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ABSTRACT 
The MPSoC literature related to runtime support of Quality of 
Service (QoS) presents proposals related to the management of 
the interconnection infrastructure and the processing elements 
(PEs). The QoS management of computation resources is 
essential to fulfill real-time (RT) applications, as in multimedia 
systems, where dynamic workload and CPU sharing are 
commonplace. However, few works concerning QoS at the 
processor level for RT applications are found in the literature. The 
proposed work provides a runtime support for QoS acting in the 
PEs, coupled to a monitoring scheme at the task level. The main 
goal of the present work is to employ a low overhead task 
migration combined with task scheduling priority, to increase the 
computation resources for RT applications. An important feature 
of the proposal is to act indirectly over the QoS application, by 
minimizing the interference of the best effort (BE) tasks in the RT 
application performance. If the monitoring infrastructure still 
detects deadline misses, the system management then tries to 
optimize the RT application acting at the task level, migrating the 
affected RT task or modifying the scheduling policy. The NoC-
based MPSoC was modeled and validated using an RTL 
description, with real applications. Results use throughput as the 
reference performance parameter. The proposed technique 
restored the RT applications performance after the introduction of 
disturbing applications, with a small reaction time. 

 

Categories and Subject Descriptors 
B.7.1 [Integrated Circuits]: Types and Design Styles – advanced 
technologies, VLSI (very large scale integration). 

General Terms 
Management, Design, Performance. 

Keywords 
MPSoC, QoS, Monitoring, Adaptation, Runtime  

1. INTRODUCTION 
Multiprocessor systems on chip (MPSoCs), using networks on 
chip (NoC) as the communication infrastructure, result from the 
continuous reduction in the transistors’ size and the need for 
higher computational power. This higher computing capacity is 
obtained through the reuse of components (processors, memories, 
routers), which also provides scalability and simplifies the design 
process. MPSoCs with hundreds of processing elements (PEs) 
follows the Moore's law, and according to the ITRS it is predicted 
up to 1,000 PEs in a single chip at the end of 2025. This 
estimation is driven mainly by the telecommunications and 
multimedia market, which includes devices such as smartphones 
and mobile computers. Such devices require systems able to 
execute a wide range of applications, with different performance 
requirements. Thus, the system must be able to provide Quality of 
Service (QoS) to applications, and adjust the use of resources at 
runtime [1][2]. 

The MPSoC literature related to runtime support for QoS presents 
proposals with the main goal to control the interconnection 
infrastructure [3][4], with a lack of works exploring a processor 
centric approach to provide QoS for RT applications. QoS at the 
processor level is related to reserve hardware resources to real-
time (RT) applications [5]. Provide QoS adaptation is a key 
feature in MPSoCs, because several applications may execute 
simultaneously, with some of these with QoS constraints. 
Enabling runtime QoS adaptation allows to the system to decide 
itself to dedicate more resources for RT applications.  

In the literature, related proposals optimize at design-time the 
workload distribution, not offering a runtime management of 
processing resources for RT QoS support. The main issues 
addressed in the literature provide workload balancing targeting 
fault tolerance and thermal management. However, the runtime 
management of computation resources is essential to fulfilling the 
RT constraints, as in multimedia systems, where dynamic 
workload and CPU sharing are commonplace [5][6]. 

The proposed work provides runtime support targeting QoS for 
RT applications, acting in the PEs, coupled to a monitoring 
scheme at the task level. The runtime adaptation employs low cost 
task migration, combined with scheduling priority to increase the 
computation resources for RT applications. An important feature 
of the proposal is to act indirectly over RT applications, by 
minimizing the effect of the BE tasks that disturb the performance 
of the RT application. The main idea can be summarized as 
follows. After detecting deadlines misses by throughput 
monitoring, the runtime management tries to move all disturbing 
BE tasks sharing resource with RT tasks. With this action, RT 
tasks are not penalized with the migration overhead. If the 
monitoring still detects deadline misses, the system management 
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then tries to migrate RT tasks to a free PE. If the migration is not 
possible, the last action is to increase the OS scheduling priority 
for the affected RT task. 

