
Fast Energy Evaluation of Embedded Applications 
for Many-core Systems  

 
Felipe Rosa1, Luciano Ost2, Thiago Raupp3, Fernando Moraes3, Ricardo Reis1,  

 

1 UFRGS - Instituto de Informática - PGMicro/PPGC 
Av. Bento Gonçalves 9500 Porto Alegre, RS - Brazil 

{frdarosa,reis}@inf.ufrgs.br 
 

2 LIRMM – 161 rue Ada, Cedex 05 - 34095 Montpellier, France 
ost@lirmm.fr 

 
3 FACIN-PUCRS - Av. Ipiranga 6681- 90619-900, Porto Alegre, Brazil 

{thiago.raupp, fernando.moraes}@pucrs.br 
 

 
Abstract— The growing concerns of energy efficiency and 
performance scalability motivate research in the area of many-
core embedded systems. The software development of such 
systems plays an important role on the system performance, 
while accounting for a significant part of the total energy 
consumption. Thus, it becomes imperative to consider the 
software energy consumption at early stages of the software 
development. This paper proposes an instruction-driven energy 
analysis approach that provides an accurate and practical way of 
evaluating software energy cost at the speed of up to 1.8 MIPS. 
Results show that the accuracy of our approach varies from 
0.06% to 8.05% when compared to a gate-level implementation. 
Keywords – Instruction-driven energy model, fast and accurate 
energy evaluation, JIT-based simulation, OVP. 

I. INTRODUCTION 
 
Many-core embedded systems must execute different 

applications in parallel, requiring high performance allied to 
low energy consumption, which is more critical than high-
speed operation in battery-driven devices [1]. With 200-core 
chips available in the market [2], energy-efficiency software 
development becomes a challenge of paramount importance in 
many-core system design, since it has a significant contribution 
to the overall system energy budget. To assess the energy 
impact of complex software stacks (operating system - OS, 
drivers, etc.), several software and hardware parameters must 
be tuned and evaluated properly, considering a large design 
space.  

The resulting complexity restricts the use of board-oriented 
and detailed simulation approaches for software energy 
evaluation, especially for many-core architectures. While 
specialized board designs produce accurate results, they require 
a substantial development effort to setup/port the software 
stacks. Further, physical boards can be expensive, with limited 
resources (e.g. number of CPUs, memory), as well as poor 
debuggability due the lack of internal observability and 

controllability of its components. Compared with board-
oriented approaches, transistor or gate-level simulators are 
typically slower and the amount of memory required by these 
approaches is too high. Nevertheless, they facilitate the 
analysis of various architectural and software options, 
enabling to identify performance/energy bottlenecks of the 
target system. 

To achieve efficient exploration of many-core systems, the 
use of virtual platforms is a key tool for adequate design-time 
assessment of the performance-oriented and energy-efficiency 
strategies. Such frameworks support concomitant hardware 
and software development, while providing more flexibility 
and debuggability. 

While producing accurate results, quasi-cycle virtual 
platforms achieve limited simulation speed (around 200 KIPS 
– kilo instructions per second [3]). In contrast, simulators such 
as the Open Virtual Platforms (OVP) OVPsim can achieve 
simulation speeds of up to 100 MIPS, at the cost of limited 
accuracy. Such simulators target software development and 
rely on just-in-time (JIT) dynamic binary translation, i.e., 
dynamic translation and optimization of target machine code 
to host machine code.  

This paper contributes by including an accurate energy 
model in the OVPSim simulator, making it suitable for fast 
software energy cost estimation at early design stage. Another 
contribution is an extensive model evaluation by using several 
benchmarks, while comparing it to a gate-level 
implementation. 

