
Runtime QoS Support for MPSoC: a Processor Centric
Approach

Marcelo Ruaro1, Everton A. Carara2, Fernando G. Moraes1
1 PUCRS – FACIN – Av. Ipiranga 6681 – Porto Alegre – 90619-900 – Brazil

 2 UFSM – DELC – Av. Roraima 1000 – Santa Maria – 97105-900 – Brazil

marcelo.ruaro@acad.pucrs.br, carara@ufsm.br, fernando.moraes@pucrs.br

ABSTRACT
The MPSoC literature related to runtime support of Quality of
Service (QoS) presents proposals related to the management of
the interconnection infrastructure and the processing elements
(PEs). The QoS management of computation resources is
essential to fulfill real-time (RT) applications, as in multimedia
systems, where dynamic workload and CPU sharing are
commonplace. However, few works concerning QoS at the
processor level for RT applications are found in the literature. The
proposed work provides a runtime support for QoS acting in the
PEs, coupled to a monitoring scheme at the task level. The main
goal of the present work is to employ a low overhead task
migration combined with task scheduling priority, to increase the
computation resources for RT applications. An important feature
of the proposal is to act indirectly over the QoS application, by
minimizing the interference of the best effort (BE) tasks in the RT
application performance. If the monitoring infrastructure still
detects deadline misses, the system management then tries to
optimize the RT application acting at the task level, migrating the
affected RT task or modifying the scheduling policy. The NoC-
based MPSoC was modeled and validated using an RTL
description, with real applications. Results use throughput as the
reference performance parameter. The proposed technique
restored the RT applications performance after the introduction of
disturbing applications, with a small reaction time.

Categories and Subject Descriptors
B.7.1 [Integrated Circuits]: Types and Design Styles – advanced
technologies, VLSI (very large scale integration).

General Terms
Management, Design, Performance.

Keywords
MPSoC, QoS, Monitoring, Adaptation, Runtime

1. INTRODUCTION
Multiprocessor systems on chip (MPSoCs), using networks on
chip (NoC) as the communication infrastructure, result from the
continuous reduction in the transistors’ size and the need for
higher computational power. This higher computing capacity is
obtained through the reuse of components (processors, memories,
routers), which also provides scalability and simplifies the design
process. MPSoCs with hundreds of processing elements (PEs)
follows the Moore's law, and according to the ITRS it is predicted
up to 1,000 PEs in a single chip at the end of 2025. This
estimation is driven mainly by the telecommunications and
multimedia market, which includes devices such as smartphones
and mobile computers. Such devices require systems able to
execute a wide range of applications, with different performance
requirements. Thus, the system must be able to provide Quality of
Service (QoS) to applications, and adjust the use of resources at
runtime [1][2].

The MPSoC literature related to runtime support for QoS presents
proposals with the main goal to control the interconnection
infrastructure [3][4], with a lack of works exploring a processor
centric approach to provide QoS for RT applications. QoS at the
processor level is related to reserve hardware resources to real-
time (RT) applications [5]. Provide QoS adaptation is a key
feature in MPSoCs, because several applications may execute
simultaneously, with some of these with QoS constraints.
Enabling runtime QoS adaptation allows to the system to decide
itself to dedicate more resources for RT applications.

In the literature, related proposals optimize at design-time the
workload distribution, not offering a runtime management of
processing resources for RT QoS support. The main issues
addressed in the literature provide workload balancing targeting
fault tolerance and thermal management. However, the runtime
management of computation resources is essential to fulfilling the
RT constraints, as in multimedia systems, where dynamic
workload and CPU sharing are commonplace [5][6].

The proposed work provides runtime support targeting QoS for
RT applications, acting in the PEs, coupled to a monitoring
scheme at the task level. The runtime adaptation employs low cost
task migration, combined with scheduling priority to increase the
computation resources for RT applications. An important feature
of the proposal is to act indirectly over RT applications, by
minimizing the effect of the BE tasks that disturb the performance
of the RT application. The main idea can be summarized as
follows. After detecting deadlines misses by throughput
monitoring, the runtime management tries to move all disturbing
BE tasks sharing resource with RT tasks. With this action, RT
tasks are not penalized with the migration overhead. If the
monitoring still detects deadline misses, the system management

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
Permissions@acm.org.
SBCCI '14, September 01 - 05 2014, Aracaju, Brazil
Copyright 2014 ACM 978-1-4503-3156-2/14/09…$15.00.
http://dx.doi.org/10.1145/2660540.2661011.

then tries to migrate RT tasks to a free PE. If the migration is not
possible, the last action is to increase the OS scheduling priority
for the affected RT task.

This work is organized as follows. Section 2 presents related
works to QoS management. Section 3 details the monitoring
model, used to detect deadline misses. Section 4 presents the QoS
techniques, used by the method for QoS adaptation (section 5).
Section 6 presents the obtained results, and Section 7 concludes
this paper.