This work is organized as follows. Section 2 presents related 
works to QoS management. Section 3 details the monitoring 
model, used to detect deadline misses. Section 4 presents the QoS 
techniques, used by the method for QoS adaptation (section 5). 
Section 6 presents the obtained results, and Section 7 concludes 
this paper. 

2. RELATED WORKS 
Table 1 summarizes the state-of-the-art related to QoS 
management.  

Monitoring is essential for runtime management support (second 
column of Table 1). Software monitoring [6][7][8][9] is used for 
workload management because it can capture information related 
to the applications’ performance (as deadlines). However, 
software monitoring must be carefully employed, due to its higher 
intrusion compared with other monitoring architectures [1]. 
Commonly, the software monitoring implementation uses the 
same processing resources of applications, penalizing the 
performance of the monitored application. This work adopts a 
hybrid monitoring, with hardware monitors in PEs, and software 
monitoring in PEs dedicated to management, named manager 
PEs. 

The software monitoring proposed in [6][7][8][9] does not detail 
how the constraints are transmitted to the system. In addition, the 
monitoring proposals are not generic, and tightly coupled to the 
adaptation proposal. Differently from these works, our monitoring 
scheme is generic, with an API responsible for transmitting to the 
OS the QoS constraints, obtained through application profile step 
(section 3.1). 

Kornaros [10] proposes a hybrid monitoring infrastructure, with 
software support to configure the hardware monitoring 
components. This proposal adopts DVS to manage the system 
workload. As in our proposal, the monitoring information is 
filtered to reduce the amount of monitored data. Despite the 
similar runtime monitoring scheme, the goal of our proposal is 

runtime QoS adaptation. 

The third column of the Table analyses the adaptation 
organization. Two organizations are adopted: distributed or 
centralized. Scalability is not a problem in distributed 
organizations [5][7][8][11] because each node takes local 
decisions. For example, if a given PE detects an event, as 
workload higher than a fixed threshold, it sends messages to its 
neighbors searching for PEs able to share the current workload. 
The partial system view of distributed organization may lead to 
inefficient adaptations [12]. On the other hand, centralized 
approaches [6][9][10][13] have a full system view, being not 
scalable because the number of PEs to manage increases with the 
system size. Our work adopts a trade-off between such 
approaches, characterizing a hierarchical organization with two 
levels. Hardware monitors compute in a distributed way the 
flows’ throughput and latency (first level), and manager PEs take 
adaptation decisions with a systemic view (second level). 

The fourth and fifth columns present the goals and how the 
adaptation is executed for each proposal. As can be observed, 
most works adopt workload balancing at runtime. The workload 
balancing is employed for fault tolerance, performance 
improvement and thermal management. However, an explicit QoS 
support is not addressed in these works, except by [5] and [11] 
were the user defines at design time the adaptation points to be 
used at runtime, i.e., not being completely adaptive. Abas et al. 
[6] also uses an indirectly workload management employing a 
runtime parallelization selection to improve the resources 
utilization in a virtualized platform. 

Note that most works use task migration as the adaptation method 
[7][8][9][11][12][13][14], demonstrating the effectiveness of the 
approach to managing the workload. However, a common feature 
in all these works is the migration of the task whose performance 
or other parameters exceed a pre-defined threshold. Therefore, the 
task must stop, its context saved and migrated to another PE. All 
this process incurs in a performance penalty during the migration 
process. In general, the proposals adopting task migration search 
new ways to reduce the migration cost, and consequently the 
adaptation overhead. 

 

Table 1 – State-of-the-art comparing works related to QoS management. 