The rest of this paper is organized as follows. Section 2 
discusses related work in instruction-driven energy models. 
Section 3 provides the fundamental concepts of proposed 
instruction-driven energy model. Section 4 gives an extensive 
evaluation of speedup, accuracy and cost of our simulation. 
Finally, Section 5 points out conclusions and directions for 
future work. 
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II. RELATED WORK 
To speed up the energy cost evaluation at early stages of 

the software development, authors are investigating 
alternatives for fast energy/power estimation using high-level 
models. Each of these entails different reference models; 

calibration practices and simulation speed/accuracy tradeoffs, 
allowing the exploration of different design space aspects. For 
instance, proposed models are calibrated from prototyping 
boards or simulation of detailed CPUs descriptions (e.g., gate-
level, RTL).  

 
Table I State-of-Art in instruction-driven energy models. 

Approach Reference 
model 

Claimed 
Accuracy Benchmark suite Description 

Lee et al.  
2001 [6] ARM7TDMI 

Average 2,5% 
and worst case 

6,33% 

36 randomly-
generated 

instructions 
Model based in a linear regression analysis. 

Garcia et al. 
2002 [8] 

Gate-level 
estimation using 

an ARM920 
Not available MPEG-4 video 

decoder 
Inclusion of a power model calibrate in gate-level activity in a 
System-level Cycle-Accurate simulator 

Kalla et al. 
2003 [10] 

Synthesizable 
RTL of a 
SPARC 

Energy less than 
5% and per-
cycle power 

inside 15% of 
error 

Bubble Sort, Heap 
Sort, Insertion Sort, 
Key 3 and 3D image 

processing 

Model based in Active and Stall consumption for each 
individual module of the architecture, refined with inter-
instruction effect. Additionally provides the maximum and the 
minimum of power. 

Nikolaidis et al 
2003 [7] ARM7TDMI 5% A few instructions Abstract model for pipeline with static, inter-instruction, and 

pipeline power. 
Konstantakos 
et al. 2006 [5] 

Motorola  
HC908GP32 Not available Not available The instructions are divided in groups by the cycle’s length. 

D. Lee et al. 
2006 [11] 

Gate-level 
estimation for 
M32R-II and 

SH3-DSP  

Average 3% and 
worst case 16% 

JPEG and MPEG2 
encoders, compress, 

FFT and DCT 

Training benchmarks are used in conjunction with a gate level 
simulator and liner optimization to generate several parameters 
to describe frames of instructions. Afterward this parameters 
are utilize together with ISS. 

Castillo et al. 
2007 [12] 

Arm ISS, arm-
elf-gdb, for a 
ARM9TDMI 

and ARM TRM 

Less than 11% 
Bubble Sort, FIR, 
Array, Fibonacci 

and Quicksort 

An online analysis of the source-code without requiring 
simulation or even compilation. Based in the mean energy per 
instruction calculate from values provide by ARM Manual. 
Detailed study about the operators in C e.g. + = >> and their 
costs in meter of instructions. 

Sultan et al. 
2009[9] 

Synthesizable 
RTL of a 
LEON3 

Not available Not available 

Propose of an instruction level power model profiling each 
instruction in different stages of a pipelined processor. The aim 
is measure the activity generate in the processor and taking in 
count the capacitance to calculate the power.  

Callou et al. 
2011 [13] 

NXP LPC2106 
with an 

ARM7TDMI-S 
7% in average 5 applications Stochastic approach based on Coloured Petri nets and source 

code analysis  

Bazzaz et al.  
2012 [4] AT91 Less than 6% 8 MiBench 

benchmark  
 ISS Model calibrated from real measures. Complete model 
with static, inter-instruction, and pipeline power. 

Proposed 
approach 

2014 

Gate-level 
estimation  

Between 0,06% 
and 8%  

19 benchmarks from 
WCET and in house 

applications 

Instruction-driven model calibrated from the switching activity 
of the processor internal components.  Run-time model 
developed on the basis of OVP API that monitors the 
instructions executed by a given CPU. 

 
In the case of prototyping boards, the power information is 

captured from a precision resistor positioned between the 
power supply and the power input pin [4]–[7]. The use of 
physical information can aggregate precision to the high-level 
models (error varying from 2.5% to 7% as presented in the 
third column of Table I). However, to measure the power of 
each instruction, additional and expensive hardware (e.g. high 
performance oscilloscopes) are required. Another drawback of 
this approach is the difficulty of accessing/isolating individual 
modules inside the processor due to internal structure and 
connections (e.g. Flash, Rom, SPI, AD, and DC). 