2. RELATED WORKS
Table 1 summarizes the state-of-the-art related to QoS
management.

Monitoring is essential for runtime management support (second
column of Table 1). Software monitoring [6][7][8][9] is used for
workload management because it can capture information related
to the applications’ performance (as deadlines). However,
software monitoring must be carefully employed, due to its higher
intrusion compared with other monitoring architectures [1].
Commonly, the software monitoring implementation uses the
same processing resources of applications, penalizing the
performance of the monitored application. This work adopts a
hybrid monitoring, with hardware monitors in PEs, and software
monitoring in PEs dedicated to management, named manager
PEs.

The software monitoring proposed in [6][7][8][9] does not detail
how the constraints are transmitted to the system. In addition, the
monitoring proposals are not generic, and tightly coupled to the
adaptation proposal. Differently from these works, our monitoring
scheme is generic, with an API responsible for transmitting to the
OS the QoS constraints, obtained through application profile step
(section 3.1).

Kornaros [10] proposes a hybrid monitoring infrastructure, with
software support to configure the hardware monitoring
components. This proposal adopts DVS to manage the system
workload. As in our proposal, the monitoring information is
filtered to reduce the amount of monitored data. Despite the
similar runtime monitoring scheme, the goal of our proposal is

runtime QoS adaptation.

The third column of the Table analyses the adaptation
organization. Two organizations are adopted: distributed or
centralized. Scalability is not a problem in distributed
organizations [5][7][8][11] because each node takes local
decisions. For example, if a given PE detects an event, as
workload higher than a fixed threshold, it sends messages to its
neighbors searching for PEs able to share the current workload.
The partial system view of distributed organization may lead to
inefficient adaptations [12]. On the other hand, centralized
approaches [6][9][10][13] have a full system view, being not
scalable because the number of PEs to manage increases with the
system size. Our work adopts a trade-off between such
approaches, characterizing a hierarchical organization with two
levels. Hardware monitors compute in a distributed way the
flows’ throughput and latency (first level), and manager PEs take
adaptation decisions with a systemic view (second level).

The fourth and fifth columns present the goals and how the
adaptation is executed for each proposal. As can be observed,
most works adopt workload balancing at runtime. The workload
balancing is employed for fault tolerance, performance
improvement and thermal management. However, an explicit QoS
support is not addressed in these works, except by [5] and [11]
were the user defines at design time the adaptation points to be
used at runtime, i.e., not being completely adaptive. Abas et al.
[6] also uses an indirectly workload management employing a
runtime parallelization selection to improve the resources
utilization in a virtualized platform.

Note that most works use task migration as the adaptation method
[7][8][9][11][12][13][14], demonstrating the effectiveness of the
approach to managing the workload. However, a common feature
in all these works is the migration of the task whose performance
or other parameters exceed a pre-defined threshold. Therefore, the
task must stop, its context saved and migrated to another PE. All
this process incurs in a performance penalty during the migration
process. In general, the proposals adopting task migration search
new ways to reduce the migration cost, and consequently the
adaptation overhead.

Table 1 – State-of-the-art comparing works related to QoS management.

Proposal	 Monitoring	 Adaptation	 Organization	 Goal	 of	 the	 adaptation	 How	 adaptation	 is	 executed	

Saint	 et	 al.	 	
[7]	 (2008)	

Software	 –	 Using	 FIFO	 task	
constraints	 Distributed	 at	 each	 PE	 OS	 Workload	 balancing	 Migrating	 affected	 task	 to	 a	 PE	 with	 smaller	

FIFO	 utilization	
Zangh	 et	 al.	
	 [14]	 (2010)	 No	 Centralized	 (bus)	 Fault	 Tolerance,	 workload	

balancing	
Task	 computation	 scheduling	 algorithm	
balance	 the	 workload	 between	 each	 PE	 	

Filho	 et	 al.	
	 [8]	 (2012)	

Software	 –	 Task	 constraints	
(ticks)	 Distributed	 at	 each	 PE	 OS	 Dynamic	 workload	 balancing	 Uses	 task	 migration	 to	 distribute	 the	

workload	
Holmbacka	 et	 al.	 [11]	
(2013)	

No	 –	 The	 user	 must	 define	
migration	 checkpoints	 Distributed	 at	 each	 PE	 OS	 Power	 efficiency,	 performance	

improvement	
Task	 migration	 in	 a	 shared	 memory	 and	 MMU	
MPSoC:	 changing	 memory	 references	

Quan	 et	 al.	
[9]	 (2013)	

Software	 –	 Task	 computation	
and	 communication	 cost	 Centralized	 Energy	 Saving,	 performance	

improvement	
Run	 time	 task	 mapping	 algorithm,	 combining	
static	 with	 dynamic	 mapping	 (task	 migration)	

Joven	 et	 al.	 	
[5]	 (2013)	

No	 -‐	 The	 user	 must	 define	 the	
QoS	 level	 manually	 Distributed	 at	 each	 PE	 OS	 QoS	 reconfiguration	 to	

workload	 management	
oCMPI	 library	 manage	 the	 workload	 using	
traffic	 priority	 and	 CS	 	

Kornaros	 et	 al.	 [10]	
(2011)	