Proposal	   Monitoring	   Adaptation	  Organization	   Goal	  of	  the	  adaptation	   How	  adaptation	  is	  executed	  

Saint	  et	  al.	  	  
[7]	  (2008)	  

Software	  –	  Using	  FIFO	  task	  
constraints	   Distributed	  at	  each	  PE	  OS	   Workload	  balancing	   Migrating	  affected	  task	  to	  a	  PE	  with	  smaller	  

FIFO	  utilization	  
Zangh	  et	  al.	  
	  [14]	  (2010)	   No	   Centralized	  (bus)	   Fault	  Tolerance,	  workload	  

balancing	  
Task	  computation	  scheduling	  algorithm	  
balance	  the	  workload	  between	  each	  PE	  	  

Filho	  et	  al.	  
	  [8]	  (2012)	  

Software	  –	  Task	  constraints	  
(ticks)	   Distributed	  at	  each	  PE	  OS	   Dynamic	  workload	  balancing	   Uses	  task	  migration	  to	  distribute	  the	  

workload	  
Holmbacka	  et	  al.	  [11]	  
(2013)	  

No	  –	  The	  user	  must	  define	  
migration	  checkpoints	   Distributed	  at	  each	  PE	  OS	   Power	  efficiency,	  performance	  

improvement	  
Task	  migration	  in	  a	  shared	  memory	  and	  MMU	  
MPSoC:	  changing	  memory	  references	  

Quan	  et	  al.	  
[9]	  (2013)	  

Software	  –	  Task	  computation	  
and	  communication	  cost	   Centralized	   Energy	  Saving,	  performance	  

improvement	  
Run	  time	  task	  mapping	  algorithm,	  combining	  
static	  with	  dynamic	  mapping	  (task	  migration)	  

Joven	  et	  al.	  	  
[5]	  (2013)	  

No	  -‐	  The	  user	  must	  define	  the	  
QoS	  level	  manually	   Distributed	  at	  each	  PE	  OS	   QoS	  reconfiguration	  to	  

workload	  management	  
oCMPI	  library	  manage	  the	  workload	  using	  
traffic	  priority	  and	  CS	  	  

Kornaros	  et	  al.	  [10]	  
(2011)	  

Hybrid	  –	  Tasks	  workload	  
violations	   Centralized	   Power	  Management	  (DVS),	  

workload	  management	  

A	  manager	  unit	  is	  responsible	  for	  apply	  
thermal	  policies	  according	  to	  the	  monitors	  
information	  	  

Abbas	  et	  al.	  
	  [6]	  (2014)	  

Software	  –	  Applications	  
constraints	   Centralized	   Resource	  optimization	   Two	  parallelization	  (defined	  at	  design	  time)	  

are	  selected	  at	  each	  application	  iteration	  
Canella	  et	  al.	  [13]	  
(2012)	   No	   Centralized	   System	  adaptivity	  	   Use	  task	  migration	  based	  in	  Polyhedral	  

Process	  Networks	  

This	  Proposal	   Hybrid	  –	  hw	  and	  sw	  monitors	  

Hierarchical	  with	  
manager	  PEs	  controlling	  
the	  PEs	  executing	  
applications	  

QoS	  of	  processing	  resources	  
According	  with	  throughput	  violation	  a	  
heuristics	  employ	  task	  migration	  and	  
scheduling	  processor	  	  

 



The present work also employs task migration but acting 
indirectly over the RT tasks. A QoS manager tries to migrate the 
BE (best effort) tasks interfering with the affected RT task. Only 
if it is not possible to move the interference to another place the 
heuristic migrates the affected RT task. This procedure frequently 
eliminates the adaptation overhead. Salami et al. [15] describe a 
possible ping-pong effect, where a given task migrates from one 
core to another repeatedly. Any migrated task in our proposal is 
migrated to PEs without RT tasks, avoiding in this way the ping-
pong effect.  

3. MPSOC AND MONITORING MODELS 
The communication infrastructure adopts a baseline 2D-mesh 
NoC, with the following features:  
• duplicated 16-bit physical channels, assigning high priority 

to channel 0 and low priority to channel 1 (high priority 
packets may use both channels);  

• deterministic Hamiltonian routing [16] in channel 1 and 
partially adaptive Hamiltonian routing in channel 0;  

• input buffering;  
• credit-based flow control;  
• simultaneous PS and CS. 

