calibrated whatever OS/application
can be ported, modified and its energy-efficiency can be
evaluated without any code modification or re-calibration
phase.

III. INSTRUCTION-DRIVEN ENERGY MODEL

This Section presents the instruction-driven energy
estimation model that was integrated into the OVPSim
simulator. The proposed approach is executed at run-time, i.e.
full computation is executed concomitantly with the system
simulation, eliminating huge trace files, as well as pre- or
post-processing software/application profiling. Manufacturers
do not usually provide detailed energy information. In some
cases, the average and maximum energy and/or power picks
are provided. To overcome this restriction is necessary to
acquire information through a characterization phase. Fig. 1

illustrates the proposed evaluation flow that comprises the
characterization flow and the simulation phase.

A. CHARACTERIZATION FLOW
The first and most important phase is the characterization,

which profiles the energy spent by each instruction belonging
to the target ISA. The proposed characterization flow is
validated taking as reference the Plasma processor [14], a 32-
bit RISC processor based on the MIPS architecture with a 3-
stage pipeline. The characterization flow is executed once per
ISA architecture and it comprises four main steps: (i)
benchmark development; (ii) activity measurement; (iii)
power acquisition; (iv) energy computation. In Fig. 1, the
numbers from 1 to 10 are used to describe intermediary files,
while the letters from A to D represent the adopted tools.

Figure 1 - Proposed instruction-driven evaluation flow.

2014 24th International Workshop on Power and Timing Modeling, Optimization and Simulation (PATMOS)

The first step of the characterization flow encompasses
developing the benchmarks that will be used to profile the
energy consumption for each instruction (1 in Fig. 1). To
reduce the computation cost of our model, instructions are
classified in seven groups due their behavior in the processor
data-path: (i) arithmetic, (ii) logical, (iii) move, (iv) branches,
(v) load/store, (vi) nops, and (vii) shifts. One practical example
is the close relationship between instructions such as add and
addiu or between lw and sw. Note that the mnemonic move is
considered in this work as arithmetic instruction through the
use of a pseudo-instruction implementation (performed by an
lui and ori).

To profile the energy consumption of each instruction
group (1 in Fig 1), applications were carefully developed in a
way that at least 90% of the executed instructions would
belong to the target group, including the possible variations of
the same instruction (e.g. add, addi, addiu, etc.). Previous
experiments using higher percentages (e.g. 95%), showed a
negligible difference. Note that multiplication and division
instructions are modeled as 12 arithmetic instructions each,
since our Plasma version takes 12 cycles to execute them.
Further, an application benchmark was created to characterize
the pipeline stall as a nop instruction.

Each application is executed in the OVPSim simulator (C
in Fig1) to verify its correctness and to extract the exact
number of executed instructions (8 in Fig1). Each application
executes, in average, 35 thousands instructions, which
requires less than one 1 second of simulation.

The Plasma is synthetized with Cadence RTL Compiler
tool (2 in Fig 1) targeting a 65nm low power library from ST
Microelectronics. Then, each application is simulated using
Cadence Incisive simulation tool (B), taken as inputs: the
Plasma netlist (2), the application object code (3), a tcl script
(4), and the sdc file containing the timing constraints (5). The
simulating is executed until the end of the application. As a
result, a tcf file (6) is generated. This file contains statistic
information about the switching activity of each cell and wire
in the netlist. In addition, the exact execution time of each
application is collected (7).

Finally, the power evaluation is executed. Cadence RTL
Compiler (D) also performs this task; the tool reads the netlist
(2) and computes de average power consumed by each cell
based in their switching activity information in the tcf (6) file.
Subsequently, the tool produces a report containing the
average power consumption (9) for the application.

The final step comprises computing the average energy
spent by each characterized group (10). Associating the
average power (9) and execution time (7) collected in the
previous step with the number of instructions (8), the energy
consumed per instruction group is obtained using Equation (1).
This flow is repeated for each instruction class.

Average energy = execution time (µs) x power (mw)
executed instructions

(nJ) (1)

TABLE II summarizes the energy results for each

instruction group. Results in the column “number of

instructions” are obtained through the OVPSim simulation.
Results in columns “power” and “execution time” are
obtained through the gate-level simulation. The total energy
consumption (“energy” column) is obtained by multiplying
the number of instructions by the total execution time. Then,
with the number of executed instructions and the total energy
consumed, it is possible to compute the energy consumed by
each instruction (“Energy per Inst.” column).

TABLE II AVERAGE ENERGY PER INSTRUCTION GROUP
(CALIBRATION FREQUENCY 100 MHZ, WHERE 1 US

CORRESPONDS 100 CLOCK CYCLES).