Hybrid	 –	 Tasks	 workload	
violations	 Centralized	 Power	 Management	 (DVS),	

workload	 management	

A	 manager	 unit	 is	 responsible	 for	 apply	
thermal	 policies	 according	 to	 the	 monitors	
information	 	

Abbas	 et	 al.	
	 [6]	 (2014)	

Software	 –	 Applications	
constraints	 Centralized	 Resource	 optimization	 Two	 parallelization	 (defined	 at	 design	 time)	

are	 selected	 at	 each	 application	 iteration	
Canella	 et	 al.	 [13]	
(2012)	 No	 Centralized	 System	 adaptivity	 	 Use	 task	 migration	 based	 in	 Polyhedral	

Process	 Networks	

This	 Proposal	 Hybrid	 –	 hw	 and	 sw	 monitors	

Hierarchical	 with	
manager	 PEs	 controlling	
the	 PEs	 executing	
applications	

QoS	 of	 processing	 resources	
According	 with	 throughput	 violation	 a	
heuristics	 employ	 task	 migration	 and	
scheduling	 processor	 	

The present work also employs task migration but acting
indirectly over the RT tasks. A QoS manager tries to migrate the
BE (best effort) tasks interfering with the affected RT task. Only
if it is not possible to move the interference to another place the
heuristic migrates the affected RT task. This procedure frequently
eliminates the adaptation overhead. Salami et al. [15] describe a
possible ping-pong effect, where a given task migrates from one
core to another repeatedly. Any migrated task in our proposal is
migrated to PEs without RT tasks, avoiding in this way the ping-
pong effect.

3. MPSOC AND MONITORING MODELS
The communication infrastructure adopts a baseline 2D-mesh
NoC, with the following features:
• duplicated 16-bit physical channels, assigning high priority

to channel 0 and low priority to channel 1 (high priority
packets may use both channels);

• deterministic Hamiltonian routing [16] in channel 1 and
partially adaptive Hamiltonian routing in channel 0;

• input buffering;
• credit-based flow control;
• simultaneous PS and CS.

The processing element (PE) connected to each NoC router
contains the following modules: 32-bit Plasma processor (MIPS-
like architecture), local memory, DMA (Direct Memory Access),
NI (network interface).

The MPSoC contains manager PEs (MPs) and slave PEs (SPs).
MPs execute heuristics to control the MPSoC, as task mapping
[17], monitoring, and task migration. SPs run an OS (operating
system), responsible for task communication, multi-task
execution, and to execute user applications.

The monitoring includes hardware and software modules,
characterizing a hybrid scheme. This scheme combines the fast
response and low intrusiveness of hardware monitoring, with a
system view of the software monitoring.

Figure 1 shows an overview of the proposed monitoring scheme,
considering a 4x4 MPSoC instance, split into four 2x2 clusters.
The monitoring modules are implemented in SPs and MPs. SPs
contain the packet monitor (3.2). MPs contain the throughput and
latency monitors (3.3). The QoS manager is also implemented in
MPs, receiving events from the monitors. The QoS manager is the
event manager [1], detailed in Section 4. The QoS manager
receives the monitored data, and executes the QoS heuristics.

Cluster

S M

S SS S

S M

Cluster

Communication	 Direction

Bidirecional	 Physical	 Channel

S

S Network	
Interface

kernel
Throughput	
and	 Latency
MONITOR

EVENT

QoS	 Manager

Manager	 PE
kernel

Packet	
Monitor

Network	
Interface

Slave	 PE
Profile	 Configuration

Figure 1 - Proposed monitoring system. ‘S’ corresponds to

slave PEs, and ‘M’ to manager PEs.

To enable monitoring, the first action is to obtain the application
profile (section 3.1). This action enables the programmer to define
monitoring thresholds at design time, which are used to detect
violations and generate events at runtime. The dotted arrow in
Figure 1 corresponds to the monitoring traffic. The packet
monitor observes data packet coming from the router local port,
extracts its latency and size, and sends this information in a small
packet to the throughput and latency monitor. This monitor
handles the received packets and if necessary generate events.

This monitoring architecture is classified as hierarchical, with two
layers. The lower layer comprises SPs, which generate monitoring
information to the second layer, the MPs, which implement the
monitors and the QoS Manager.

3.1 Profile and Monitoring API
In the profile configuration, the application developer executes
the RT application without disturbing traffic to verify if the
platform can deliver the expected performance to meet the
application constraints. Throughput and latency values obtained
during the profile step correspond to the best results that the
application can achieve in the platform, and are the basis to obtain
the monitor thresholds. Thus, the monitoring system can detect
violations, notifying the QoS manager.

The monitoring system was designed to support monitoring at the
task level. To enable the monitoring, the user must inform the
communicating task pair (ctp) that will have the threshold and
latency monitored. System calls were created to configure the
monitors:

• setRTResolution: defines the resolution of the throughput
monitor;

• setQoSProducer: called by the consumer task, enabling the
communication monitoring between a consumer task and a
producer task, also defining throughput and latency
deadlines;

• setQoSConsumer: called by the producer task, informs to the
OS of the producer task who is the consumer task. This
system call is used to add at each packet transmitted to the
consumer task a flag. This flag indicates to the packet
monitor to inspect the received packets.