The processing element (PE) connected to each NoC router 
contains the following modules: 32-bit Plasma processor (MIPS-
like architecture), local memory, DMA (Direct Memory Access), 
NI (network interface).  

The MPSoC contains manager PEs (MPs) and slave PEs (SPs). 
MPs execute heuristics to control the MPSoC, as task mapping 
[17], monitoring, and task migration. SPs run an OS (operating 
system), responsible for task communication, multi-task 
execution, and to execute user applications. 

The monitoring includes hardware and software modules, 
characterizing a hybrid scheme. This scheme combines the fast 
response and low intrusiveness of hardware monitoring, with a 
system view of the software monitoring.  

Figure 1 shows an overview of the proposed monitoring scheme, 
considering a 4x4 MPSoC instance, split into four 2x2 clusters. 
The monitoring modules are implemented in SPs and MPs. SPs 
contain the packet monitor (3.2). MPs contain the throughput and 
latency monitors (3.3). The QoS manager is also implemented in 
MPs, receiving events from the monitors. The QoS manager is the 
event manager [1], detailed in Section 4. The QoS manager 
receives the monitored data, and executes the QoS heuristics. 

Cluster
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S M
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Figure 1 - Proposed monitoring system. ‘S’ corresponds to 

slave PEs, and ‘M’ to manager PEs. 

To enable monitoring, the first action is to obtain the application 
profile (section 3.1). This action enables the programmer to define 
monitoring thresholds at design time, which are used to detect 
violations and generate events at runtime. The dotted arrow in 
Figure 1 corresponds to the monitoring traffic. The packet 
monitor observes data packet coming from the router local port, 
extracts its latency and size, and sends this information in a small 
packet to the throughput and latency monitor. This monitor 
handles the received packets and if necessary generate events. 

This monitoring architecture is classified as hierarchical, with two 
layers. The lower layer comprises SPs, which generate monitoring 
information to the second layer, the MPs, which implement the 
monitors and the QoS Manager. 

3.1 Profile and Monitoring API 
In the profile configuration, the application developer executes 
the RT application without disturbing traffic to verify if the 
platform can deliver the expected performance to meet the 
application constraints. Throughput and latency values obtained 
during the profile step correspond to the best results that the 
application can achieve in the platform, and are the basis to obtain 
the monitor thresholds. Thus, the monitoring system can detect 
violations, notifying the QoS manager.  

The monitoring system was designed to support monitoring at the 
task level. To enable the monitoring, the user must inform the 
communicating task pair (ctp) that will have the threshold and 
latency monitored. System calls were created to configure the 
monitors:  

• setRTResolution: defines the resolution of the throughput 
monitor;  

• setQoSProducer: called by the consumer task, enabling the 
communication monitoring between a consumer task and a 
producer task, also defining throughput and latency 
deadlines;  

• setQoSConsumer: called by the producer task, informs to the 
OS of the producer task who is the consumer task. This 
system call is used to add at each packet transmitted to the 
consumer task a flag. This flag indicates to the packet 
monitor to inspect the received packets. 

3.2 Packet Monitor 
The packet monitor is implemented in hardware, in the network 
interface of the SPs. The packet monitor observes all data packets 
entering in the local port with a monitoring bit enabled in the 
packet header (set by the setQoSConsumer system call). 

The function of Packet Monitor is to extract from the data packet 
the producer task id, consumer task id, packet size, and latency. 
The packet size and the tasks’ ids (producer and consumer) are 
already in the packet. To obtain the packet latency, a timestamp 
flit was added in the original data packet. This timestamp flit is 
generated during the packet creation in the producer task. 

3.3 Throughput and Latency Monitor 
The throughput monitor is software implemented, in the MP. The 
throughput monitor counts the number of received bits within the 
monitoring resolution time (defined by set setRTResolution 
syscall). When a monitoring packet coming from the packet 
monitor is received, the OS identifies the ctp and increments the 
throughput counter according to the packet size. When the 
resolution of the throughput monitor window expires, the monitor 



verifies if the throughput deadline was violated, i.e., a throughput 
smaller than the specified (each ctp has a specific deadline, 
defined with the setQoSProducer system call). After a 
parameterizable number of violations, the monitor generates a 
throughput event to QoS Manager.  