In simulated-based techniques, the required information is 
extracted from low-level simulators (e.g. SPICE, gate-level), 

in which a hardware description is used to execute input 
benchmark applications and to profile the power of each 
instruction. For example, in [8] an instruction set simulator 
(ISS) is enriched with an energy model based on the mean 
switching activity of the processor, which is modeled by two 
states, active and NOP. A similar approach is presented in [9], 
which considers the average switching activity of an LEON3 
processor simulated at RTL level. In this work, the power is 
computed according to the number of transitions generated in 
response to a certain instruction that is fetched from 
BootROM of LEON3. 

In [10] is developed a tool called SEA targeting power and 
energy estimation for an SPARC processor. This work uses a 
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gate-level simulation to provide energy information to their 
model. In this approach, the instructions are classified in 
memory, not-memory and specials, while we adopted seven 
groups. In turn, the work proposed in [11] combines linear 
programming, gate-level and ISS simulation to extract energy 
parameters. The reference energy values are computed 
according to a fixed number of instructions pre-defined during 
the energy characterization flow.   

Authors in [12] propose obtaining energy values directly 
from the analysis of the source-code without requiring 
simulation or even compilation. A further higher-level 
approach is proposed in [13], in which the source-code is 
converted in a Colored Petri net model, which is used to 
estimate the energy cost of a given application. 

Reviewed approaches focus on creating instruction-driven 
models, which compute energy/power values by observing the 
sequence of executed instructions. One difference between 
such approaches is the calibration process. For instance, in [4] 
authors evaluate instructions individually to feed the 
instruction-driven model, while in [6] fixed length instruction 
groups are used. Authors argue that different transition 
scenarios may significantly affect the energy estimation. For 
that reason, some works such as [4][7][10] also calculate the 
inter-instruction energy, i.e. the energy required to switch 
from one to another. 

Another distinction lies in the energy evaluation process. 
For instance, the approach proposed in [12], differs from the 
other works in the sense that it translates the source code in an 
intermediary code representation, which is used to estimate 
the application energy consumption. This approach does not 
require simulation that may decrease the energy evaluation 
effort. However, to predict the behavior of loops and branches 
only by code inspection is not a trivial task that may pose 
other design/evaluation challenges. 

Our contribution distinguishes from previous works by 
enhancing the OVPSim (JIT-based simulator) with energy 
evaluation capability allowing faster and accurate exploration 
of energy-efficiency software development for large-scale 
architectures. Contrary to the most of reviewed approaches, 
our approach is ISA/CPU-oriented, and it relies on a run-time 
approach, thus everything is transparent to the software 
engineer. Therefore, once calibrated whatever OS/application 
can be ported, modified and its energy-efficiency can be 
evaluated without any code modification or re-calibration 
phase. 

III. INSTRUCTION-DRIVEN ENERGY MODEL 

This Section presents the instruction-driven energy 
estimation model that was integrated into the OVPSim 
simulator. The proposed approach is executed at run-time, i.e. 
full computation is executed concomitantly with the system 
simulation, eliminating huge trace files, as well as pre- or 
post-processing software/application profiling. Manufacturers 
do not usually provide detailed energy information. In some 
cases, the average and maximum energy and/or power picks 
are provided. To overcome this restriction is necessary to 
acquire information through a characterization phase. Fig. 1 

illustrates the proposed evaluation flow that comprises the 
characterization flow and the simulation phase. 