3.2 Packet Monitor
The packet monitor is implemented in hardware, in the network
interface of the SPs. The packet monitor observes all data packets
entering in the local port with a monitoring bit enabled in the
packet header (set by the setQoSConsumer system call).

The function of Packet Monitor is to extract from the data packet
the producer task id, consumer task id, packet size, and latency.
The packet size and the tasks’ ids (producer and consumer) are
already in the packet. To obtain the packet latency, a timestamp
flit was added in the original data packet. This timestamp flit is
generated during the packet creation in the producer task.

3.3 Throughput and Latency Monitor
The throughput monitor is software implemented, in the MP. The
throughput monitor counts the number of received bits within the
monitoring resolution time (defined by set setRTResolution
syscall). When a monitoring packet coming from the packet
monitor is received, the OS identifies the ctp and increments the
throughput counter according to the packet size. When the
resolution of the throughput monitor window expires, the monitor

verifies if the throughput deadline was violated, i.e., a throughput
smaller than the specified (each ctp has a specific deadline,
defined with the setQoSProducer system call). After a
parameterizable number of violations, the monitor generates a
throughput event to QoS Manager.

The latency monitor is executed when the MP receives a
monitoring packet. The MP identifies the ctp and calls the latency
monitor. The latency monitor verifies if the latency carried in the
monitoring packet is higher than the latency deadline (also
defined in the setQoSProducer system call), generating a latency
violation if it is true. After a parameterizable number of
violations, the monitor generates a latency event to the QoS
manager.

4. QOS TECHNIQUES
This section describes the two QoS techniques that act in
computation performance of RT tasks.

4.1 Task Migration
In [18] a task migration heuristic is detailed, with the following
features: (i) complete task migration, including code, data and
context; (ii) do not require migration checkpoints, i.e., the task
may be migrated at any moment; (iii) in-order message delivery,
i.e., tasks communicating with the migrated tasks will receive the
messages in the order they were sent. The cost-function of this
heuristic is to reduce the communication energy.

The present work optimized the task migration protocol proposed
in [18]. The proposal divides the amount of data to be migrated by
memory sections, and migrates each memory section separately.
Figure 2 details the new process. In event 1, the task migration
process begins with the adaptation order sent by the QoS manager
to the OS of the current task. The adaptation order contains the
identification of the task to be migrated and the target PE that will
receive the task. The QoS Manager is responsible for selecting the
processor to receive the task. When the processor receives the
migration request, the OS immediately send the object code of the
task to the new processor (event 2). Next, it is verified if the
remaining data memory segments (bss, data and stack) can be
sent. If this verification returns false, the task remains running
(event 3). To migrate the data memory segments the following
condition must be satisfied: the state of the task must be “ready to
execute” (READY), meaning that task is not waiting for a
message from another task, and that task is not running. In this
state, the task context is safely stored in the OS.

QoS	 Manager	 sends	 a	 TASK_MIGRATION	 order	 with	 a	 target	 processor	 ID

PAGE	 0

PAGE	 1

PAGE	 2
TASK_B	 ready

TASK_A	
running

MICROKERNEL
PAGE	 0

PAGE	 1

PAGE	 2
FREE_PAGE

TASK_C

MICROKERNEL

SOURCE	 PROCESSOR TARGET	 PROCESSOR

PAGE	 0

PAGE	 1

PAGE	 2
TASK_B	 ready

TASK_A	
running

MICROKERNEL
PAGE	 0

PAGE	 1

PAGE	 2

OCCUPIED	
PAGE

TASK_C

MICROKERNEL

SOURCE	 PROCESSOR TARGET	 PROCESSOR

PAGE	 0

PAGE	 1

PAGE	 2
TASK_B	 ready

FREE	 PAGE

MICROKERNEL
PAGE	 0

PAGE	 1

PAGE	 2

TASK_A	
running

TASK_C

MICROKERNEL

SOURCE	 PROCESSOR TARGET	 PROCESSOR

3

CLUSTER	 MASTER

Operating	
System	 (OS)

QoS	
Manager

SOURCE	 PROCESSOR

1

A	 MIGRATION_CODE	 packet	 is	 sent	 to	 target	 processor	 with	 object	 code	
of	 TASK_A

2

TASK_A	 keeps	 running	 until	 adaptation	 module	 migrate	 the	 dynamic	
memory	 	

4

Data	 memory	 of	 TASK_A	 (bss,	 data	 and	 stack)	 is	 migrated	 to	 PAGE	 2	 in	
target	 processor

Figure 2 - Optimized task migration protocol.

If the task is waiting for a message, this means that the task is
blocked waiting a data packet from some given task (synchronous
receive MPI protocol). Migrating the task in such state will incur
in a message loss since the producer will send the message to an

SP without the corresponding task to consume it. If the task is
executing, the processor registers are in use, and the CPU
registers are not safely stored by the OS.