The latency monitor is executed when the MP receives a 
monitoring packet. The MP identifies the ctp and calls the latency 
monitor. The latency monitor verifies if the latency carried in the 
monitoring packet is higher than the latency deadline (also 
defined in the setQoSProducer system call), generating a latency 
violation if it is true. After a parameterizable number of 
violations, the monitor generates a latency event to the QoS 
manager. 

4. QOS TECHNIQUES 
This section describes the two QoS techniques that act in 
computation performance of RT tasks.  

4.1 Task Migration 
In [18] a task migration heuristic is detailed, with the following 
features: (i) complete task migration, including code, data and 
context; (ii) do not require migration checkpoints, i.e., the task 
may be migrated at any moment; (iii) in-order message delivery, 
i.e., tasks communicating with the migrated tasks will receive the 
messages in the order they were sent. The cost-function of this 
heuristic is to reduce the communication energy. 

The present work optimized the task migration protocol proposed 
in [18]. The proposal divides the amount of data to be migrated by 
memory sections, and migrates each memory section separately. 
Figure 2 details the new process. In event 1, the task migration 
process begins with the adaptation order sent by the QoS manager 
to the OS of the current task. The adaptation order contains the 
identification of the task to be migrated and the target PE that will 
receive the task. The QoS Manager is responsible for selecting the 
processor to receive the task. When the processor receives the 
migration request, the OS immediately send the object code of the 
task to the new processor (event 2). Next, it is verified if the 
remaining data memory segments (bss, data and stack) can be 
sent. If this verification returns false, the task remains running 
(event 3). To migrate the data memory segments the following 
condition must be satisfied: the state of the task must be “ready to 
execute” (READY), meaning that task is not waiting for a 
message from another task, and that task is not running. In this 
state, the task context is safely stored in the OS. 

QoS	  Manager	  sends	  a	  TASK_MIGRATION	  order	  with	  a	  target	  processor	  ID
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Figure 2 - Optimized task migration protocol. 

If the task is waiting for a message, this means that the task is 
blocked waiting a data packet from some given task (synchronous 
receive MPI protocol). Migrating the task in such state will incur 
in a message loss since the producer will send the message to an 

SP without the corresponding task to consume it. If the task is 
executing, the processor registers are in use, and the CPU 
registers are not safely stored by the OS. 

The first preemption of the task to the READY state, after code 
migration, triggers the migration of the data memory segments 
(event 4 in Figure 2), concluding the task migration process. 

4.2 Processor Scheduling Priority 
The OS scheduler supports multi-task execution. The proposal 
adopts the Round-Robin Scheduling with Priority-based 
Preemption [19]. The processor is allocated according to the 
round-robin policy. However, when a suspended task with higher 
priority than the current running one becomes ready to run, the 
former preempts the latter. In addition, the processor time slice for 
each task can be set at design time. Such approach adds a certain 
degree of priority since the time slice for each task can be set 
according to its processing requirements. A preempted task has its 
remaining time slice stored in the OS, which is restored when the 
task is re-scheduled. 

All tasks are initialized with default and equal priority and time-
slice. When the OS receives the adaptation order to change the 
scheduling priority of a given task, it increases its scheduling 
priority and time-slice. 

5. COMPUTING QOS ADAPTATION 
When a throughput event is received, the QoS manager calls the 
ChangeQoSComputation function (Figure 3). Its objective is to 
choose the appropriate adaptive technique to provide a 
computation QoS improvement. As the QoS manager analyzes a 
ctp, both producer and consumer tasks use the 
ChangeQoSComputation function. Definitions:  
• resource: page in the SP memory, used by the processor to 

execute one task (assumed paged memory organization). The 
number of resources for each SP is defined at design time. 

• migrateBE function: tries to migrate a BE task to a processor 
without RT tasks executing. The selected processor is the one 
with the lowest communication cost between the migrated BE 
task and its communicating tasks. 