Groups Power
(mW)

Execution
Time (us)

Energy
(nJ) # of Inst Energy per

Inst (nJ)

Arithmetic 6,456 342,755 2212,826 34764 0,0636528

Jump 6,046 102,600 620,320 10224 0,0606729

Load-Store 4,094 1042,800 4269,223 48561 0,0879146

Logical 4,469 349,735 1562,966 35462 0,0440744

Move 3,129 480,725 1504,189 39363 0,0382133

NOP 2,141 257,155 550,569 26130 0,0210704

Shift 3,824 298,735 1142,363 30362 0,0376247

B. WATCHDOG MODULE
As mentioned before, our energy model relies on

monitoring at run-time the instructions executed by a given
CPU. The monitoring process was developed based on OVP
APIs and integrated into an extension of a Watchdog
component proposed in [15]. Fig. 2 shows the three main
Watchdog modules: (i) disassembler, (ii) a hash table with
pre-characterized groups of instructions, and (iii) internal data
structures. Both hash table and energy information are
calibrated according to an instruction set architecture (ISA).

WATCHDOG

fetch (PC 0XD2)

0X2546
0X2548
0X254A
0X254C
0X254E
0X2550
0X2552

MEMORY

Memory address

OVP CPU MODEL

1. int main () {
2. int a,b,c,i;
3. a = 1;
4. b = 1 + a;
5.
6. for(i=0;i<10;i++)
7. c = a/c;
8.
9. return 0;
10. }

4 0X00C0
0X00C2
0X00C6
0X00CA
0X00CE
0X00D2
0X00D4

Class Keys

Arithmetic
Load Store
Logical

add, addu, sub
lw,lh, sw, lb
and, or, xor, ori

Energy

0,06365281nJ
0,08791465nJ
0,04407438nJ

HashTable

Disassembler

0X2550 str r3, [r7, #20]

Data structures

BUS

1

2

13

Figure 2 - Block diagram of developed watchdog module.

In the disassembler module, each instruction (i.e. binary
code) fetched from the memory unit is converted to a string
and afterwards subdivided in other substrings. The purpose
here is to isolate the instruction mnemonic from the
instruction register arguments in order to feed the hashtable.
As a means to disassemble binary code instructions, our
implementation employs the icmDisassemble function, which
is provided by the ICM API. This function call disassembles
an arbitrary memory position for each arbitrary CPU instance
used in simulation model (for the sake of simplicity only one
CPU is used as example in Fig. 2). The underlying function
requires arguments such as: (i) the CPU model object, (ii) the

2014 24th International Workshop on Power and Timing Modeling, Optimization and Simulation (PATMOS)

target memory address, and (iii) arguments of the
disassembled instruction (e.g. 0X2550 STR r3,r2]).

The second module is a Hashtable, which is used to store
the energy information and to speed up the search process
during the simulation phase. In turn, the data structure module
is responsible to process information provided by previous
modules considering the CPU state information.

C. SIMULATION PHASE
In OVPSim all CPUs, busses, and memory models are

created at run-time through linked libraries. The same process
is applied to our Watchdog module and its internal
components. The numbers from 1 to 4 in Fig. 2 are used to
describe the Watchdog behavior during the simulation phase.

After the platform simulation begin, whenever an
instruction is fetched from the memory (1) a callback is
triggered, thus activating the Watchdog. Inside the first
module, the binary code of each instruction is acquired using
the program counter (PC) register, thus the binary code is
disassemble, divided in sub-strings, identifying the instruction
that must be executed (2). The identified instruction is
employed as a hashtable key to discover which class (e.g.
arithmetic, load, logical) such instruction belongs (3). The
hashtable implementation was considered to remove the
simulation bottleneck inherent to the use of linked lists (model
implementation not reported here).

Hence, energy consumption of this instruction is computed,
considering the predefined energy information (calibration
process). Once, the energy consumption is computed, the
instruction is executed in the CPU (4). At the end of the
simulation is possible to retrieve energy reports, including
individual energy consumed per CPU, number of memory
access (read and write operations), among others.

IV. RESULTS

A. EXPERIMENTAL SETUP
Application benchmarks that permit exploiting and

assessing performance of embedded CPUs were selected from
different research domains. For instance, the 11-selected
applications of the worst-case execution time [16] (WCET)
benchmarks vary in terms of execution time, number of loops,
matrixes and array size. Other in-house application
benchmarks using well-known algorithms are also employed.