The first preemption of the task to the READY state, after code
migration, triggers the migration of the data memory segments
(event 4 in Figure 2), concluding the task migration process.

4.2 Processor Scheduling Priority
The OS scheduler supports multi-task execution. The proposal
adopts the Round-Robin Scheduling with Priority-based
Preemption [19]. The processor is allocated according to the
round-robin policy. However, when a suspended task with higher
priority than the current running one becomes ready to run, the
former preempts the latter. In addition, the processor time slice for
each task can be set at design time. Such approach adds a certain
degree of priority since the time slice for each task can be set
according to its processing requirements. A preempted task has its
remaining time slice stored in the OS, which is restored when the
task is re-scheduled.

All tasks are initialized with default and equal priority and time-
slice. When the OS receives the adaptation order to change the
scheduling priority of a given task, it increases its scheduling
priority and time-slice.

5. COMPUTING QOS ADAPTATION
When a throughput event is received, the QoS manager calls the
ChangeQoSComputation function (Figure 3). Its objective is to
choose the appropriate adaptive technique to provide a
computation QoS improvement. As the QoS manager analyzes a
ctp, both producer and consumer tasks use the
ChangeQoSComputation function. Definitions:
• resource: page in the SP memory, used by the processor to

execute one task (assumed paged memory organization). The
number of resources for each SP is defined at design time.

• migrateBE function: tries to migrate a BE task to a processor
without RT tasks executing. The selected processor is the one
with the lowest communication cost between the migrated BE
task and its communicating tasks.

• migrateRT function: if there are free PEs this function
migrates an RT task to a free PE (without any task), selecting
the one with the smaller communication cost. Otherwise, no
action is taken.

The ChangeQoSComputation function receives as input an RTtask
ID (producer or consumer), with QoS violations in the ctp. The
first action (line 2) is to verify if the cluster has free resources to
enable the task migration. If this condition is satisfied, the
function searchBEtask searches for BE tasks in the same
processor executing the RTtask (line 3). This function returns the
task ID of the BE task (BEtask), or -1 if no BE task is found. If a
BE task is found in the same processor executing the RTtask, the
next action is to try to migrate the BEtask using the migrateBE
function (line 5). The goal of this process is: “if exists an RT task,
sharing CPU resources with BE tasks, the first action is to try to
migrate the BE tasks to another PE, improving the performance
of the RT task by removing the disturbing tasks”. If it is not
possible to migrate the BEtask, due to the lack of resources without
RT tasks, the next step is to increase the scheduler priority of the
RTtask (line 6).

If does not exist BE tasks running simultaneously with the RTtask,
but other RT tasks share the processor with the RTtask, the

procedure tries to migrate the RTtask to a free PE through the
migrateRT function (line 8 and 9). This action is executed after
trying to migrate the BE tasks because the migration process,
although optimized, may penalize the RTtask performance due to
the task stalling during the migration process.
1. ChangeQoSComputation	 (input:	 RTtask)	
2. 	 	 IF	 cluster	 has	 free	 resources	 THEN	
3. 	 	 	 BEtask	 ←	 searchBEtask(RT_task	 processor)	
4. 	 	 	 IF	 BEtask!=	 -‐1	 THEN	
5. 	 	 	 	 	 	 IF	 migrateBE(BEtask)	 ==	 -‐1	 THEN	
6. 	 	 	 	 	 	 	 	 	 	 	 Increase	 CPU	 scheduling	 priority	 for	 RTtask	
7. 	 	 	 	 	 	 END_IF	
8. 	 	 	 ELSIF	 ∃	 other	 RT	 task	 in	 the	 RTtask	 processor	 THEN	
9. 	 	 	 	 	 	 	 	 	 migrateRT(RTtask)	
10. 	 	 	 	 	 	 END_IF	
11. 	 	 ELSIF	 ∄	 other	 RT	 tasks	 in	 the	 RTtask	 processor	 THEN	
12. 	 	 	 	 	 	 	 	 Increase	 CPU	 scheduling	 priority	 for	 RTtask	
13. 	 END_IF	
14. End	 ChangeQoSComputation	

Figure 3 – Pseudocode of the computing QoS Adaptation
heuristic.

In the absence of free resources, and if the CPU is not sharing the
processor with other RT tasks, the RTtask has its scheduling
priority increased (line 11 and 12).

The algorithm presented in Figure 3 tries to reserve one PE for
each RT task while grouping BE tasks in the same PE. This
procedure contributes to defragment the system, and BE tasks can
also present an execution time improvement since they will be
moved to PEs without RT tasks.

6. RESULTS
This Section presents the results obtained with scheduling priority
and task migration for QoS adaptation. Results were obtained
using RT applications mapped together with BE applications. All
applications are described in C language, and the simulation uses
an RTL cycle accurate description of the platform (SystemC).