• migrateRT function: if there are free PEs this function 
migrates an RT task to a free PE (without any task), selecting 
the one with the smaller communication cost. Otherwise, no 
action is taken. 

The ChangeQoSComputation function receives as input an RTtask 
ID (producer or consumer), with QoS violations in the ctp. The 
first action (line 2) is to verify if the cluster has free resources to 
enable the task migration. If this condition is satisfied, the 
function searchBEtask searches for BE tasks in the same 
processor executing the RTtask (line 3). This function returns the 
task ID of the BE task (BEtask), or -1 if no BE task is found. If a 
BE task is found in the same processor executing the RTtask, the 
next action is to try to migrate the BEtask using the migrateBE 
function (line 5). The goal of this process is: “if exists an RT task, 
sharing CPU resources with BE tasks, the first action is to try to 
migrate the BE tasks to another PE, improving the performance 
of the RT task by removing the disturbing tasks”. If it is not 
possible to migrate the BEtask, due to the lack of resources without 
RT tasks, the next step is to increase the scheduler priority of the 
RTtask (line 6). 

If does not exist BE tasks running simultaneously with the RTtask, 
but other RT tasks share the processor with the RTtask, the 



procedure tries to migrate the RTtask to a free PE through the 
migrateRT function (line 8 and 9). This action is executed after 
trying to migrate the BE tasks because the migration process, 
although optimized, may penalize the RTtask performance due to 
the task stalling during the migration process.  
1. ChangeQoSComputation	  (input:	  RTtask)	  
2. 	  	   IF	  cluster	  has	  free	  resources	  THEN	  
3. 	  	   	   BEtask	  ←	  searchBEtask(RT_task	  processor)	  
4. 	  	   	   IF	   BEtask!=	  -‐1	  THEN	  
5. 	  	   	   	  	  	  IF	  migrateBE(BEtask)	  ==	  -‐1	  THEN	  
6. 	  	   	   	  	  	  	  	  	  	  	  Increase	  CPU	  scheduling	  priority	  for	  RTtask	  
7. 	  	   	   	  	  	  END_IF	  
8. 	  	   	   ELSIF	  ∃	  other	  RT	  task	  in	  the	  RTtask	  processor	  THEN	  
9. 	  	   	   	  	  	  	  	  	  migrateRT(RTtask)	  
10. 	  	  	  	  	  	  END_IF	  
11. 	  	  ELSIF	   ∄	  other	  RT	  tasks	  in	  the	  RTtask	  processor	  THEN	  
12. 	  	  	  	  	  	  	  	  Increase	  CPU	  scheduling	  priority	  for	  RTtask	  
13. 	   END_IF	  
14. End	  ChangeQoSComputation	  

Figure 3 – Pseudocode of the computing QoS Adaptation 
heuristic. 

In the absence of free resources, and if the CPU is not sharing the 
processor with other RT tasks, the RTtask has its scheduling 
priority increased (line 11 and 12). 

The algorithm presented in Figure 3 tries to reserve one PE for 
each RT task while grouping BE tasks in the same PE. This 
procedure contributes to defragment the system, and BE tasks can 
also present an execution time improvement since they will be 
moved to PEs without RT tasks. 

6. RESULTS 
This Section presents the results obtained with scheduling priority 
and task migration for QoS adaptation. Results were obtained 
using RT applications mapped together with BE applications. All 
applications are described in C language, and the simulation uses 
an RTL cycle accurate description of the platform (SystemC). 

Three scenarios were evaluated: (i) best: where each application is 
executed alone in the system, and each task is mapped to a free 
PE; (ii) without adaptation: without monitoring and adaptive 
techniques, with disturbing applications; (iii) adaptation: applying 
monitoring and adaptive techniques with disturbing applications. 
The best scenario is used as the reference to set the latency and 
throughput deadlines (profiling step). 