A.  CHARACTERIZATION FLOW 
The first and most important phase is the characterization, 

which profiles the energy spent by each instruction belonging 
to the target ISA. The proposed characterization flow is 
validated taking as reference the Plasma processor [14], a 32-
bit RISC processor based on the MIPS architecture with a 3-
stage pipeline. The characterization flow is executed once per 
ISA architecture and it comprises four main steps: (i) 
benchmark development; (ii) activity measurement; (iii) 
power acquisition; (iv) energy computation. In Fig. 1, the 
numbers from 1 to 10 are used to describe intermediary files, 
while the letters from A to D represent the adopted tools. 

 

 
Figure 1 - Proposed instruction-driven evaluation flow. 
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The first step of the characterization flow encompasses 
developing the benchmarks that will be used to profile the 
energy consumption for each instruction (1 in Fig. 1). To 
reduce the computation cost of our model, instructions are 
classified in seven groups due their behavior in the processor 
data-path: (i) arithmetic, (ii) logical, (iii) move, (iv) branches, 
(v) load/store, (vi) nops, and (vii) shifts. One practical example 
is the close relationship between instructions such as add and 
addiu or between lw and sw. Note that the mnemonic move is 
considered in this work as arithmetic instruction through the 
use of a pseudo-instruction implementation (performed by an 
lui and ori).  

To profile the energy consumption of each instruction 
group (1 in Fig 1), applications were carefully developed in a 
way that at least 90% of the executed instructions would 
belong to the target group, including the possible variations of 
the same instruction (e.g. add, addi, addiu, etc.). Previous 
experiments using higher percentages (e.g. 95%), showed a 
negligible difference. Note that multiplication and division 
instructions are modeled as 12 arithmetic instructions each, 
since our Plasma version takes 12 cycles to execute them. 
Further, an application benchmark was created to characterize 
the pipeline stall as a nop instruction. 

Each application is executed in the OVPSim simulator (C 
in Fig1) to verify its correctness and to extract the exact 
number of executed instructions (8 in Fig1). Each application 
executes, in average, 35 thousands instructions, which 
requires less than one 1 second of simulation.  

The Plasma is synthetized with Cadence RTL Compiler 
tool (2 in Fig 1) targeting a 65nm low power library from ST 
Microelectronics. Then, each application is simulated using 
Cadence Incisive simulation tool (B), taken as inputs: the 
Plasma netlist  (2), the application object code (3), a tcl script 
(4), and the sdc file containing the timing constraints (5). The 
simulating is executed until the end of the application. As a 
result, a tcf file (6) is generated. This file contains statistic 
information about the switching activity of each cell and wire 
in the netlist. In addition, the exact execution time of each 
application is collected (7). 

Finally, the power evaluation is executed. Cadence RTL 
Compiler (D) also performs this task; the tool reads the netlist 
(2) and computes de average power consumed by each cell 
based in their switching activity information in the tcf (6) file. 
Subsequently, the tool produces a report containing the 
average power consumption (9) for the application. 

The final step comprises computing the average energy 
spent by each characterized group (10). Associating the 
average power (9) and execution time (7) collected in the 
previous step with the number of instructions (8), the energy 
consumed per instruction group is obtained using Equation (1). 
This flow is repeated for each instruction class. 
 

Average energy = execution time (µs) x power (mw)
executed instructions

(nJ )  (1) 

 
TABLE II summarizes the energy results for each 

instruction group. Results in the column “number of 

instructions” are obtained through the OVPSim simulation. 
Results in columns “power” and “execution time” are 
obtained through the gate-level simulation. The total energy 
consumption (“energy” column) is obtained by multiplying 
the number of instructions by the total execution time. Then, 
with the number of executed instructions and the total energy 
consumed, it is possible to compute the energy consumed by 
each instruction (“Energy per Inst.” column). 

TABLE II AVERAGE ENERGY PER INSTRUCTION GROUP 
(CALIBRATION FREQUENCY 100 MHZ, WHERE 1 US 

CORRESPONDS 100 CLOCK CYCLES). 