Three scenarios were evaluated: (i) best: where each application is
executed alone in the system, and each task is mapped to a free
PE; (ii) without adaptation: without monitoring and adaptive
techniques, with disturbing applications; (iii) adaptation: applying
monitoring and adaptive techniques with disturbing applications.
The best scenario is used as the reference to set the latency and
throughput deadlines (profiling step).

The MPSoC used in this test case contains 36 PEs (6x6), with
four 3x3 clusters. Four RT applications are used (tasks graphs
presented in Figure 4): MJPEG, DTW (Dynamic Time Warping),
audio_video and FFT. Each cluster received one RT application,
mapped together with synthetic applications that correspond to
BE applications. The BE applications are executed simultaneously
with the RT applications.

RECOG

P1

P2

P3

P4

BANK

START IVLC IQUANT PRINTIDCT

DTW

MJPEG

FRONT FFTFFT

SPLIT

STEP1 STEP2

JOIN

STEP3

AUDIO_VIDEO

AD FIR

Figure 4 – Task graph of the evaluated applications.

Figure 5 presents the execution time of the RT applications. It is
possible to observe that the adaptive techniques do not provide a
significant improvement for the audio_video and FFT

applications, but for MJPEG and DTW applications the adaptive
technique reduced the execution time compared to a scenario
without adaptation. The MJPEG presented a final runtime just
0.8% higher than the best scenario runtime. The DTW presented a
final runtime 16% higher than the best scenario, but 41% lower
than the adaptation scenario. The adaptive techniques do not
reduce the execution time of the audio_video and FFT
applications due to the small communication rate between tasks
(most of the time the tasks are executing, not communicating).
The major benefit of the adaptive techniques is to sustaining the
throughput (i.e. QoS) as presented next.

Figure 5 - Execution time of RT applications.

Figure 6 details the throughput for the ctp iquant→idct (MJPEG
application), with the numbers corresponding to the moments
where the adaption techniques are applied. The flow running in
the best scenario presents a throughput of 24,435 bits/5ms. The
throughput deadline is set to 24,190 (1% lower than best
scenario), and the resolution time configured to 5 ms. The average
throughput decreased to 22,862 bits/5ms in the scenario without
adaptation. Adding the adaptive techniques, the average
throughput increased to 24,192, returning to meet the specified
constraint.

Another import point exposed by Figure 6 is the task migration
performance. The advantage of the optimized task migration
protocol is the smaller volume of information transmitted through
the NoC and the absence of migration points defined by the
programmer. Comparing the optimized protocol to the original
one [17], with a page size equal to 16 Kbytes, the proposed
migration protocol reduces the migration time, in average, by
69,5% (~960 clock cycles) against the reference protocol (~3,150
clock cycles) to the ivlc task of MJPEG application. The
advantage of the presented protocol may be even higher with
larger pages because in the reference protocol the entire task page
is migrated, independently of the task code or data size.

Figure 6 - Throughput results for the communicating task

pair iquant à idct.

0	
5	
10	
15	
20	
25	
30	
35	
40	
45	

audio_video	 mjpeg	 dtw	 [Ex
ec
uY

on
	 T
im

e	
(m

ill
io
n	
of
	 c
lo
ck
	

cy
cl
es
)	

Real-‐Yme	 ApplicaYons	

Adapta\on	 Without	 Adapta\on	 Best	 Scenario	

To put in perspective those values, [11] and [7] report a migration
time of 100 ms and 131.35 ms, respectively (corresponding
roughly to 1,000 times the time obtained by our method). A
similar result to ours is presented by [13], with a migration time
of 15,000 clock cycles for a task of the MJPEG application.

Figure 7 details the cluster task mapping, and the task migrations.
The Figure shows only one cluster, the one that received the
MJPEG application. Initially, the MJPEG application is mapped
into a given cluster, with each RT task of the MJPEG application
running individually at each PE, contributing to sustain the
throughput according to the application requirements.