The MPSoC used in this test case contains 36 PEs (6x6), with 
four 3x3 clusters. Four RT applications are used (tasks graphs 
presented in Figure 4): MJPEG, DTW (Dynamic Time Warping), 
audio_video and FFT. Each cluster received one RT application, 
mapped together with synthetic applications that correspond to 
BE applications. The BE applications are executed simultaneously 
with the RT applications. 
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Figure 4 – Task graph of the evaluated applications. 

Figure 5 presents the execution time of the RT applications. It is 
possible to observe that the adaptive techniques do not provide a 
significant improvement for the audio_video and FFT 

applications, but for MJPEG and DTW applications the adaptive 
technique reduced the execution time compared to a scenario 
without adaptation. The MJPEG presented a final runtime just 
0.8% higher than the best scenario runtime. The DTW presented a 
final runtime 16% higher than the best scenario, but 41% lower 
than the adaptation scenario. The adaptive techniques do not 
reduce the execution time of the audio_video and FFT 
applications due to the small communication rate between tasks 
(most of the time the tasks are executing, not communicating). 
The major benefit of the adaptive techniques is to sustaining the 
throughput (i.e. QoS) as presented next. 

 
Figure 5 - Execution time of RT applications. 

Figure 6 details the throughput for the ctp iquant→idct (MJPEG 
application), with the numbers corresponding to the moments 
where the adaption techniques are applied. The flow running in 
the best scenario presents a throughput of 24,435 bits/5ms. The 
throughput deadline is set to 24,190 (1% lower than best 
scenario), and the resolution time configured to 5 ms. The average 
throughput decreased to 22,862 bits/5ms in the scenario without 
adaptation. Adding the adaptive techniques, the average 
throughput increased to 24,192, returning to meet the specified 
constraint.  

Another import point exposed by Figure 6 is the task migration 
performance. The advantage of the optimized task migration 
protocol is the smaller volume of information transmitted through 
the NoC and the absence of migration points defined by the 
programmer. Comparing the optimized protocol to the original 
one [17], with a page size equal to 16 Kbytes, the proposed 
migration protocol reduces the migration time, in average, by 
69,5% (~960 clock cycles) against the reference protocol (~3,150 
clock cycles) to the ivlc task of MJPEG application. The 
advantage of the presented protocol may be even higher with 
larger pages because in the reference protocol the entire task page 
is migrated, independently of the task code or data size.  

 
Figure 6 - Throughput results for the communicating task 

pair iquant à  idct. 
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To put in perspective those values, [11] and [7] report a migration 
time of 100 ms and 131.35 ms, respectively (corresponding 
roughly to 1,000 times the time obtained by our method). A 
similar result to ours is presented by [13], with a migration time 
of 15,000 clock cycles for a task of the MJPEG application. 

Figure 7 details the cluster task mapping, and the task migrations. 
The Figure shows only one cluster, the one that received the 
MJPEG application. Initially, the MJPEG application is mapped 
into a given cluster, with each RT task of the MJPEG application 
running individually at each PE, contributing to sustain the 
throughput according to the application requirements. 
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Figure 7 - Adaptation cluster steps for the MJPEG 

application. 
In steps 1 and 2 of Figure 7, BE applications (in green and orange, 
respectively) are mapped into the cluster. The mapping heuristic 
searches free resources into the MPSoCs and may map BE tasks 
in PEs executing RT tasks. In step 1 the performance of the idct 
and start tasks are penalized due to BE tasks, decreasing the 
application throughput, and then triggering the adaptation (Figure 
6 labels 1 and 2). In both cases, the adaptation moves the BE tasks 
sharing CPU with RT tasks to PE 6. At the end of this migration 
process, all tasks belonging to the MJPEG are running in a 
dedicated PE, and the throughput restored, as can be observed in 
Figure 6. 