Groups Power 
(mW) 

Execution 
Time (us) 

Energy 
(nJ) # of Inst Energy per 

Inst (nJ) 

Arithmetic 6,456 342,755 2212,826 34764 0,0636528 

Jump 6,046 102,600 620,320 10224 0,0606729 

Load-Store 4,094 1042,800 4269,223 48561 0,0879146 

Logical 4,469 349,735 1562,966 35462 0,0440744 

Move 3,129 480,725 1504,189 39363 0,0382133 

NOP 2,141 257,155 550,569 26130 0,0210704 

Shift 3,824 298,735 1142,363 30362 0,0376247 

B. WATCHDOG MODULE 
As mentioned before, our energy model relies on 

monitoring at run-time the instructions executed by a given 
CPU. The monitoring process was developed based on OVP 
APIs and integrated into an extension of a Watchdog 
component proposed in [15]. Fig. 2 shows the three main 
Watchdog modules: (i) disassembler, (ii) a hash table with 
pre-characterized groups of instructions, and (iii) internal data 
structures. Both hash table and energy information are 
calibrated according to an instruction set architecture (ISA). 

 
WATCHDOG

fetch (PC 0XD2)

0X2546 
0X2548
0X254A 
0X254C 
0X254E
0X2550 
0X2552    

MEMORY

Memory address

OVP CPU MODEL

1. int main () {
2.  int a,b,c,i;
3.  a = 1;
4. b = 1 + a;
5.
6. for(i=0;i<10;i++)
7.  c = a/c;  
8.
9. return 0;
10. }

4 0X00C0 
0X00C2
0X00C6 
0X00CA 
0X00CE
0X00D2 
0X00D4    

Class Keys

Arithmetic
Load Store
Logical

add, addu, sub
lw,lh, sw, lb
and, or, xor, ori

Energy

0,06365281nJ
0,08791465nJ
0,04407438nJ

HashTable

Disassembler

0X2550 str r3, [r7, #20]

Data structures

BUS

1

2

13

 
Figure 2 - Block diagram of developed watchdog module. 

In the disassembler module, each instruction (i.e. binary 
code) fetched from the memory unit is converted to a string 
and afterwards subdivided in other substrings. The purpose 
here is to isolate the instruction mnemonic from the 
instruction register arguments in order to feed the hashtable. 
As a means to disassemble binary code instructions, our 
implementation employs the icmDisassemble function, which 
is provided by the ICM API. This function call disassembles 
an arbitrary memory position for each arbitrary CPU instance 
used in simulation model (for the sake of simplicity only one 
CPU is used as example in Fig. 2). The underlying function 
requires arguments such as: (i) the CPU model object, (ii) the 
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target memory address, and (iii) arguments of the 
disassembled instruction (e.g. 0X2550 STR r3,r2]). 

The second module is a Hashtable, which is used to store 
the energy information and to speed up the search process 
during the simulation phase. In turn, the data structure module 
is responsible to process information provided by previous 
modules considering the CPU state information. 

C. SIMULATION PHASE 
In OVPSim all CPUs, busses, and memory models are 

created at run-time through linked libraries. The same process 
is applied to our Watchdog module and its internal 
components. The numbers from 1 to 4 in Fig. 2 are used to 
describe the Watchdog behavior during the simulation phase. 

After the platform simulation begin, whenever an 
instruction is fetched from the memory (1) a callback is 
triggered, thus activating the Watchdog. Inside the first 
module, the binary code of each instruction is acquired using 
the program counter (PC) register, thus the binary code is 
disassemble, divided in sub-strings, identifying the instruction 
that must be executed (2). The identified instruction is 
employed as a hashtable key to discover which class (e.g. 
arithmetic, load, logical) such instruction belongs (3). The 
hashtable implementation was considered to remove the 
simulation bottleneck inherent to the use of linked lists (model 
implementation not reported here).  

Hence, energy consumption of this instruction is computed, 
considering the predefined energy information (calibration 
process). Once, the energy consumption is computed, the 
instruction is executed in the CPU (4). At the end of the 
simulation is possible to retrieve energy reports, including 
individual energy consumed per CPU, number of memory 
access (read and write operations), among others. 