SP	 15

SP	 8

MP	 3

SP	 16

SP	 7

SP	 4

SP	 17

SP	 6

SP	 5

idct

taskA_5

print ivlc

start

taskB_5

taskC_5

taskD_5

taskE_5

taskF_5

iquant

1
SP	 15

SP	 8

MP	 3

SP	 16

SP	 7

SP	 4

SP	 17

SP	 6

SP	 5

idct print ivlc

start taskB_5taskC_5

taskD_5

taskeE_5

taskF_5

iquant

taskA_5

SP	 15

SP	 8

MP	 3

SP	 16

SP	 7

SP	 4

SP	 17

SP	 6

SP	 5

idct

taskB_9

print ivlc

start

taskA_9

taskC_9

taskD_9

taskE_9

taskF_9

iquant

2

3

SP	 15

SP	 8

MP	 3

SP	 16

SP	 7

SP	 4

SP	 17

SP	 6

SP	 5

idct print ivlc

start taskC_9

taskD_9

taskE_9

taskF_9

iquant

taskB_9

taskA_9

SP	 15

SP	 8

MP	 3

SP	 16

SP	 7

SP	 4

SP	 17

SP	 6

SP	 5

idct

taskB_12

print

start

taskA_12

taskC_9

taskD_9

taskE_9

taskF_9

taskB_9

taskA_9

SP	 18
taskF_12

taskC_12

taskE_12

iquant

taskD_12

ivlc

SP	 15

SP	 8

MP	 3

SP	 16

SP	 7

SP	 4

SP	 17

SP	 6

SP	 5

idct print ivlc

start taskE_12

taskD_12

taskC_12

taskB_12

iquant

taskF_12

taskA_12

Reclustering

QoS	
Manager

QoS	
Manager

QoS	
Manager

QoS	
Manager

QoS	
Manager

QoS	
Manager

The	 orange	 application	 ends,	 and	 all	 6	 tasks	 of	 the	 yellow	 application	
have	 	 migrated	 (for	 sake	 of	 simplicity	 only	 3	 migrations	 are	 illustrate)

Figure 7 - Adaptation cluster steps for the MJPEG

application.
In steps 1 and 2 of Figure 7, BE applications (in green and orange,
respectively) are mapped into the cluster. The mapping heuristic
searches free resources into the MPSoCs and may map BE tasks
in PEs executing RT tasks. In step 1 the performance of the idct
and start tasks are penalized due to BE tasks, decreasing the
application throughput, and then triggering the adaptation (Figure
6 labels 1 and 2). In both cases, the adaptation moves the BE tasks
sharing CPU with RT tasks to PE 6. At the end of this migration
process, all tasks belonging to the MJPEG are running in a
dedicated PE, and the throughput restored, as can be observed in
Figure 6.

In step 3 the BE application that was mapped in step 2 remains
running, and another BE application is mapped into the cluster
(yellow). The cluster becomes full and a BE task (taskF_12) is
allocated by reclustering in another cluster. At this moment, all
MJPEG tasks are sharing CPU with BE tasks, and their respective
throughput present an important reduction (Figure 6(3)). At this
moment, the previous BE application – that is still running since
step 2 – finishes its execution. Promptly, the adaptation heuristic
moves the remaining BE tasks to PEs where no RT tasks are
running. Tasks in PE 15 and 16 go to PE 4, and tasks in PE 8 and
18 (this PE belongs to another cluster), go to PE 6, removing the
CPU sharing with the RT tasks.

This example, Figure 7(3), also illustrates the runtime reclustering
management. The reclustering procedure verifies if exists tasks
executing in neighbor clusters. When a resource becomes

available in the cluster, the MP (PE 3) verifies if there are tasks
running in PEs outside of the cluster. If the condition is satisfied,
the MP migrates the task back to the cluster. In this example,
taskF_12 is migrated to PE6. The reclustering management
restores the original cluster size at runtime, grouping
communicating tasks near to each other, reducing the
communication energy.

Figure 8 details the throughput for the ctp bank→p2 (DTW
application). This second example corresponds to the application
having the highest execution time reduction applying the adaptive
techniques (Figure 5). The flow running in the best scenario
presents a throughput of 28,512 bits/5ms, with the deadline set to
28,500 bits/5ms. The average throughput decreased to 14,476
bits/5ms when the DTW application runs with the BE
applications, corresponding to a decrease in the throughput
superior to 49%. With the adaptive techniques, the average
throughput reached 24,603 bits/5ms, presenting a throughput
improvement of 70% compared to the scenario without
adaptation.

Figure 8 - Throughput results for the communicating task

pair bankàp2.
Three moments are highlighted in Figure 8:
(1) The monitoring detects throughput violations generating

events. The adaptation occurs, and the heuristic migrates task
p2 to a free PE, restoring the throughput.

(2) A BE task is dynamically mapped with task p2, reducing the
throughput. The adaptive technique migrates the BE task to
another PE, restoring the throughput to the best scenario.

(3) Other DTW tasks (p3 and recognizer) are sharing resources
with BE tasks, and the BE task migration is not possible due
to the lack of free resources; thus, the throughput is reduced to
24,192 (15% lower than best scenario). During this period,
two throughput peaks are observed, due to an increase in the
scheduling priority of tasks bank and p2.

We define the reaction time as the time between the start of the
BE interference and the triggering of the adaptation. The reaction
time is proportional to the configured RT resolution for each ctp
(setRTResolution system call). Both ctps of MJPEG and DTW
applications had the resolution time configured at 5 ms. For the
MJPEG and DTW applications, the average reaction time was
4,73 ms and 2,17 ms, respectively (to put in perspective this
value, it is in the same order of resolution than a real-time Linux).
An important parameter affecting the reaction time is the
communication volume of a given ctp. The DTW is more
communication intensive than MJPEG, explaining the observed
differences.

7. CONCLUSION
This work presented a runtime adaptive QoS management
technique, with two different adaptive computing QoS techniques.
To provide support to runtime adaptive QoS management, this
work proposed a hybrid monitoring implementation that provided
a small degree of intrusiveness, with a worst-case link usage equal
to 0.8%, not penalizing the execution time of monitored
applications. This proposal is scalable, because it employs a two-
level hierarchical scheme, distributing the management and
monitoring data among clusters.