In step 3 the BE application that was mapped in step 2 remains 
running, and another BE application is mapped into the cluster 
(yellow). The cluster becomes full and a BE task (taskF_12) is 
allocated by reclustering in another cluster. At this moment, all 
MJPEG tasks are sharing CPU with BE tasks, and their respective 
throughput present an important reduction (Figure 6(3)). At this 
moment, the previous BE application – that is still running since 
step 2 – finishes its execution. Promptly, the adaptation heuristic 
moves the remaining BE tasks to PEs where no RT tasks are 
running. Tasks in PE 15 and 16 go to PE 4, and tasks in PE 8 and 
18 (this PE belongs to another cluster), go to PE 6, removing the 
CPU sharing with the RT tasks. 

This example, Figure 7(3), also illustrates the runtime reclustering 
management. The reclustering procedure verifies if exists tasks 
executing in neighbor clusters. When a resource becomes 

available in the cluster, the MP (PE 3) verifies if there are tasks 
running in PEs outside of the cluster. If the condition is satisfied, 
the MP migrates the task back to the cluster. In this example, 
taskF_12 is migrated to PE6. The reclustering management 
restores the original cluster size at runtime, grouping 
communicating tasks near to each other, reducing the 
communication energy. 

Figure 8 details the throughput for the ctp bank→p2 (DTW 
application). This second example corresponds to the application 
having the highest execution time reduction applying the adaptive 
techniques (Figure 5). The flow running in the best scenario 
presents a throughput of 28,512 bits/5ms, with the deadline set to 
28,500 bits/5ms. The average throughput decreased to 14,476 
bits/5ms when the DTW application runs with the BE 
applications, corresponding to a decrease in the throughput 
superior to 49%. With the adaptive techniques, the average 
throughput reached 24,603 bits/5ms, presenting a throughput 
improvement of 70% compared to the scenario without 
adaptation. 

 
Figure 8 - Throughput results for the communicating task 

pair bankàp2. 
Three moments are highlighted in Figure 8: 
(1) The monitoring detects throughput violations generating 

events. The adaptation occurs, and the heuristic migrates task 
p2 to a free PE, restoring the throughput. 

(2) A BE task is dynamically mapped with task p2, reducing the 
throughput. The adaptive technique migrates the BE task to 
another PE, restoring the throughput to the best scenario. 

(3) Other DTW tasks (p3 and recognizer) are sharing resources 
with BE tasks, and the BE task migration is not possible due 
to the lack of free resources; thus, the throughput is reduced to 
24,192 (15% lower than best scenario). During this period, 
two throughput peaks are observed, due to an increase in the 
scheduling priority of tasks bank and p2. 

We define the reaction time as the time between the start of the 
BE interference and the triggering of the adaptation. The reaction 
time is proportional to the configured RT resolution for each ctp 
(setRTResolution system call). Both ctps of MJPEG and DTW 
applications had the resolution time configured at 5 ms. For the 
MJPEG and DTW applications, the average reaction time was 
4,73 ms and 2,17 ms, respectively (to put in perspective this 
value, it is in the same order of resolution than a real-time Linux). 
An important parameter affecting the reaction time is the 
communication volume of a given ctp. The DTW is more 
communication intensive than MJPEG, explaining the observed 
differences. 



7. CONCLUSION 
This work presented a runtime adaptive QoS management 
technique, with two different adaptive computing QoS techniques. 
To provide support to runtime adaptive QoS management, this 
work proposed a hybrid monitoring implementation that provided 
a small degree of intrusiveness, with a worst-case link usage equal 
to 0.8%, not penalizing the execution time of monitored 
applications. This proposal is scalable, because it employs a two-
level hierarchical scheme, distributing the management and 
monitoring data among clusters. 

The computing adaptations achieved a significant throughput 
improvement, increasing the scheduling priority and using task 
migration. An important feature of the method is to try to migrate 
first BE tasks interfering with RT tasks, and then that act over the 
RT application. This feature minimizes the performance penalty 
induced by the QoS techniques since the RT tasks continue to run 
without interruptions. 

Suggestion for future works include: (i) QoS-aware task mapping, 
to minimize the BE mappings with RT tasks, reducing in such a 
way the number of migrated tasks; (ii) adaptive monitoring, to 
adjust the monitoring window according to the number of events; 
(iii) add another adaptive techniques, as DVFS. 
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