Since OVPSim uses the target CPU’s binary code to
perform emulation on a host machine, all simulation scenarios
were executed multiple times in order to capture meaningful
results. Note that we are using the same cross-compile,
libraries, and compilations flags in order to create almost
identical binaries. Further, we used in the Mentor Graphics
Sourcery Tools version 4.8.1 the following flags -mips1 -g -
Ttext 00000000.

B. ACCURACY OF THE MODEL
Fig. 3 compares the energy consumption for each

application benchmark, considering results obtained from
gate-level simulation (i.e. Cadence Incisive) and the proposed
instruction-driven energy model in OVP. Gray bars

correspond to the difference between each result, showing the
high accuracy achieved with the proposed model (error below
8%).

 0

 20

 40

 60

 80

 100

A B C D E F G H I J K L M N O P Q R S
 0

 2

 4

 6

 8

 10

En
er

gy
 C

on
su

m
pt

io
n

(m
ic

ro
jo

ul
e)

M
is

m
at

ch
 (%

)

Mismatch
Gate-level Evaluation

OVP Model Evaluation

A - Bfsh F - Crc K - Fibonacci P - Mdc
C - Binary search G - Edn L - Hanoi Q - Peakspeed
B - Bit Manipulation H - Expint M - Harm R - UD
D - Bubble I - Factorial N - Insertsort S - Usqrt
E - Counts J - Fft O - MatrixMult

Figure 3 - Application benchmark energy consumption: gate-level simulation

vs proposed instruction-driven energy model in OVP.

C. ACHIEVED SPEEDUP
Fig. 4 presents the achieved simulation speeds in MIPS

when comparing both the instruction-driven energy model in
OVP and the gate-level simulation. Results show the gain in
terms of speedup is wide, ranging from 10x to 1500x (gray
bars) depending on the application benchmark nature. Note
that all analysis using our proposed energy model in OVP
required less than a minute of simulation.

 0

 200

 400

 600

 800

 1000

A B C D E F G H I J K L M N O P Q R S
 0

 500

 1000

 1500

 2000

Si
m

ul
at

io
n

Ti
m

e
(s

ec
on

ds
)

G
ai

n
in

 te
rm

s
of

 re
la

tiv
e

sp
ee

du
p

Benchmarks

Speedup
Gate-level Simulation Time

OVP Model Simulation Time

Figure 4 - Gain in terms of speedup: gate-level simulation vs proposed OVP
energy model. Letters (A-S) symbolize the application benchmarks described

in Fig. 3.

Achieved high accuracy and simulation speedup of the
proposed energy model, allied with the design flexibility and
debugging features inherent to OVP, introduces an efficient
tool capable to assist designers in the software development.
In this direction, we claim that software engineers can validate

2014 24th International Workshop on Power and Timing Modeling, Optimization and Simulation (PATMOS)

the functional behavior of the entire software stack (e.g.
OS/application) executing it onto a given CPU architecture,
using the original OVP. Then, software engineers may use the
proposed OVP extension in a still reasonable simulation speed
(i.e. 1.8 MIPS) to investigate if target software stack can be
executed according to the energy requirements.

D. MODEL SCALABILITY
Developing high-level models and simulators that scale to

hundreds of cores becomes a stringent requirement to
investigate many-core systems. This Section investigates the
performance scalability of the proposed model when scaling
the number of watchdogs and CPU cores.

Fig 5 shows the speedup obtained using the proposed
instruction-driven energy model, considering many-core
systems varying the number of CPUs from 10 to 1000, each of
which executes an instance of FFT. Note that for each CPU
there is one Watchdog module instance (as illustrated in Fig 2).
Results show the simulation speed remains between 1.6 and
1.8 MIPS. Such results prove that proposed approach is
suitable for fast energy exploration of large many-core
systems. The gray line represents simulation speed of the
proposed energy model, considering the full statistics report
generation (e.g. executed instructions, energy per CPU, as
illustrated in Fig. 6). In addition to that, the yellow one
includes the cost of capturing the number and the type of
memory accesses, while black line comprises both.

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0 200 400 600 800 1000

m
illi

on
 in

st
ru

ct
io

ns
 p

er
 s

ec
on

d
(M

IP
S)

Number of CPU’s

Energy CPU model (full report)
Energy CPU model (memory access count)

Energy CPU model (full report and memory access count)

Figure 5 – Simulation speed when scaling the number of watchdogs and

CPUs from 10 to 1000.

Figure 6 – One CPU report example.

V. CONCLUSION
This paper addressed the challenge of making JIT-based

simulators able to estimate applications’ energy consumption.

As case study, we presented a fast and accurate instruction-
driven energy model, which was integrated into the OVPSim.
The proposed model is applicable to different types of CPUs
and it relies on run-time basis, eliminating huge trace files, as
well as pre- or post-processing software/application profiling.
A number of experiments were presented, showing accuracy
and an important speedup to obtain energy vales.