The computing adaptations achieved a significant throughput
improvement, increasing the scheduling priority and using task
migration. An important feature of the method is to try to migrate
first BE tasks interfering with RT tasks, and then that act over the
RT application. This feature minimizes the performance penalty
induced by the QoS techniques since the RT tasks continue to run
without interruptions.

Suggestion for future works include: (i) QoS-aware task mapping,
to minimize the BE mappings with RT tasks, reducing in such a
way the number of migrated tasks; (ii) adaptive monitoring, to
adjust the monitoring window according to the number of events;
(iii) add another adaptive techniques, as DVFS.

8. ACKNOWLEDGEMENTS
The author Fernando Moraes acknowledges the support granted
by CNPQ, processes 472126/2013-0 and 302625/2012-7; and
CAPES process 708/11.

9. REFERENCES
[1] Kornaros, G.; Pnevmatikatos, D. A survey and taxonomy of on-chip

monitoring of multicore systems-on-chip. ACM Transactions on
Design Automation Electronic Systems, v.18(2), 2013, pp. 38.

[2] Carara, E.; Calazans, N. Moraes, F. Differentiated Communication
Services for NoC-Based MPSoCs. IEEE Transactions on
Computers, v.63(3), 2014, pp 595-608.

[3] Wang, C.; Bagherzadeh, N. Design and Evaluation of a High
Throughput QoS-Aware and Congestion-Aware Router
Architecture for Network-on-Chip. In: Euromicro, 2012, pp. 457-
464.

[4] Wissem, C.; Attia, B.; Noureddine, A.; Zitouni, A.; Tourki, R. A
Quality of Service Network on Chip based on a New Priority
Arbitration Mechanism. In: ICM, 2011, 6 p.

[5] Joven, J.; et al. QoS-Driven Reconfigurable Parallel Computing for
NoC-Based Clustered MPSoCs. IEEE Transactions on Industrial
Informatics, v.9(3), 2013, pp.1613-1624.

[6] Abbas, N.; Ma, Z. Run-time parallelization switching for resource
optimization on an MPSoC platform. Design Automation for
Embedded Systems, March, 2014.

[7] Saint-Jean, N.; Benoit, P.; Sassatelli, G.; Torres, L.; Robert, M.
MPI-Based Adaptive Task Migration Support on the HS-Scale
System. In: ISVLSI, 2008, pp.105-110.

[8] Filho, S.J.; Aguiar, A.; de Magalhães, F.G.; Longhi, O.; Hessel, F.,
Task model suitable for dynamic load balancing of real-time
applications in NoC-based MPSoCs. In: ICCD, 2012, pp. 49-54.

[9] Quan, W.; Pimentel, A.D. A scenario-based run-time task mapping
algorithm for MPSoCs. In: DAC, 2013, pp.1-6.

[10] Kornaros, G; Pnevmatikatos, D. Hardware-assisted dynamic power
and thermal management in multi-core SoCs. In: GLSVLSI, 2011,
pp. 115-120.

[11] Holmbacka, S.; Lund, W.; Lafond, S.; Lilius, J. Task Migration for
Dynamic Power and Performance Characteristics on Many-Core
Distributed Operating Systems. In: PDP, 2013, pp.310-317.

[12] Lee, C.; Kim, H.; Park, H.; Kim, S.; Oh, H.; Ha, S. A task
remapping technique for reliable multi-core embedded systems. In:
CODES+ISSS, 2010, pp. 307-316.

[13] Cannella, E.; Derin, O.; Meloni, P.; Tuveri, G.; Stefanov, T.
Adaptivity support for MPSoCs based on process migration in
polyhedral process networks. VLSI Design, 2012, Article 2.

[14] Zhang, Y.; Hao, Z.; Xu, X.; Zhao, W.; Wang, Z. Workload-
balancing schedule with adaptive architecture of MPSoCs for fault
tolerance. In: BMEI, vol.7, 2010, pp.2775-2779.

[15] Salami, B.; Baharani, M.; Noori, H. Proactive task migration with a
self-adjusting migration threshold for dynamic thermal
management of multi-core processors. The Journal of
Supercomputing, March, 2014.

[16] Lin, X.; McKinley, P.; Ni, L. Deadlock-free Multicast Wormhole
Routing in 2-D Mesh Multicomputers. IEEE Transactions on
Parallel and Distributed Systems, v.5(8), 1994, pp. 793-804.

[17] Mandelli, M.; Ost, L.; Carara, E.; Guindani, G.; Rosa,T.; Medeiros,
G.; Moraes, F. Energy-Aware Dynamic Task Mapping for NoC-
based MPSoCs. In: ISCAS, 2011, pp. 1676-1679.

[18] Moraes, F; Madalozzo, G; Castilhos, G.; Carara, E. Proposal and
Evaluation of a Task Migration Protocol for NoC-based MPSoCs.
In: ISCAS, 2012, pp. 644-647.

[19] Li, J; Yao, C. Real-Time Concepts for Embedded Systems. CPM
Books, 2003, 294p