IV. RESULTS 

A. EXPERIMENTAL SETUP 
Application benchmarks that permit exploiting and 

assessing performance of embedded CPUs were selected from 
different research domains. For instance, the 11-selected 
applications of the worst-case execution time [16] (WCET) 
benchmarks vary in terms of execution time, number of loops, 
matrixes and array size. Other in-house application 
benchmarks using well-known algorithms are also employed. 

Since OVPSim uses the target CPU’s binary code to 
perform emulation on a host machine, all simulation scenarios 
were executed multiple times in order to capture meaningful 
results. Note that we are using the same cross-compile, 
libraries, and compilations flags in order to create almost 
identical binaries. Further, we used in the Mentor Graphics 
Sourcery Tools version 4.8.1 the following flags -mips1 -g -
Ttext 00000000. 

B. ACCURACY OF THE MODEL 
Fig. 3 compares the energy consumption for each 

application benchmark, considering results obtained from 
gate-level simulation (i.e. Cadence Incisive) and the proposed 
instruction-driven energy model in OVP. Gray bars 

correspond to the difference between each result, showing the 
high accuracy achieved with the proposed model (error below 
8%). 
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Figure 3 - Application benchmark energy consumption: gate-level simulation 

vs proposed instruction-driven energy model in OVP. 

C. ACHIEVED SPEEDUP 
Fig. 4 presents the achieved simulation speeds in MIPS 

when comparing both the instruction-driven energy model in 
OVP and the gate-level simulation. Results show the gain in 
terms of speedup is wide, ranging from 10x to 1500x (gray 
bars) depending on the application benchmark nature. Note 
that all analysis using our proposed energy model in OVP 
required less than a minute of simulation.  
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Figure 4 - Gain in terms of speedup: gate-level simulation vs proposed OVP 
energy model. Letters (A-S) symbolize the application benchmarks described 

in Fig. 3. 

Achieved high accuracy and simulation speedup of the 
proposed energy model, allied with the design flexibility and 
debugging features inherent to OVP, introduces an efficient 
tool capable to assist designers in the software development. 
In this direction, we claim that software engineers can validate 
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the functional behavior of the entire software stack (e.g. 
OS/application) executing it onto a given CPU architecture, 
using the original OVP. Then, software engineers may use the 
proposed OVP extension in a still reasonable simulation speed 
(i.e. 1.8 MIPS) to investigate if target software stack can be 
executed according to the energy requirements.  

D. MODEL SCALABILITY   
Developing high-level models and simulators that scale to 

hundreds of cores becomes a stringent requirement to 
investigate many-core systems. This Section investigates the 
performance scalability of the proposed model when scaling 
the number of watchdogs and CPU cores. 

Fig 5 shows the speedup obtained using the proposed 
instruction-driven energy model, considering many-core 
systems varying the number of CPUs from 10 to 1000, each of 
which executes an instance of FFT. Note that for each CPU 
there is one Watchdog module instance (as illustrated in Fig 2). 
Results show the simulation speed remains between 1.6 and 
1.8 MIPS. Such results prove that proposed approach is 
suitable for fast energy exploration of large many-core 
systems. The gray line represents simulation speed of the 
proposed energy model, considering the full statistics report 
generation (e.g. executed instructions, energy per CPU, as 
illustrated in Fig. 6). In addition to that, the yellow one 
includes the cost of capturing the number and the type of 
memory accesses, while black line comprises both. 
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Figure 5 – Simulation speed when scaling the number of watchdogs and 

CPUs from 10 to 1000. 

 
Figure 6 – One CPU report example. 

V. CONCLUSION 
This paper addressed the challenge of making JIT-based 

simulators able to estimate applications’ energy consumption. 

As case study, we presented a fast and accurate instruction-
driven energy model, which was integrated into the OVPSim. 
The proposed model is applicable to different types of CPUs 
and it relies on run-time basis, eliminating huge trace files, as 
well as pre- or post-processing software/application profiling. 
A number of experiments were presented, showing accuracy 
and an important speedup to obtain energy vales.  
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