REFERENCES
[1] N. Miura, Y. Koizumi, Y. Take, H. Matsutani, T. Kuroda, H. Amano,

R. Sakamoto, M. Namiki, K. Usami, M. Kondo, and H. Nakamura,
“A Scalable 3D Heterogeneous Multicore with an Inductive ThruChip
Interface,” IEEE Micro, vol. 33, no. 6, pp. 6–15, Nov. 2013.

[2] “MPPA MANYCORE: a multicore processors family - Many-core
processors - KALRAY - Agile Performance.” Available at:
http://www.kalray.eu/products/mppa-manycore/.

[3] D. Sanchez and C. Kozyrakis, “ZSim: Fast and Accurate
Microarchitectural Simulation of Thousand-core Systems,” in
Proceedings of the 40th Annual International Symposium on
Computer Architecture, New York, NY, USA, 2013, pp. 475–486.

[4] M. Bazzaz, M. Salehi, and A. Ejlali, “An Accurate Instruction-Level
Energy Estimation Model and Tool for Embedded Systems,” IEEE
Trans. Instrum. Meas., vol. 62, no. 7, pp. 1927–1934, Jul. 2013.

[5] V. Konstantakos, A. Chatzigeorgiou, S. Nikolaidis, and T. Laopoulos,
“Energy Consumption Estimation in Embedded Systems,” IEEE
Trans. Instrum. Meas., vol. 57, no. 4, pp. 797–804, Apr. 2008.

[6] S. Lee, A. Ermedahl, S. L. Min, and N. Chang, “An Accurate
Instruction-Level Energy Consumption Model for Embedded RISC
Processors” ACM SIGPLAN Workshop on Languages, Compilers and
Tools for Embedded Systems, New York, NY, USA, 2001, pp. 1–10.

[7] S. Nikolaidis, N. Kavvadias, T. Laopoulos, L. Bisdounis, and S.
Blionas, “Instruction Level Energy Modeling for Pipelined
Processors,” in Integrated Circuit and System Design. Power and
Timing Modeling, Optimization and Simulation, J. J. Chico and E.
Macii, Eds. Springer Berlin Heidelberg, 2003, pp. 279–288.

[8] A. B. Abril Garcia, J. Gobert, T. Dombek, H. Mehrez, and F. Petrot,
“Cycle-accurate energy estimation in system level descriptions of
embedded systems,” in 9th International Conference on Electronics,
Circuits and Systems, 2002, vol. 2, pp. 549–552.

[9] S. Sultan and S. Masud, “Rapid software power estimation of
embedded pipelined processor through instruction level power
model,” in International Symposium on Performance Evaluation of
Computer Telecommunication Systems, 2009. SPECTS 2009, vol. 41,
pp. 27–34.

[10] P. Kalla, J. Henkel, and X. S. Hu, “SEA: fast power estimation for
micro-architectures,” in 5th International Conference on ASIC, 2003.
Proceedings, 2003, vol. 2, p. 1200 Vol.2–.

[11] D. Lee, T. Ishihara, M. Muroyama, H. Yasuura, and F. Fallah, “An
Energy Characterization Framework for Software-Based Embedded
Systems,” IEEE/ACM/IFIP Workshop on Embedded Systems for Real
Time Multimedia, 2006, pp. 59–64.

[12] J. Castillo, H. Posadas, E. Villar, and M. Martínez, “Energy
Consumption Estimation Technique in Embedded Processors with
Stable Power Consumption based on Source-Code Operator Energy
Figures,” presented at the XXII Conference on Design of Circuits and
Integrated Systems, 2007.

[13] G. Callou, P. Maciel, E. Tavares, E. Andrade, B. Nogueira, C. Araujo,
and P. Cunha, “Energy Consumption and Execution Time Estimation
of Embedded System Applications,” Microprocess Microsyst, vol. 35,
no. 4, pp. 426–440, Jun. 2011.

[14] “Plasma CPU.” [Online]. Available: http://plasmacpu.no-ip.org/.
[Accessed: 21-Apr-2014].

[15] Rosa, F., Ost, L., Reis, R. and Sassatelli. "Instruction-driven Timing
CPU Model for Efficient Embedded Software Development using
OVP". In: IEEE ICECS, 2013, pp. 855 – 858.

[16] A. B. Jan Gustafsson, “The Mälardalen WCET Benchmarks: Past,
Present And Future.,” pp. 136–146, 2010.

2014 24th International Workshop on Power and Timing Modeling, Optimization and Simulation (PATMOS)

