
Achieving QoS in NoC-based MPSoCs through
Dynamic Frequency Scaling

Guilherme Guindani, Fernando G. Moraes

PUCRS - F ACIN - Av. Ipiranga 6681 - Porto Alegre - 906 I 9-900 - Brazil
guilherme.guindani@acad.pucrs.br, fernando.moraes@pucrs.br

Abstract-The management of Quality-of-Service (QoS)

constraints in NoC-based MPSoCs, with dozens of tasks running

simultaneously, is still a challenge. Techniques applied at design

or run-time to address this issue adopts different QoS metrics.

Designers include in their systems monitoring techniques,

adapting at run-time the QoS parameters to cope with the

required constraints. In order words, MPSoC are able to self­

adapt themselves, while executing a given set of applications.

Self-adaptation capability is a key feature to meet applications'

requirements in dynamic systems. Dynamic Voltage and

Frequency Scaling (DVFS) is an adaptation technique frequently

used to reduce the overall energy consumption, not coupled to

QoS constraints, as throughput or latency. Another example of

adaptation technique is task migration, which focus on

throughput or latency optimization. The self-adaptation

technique proposed in this paper adopts Dynamic Frequency

Scaling (DFS) trading-off power consumption and QoS

constraints. Each processor running the applications' tasks

initially reaches a steady state leading each task to a frequency

level that optimizes the communication with neighbor tasks. The

goal of the initial state is to reach a trade-off between power

consumption and communication throughput. Next, the

application performance is monitored to adjust the frequency

level of each task according to the QoS parameters. Results show

that the proposed self-adaptability scheme can meet the required

QoS constraints, by changing the frequency of the PEs running

the application tasks.

Keywords-NoC-Based MPSoCs,

Adaptability, Energy consumption.

I. INTRODUCTION

QoS monitoring,

MPSoCs with hundreds of processing elements (PEs)
interconnected through a network-on-chip (NoC) is a reality in
the design of current embedded systems [I]. According to
ITRS (http://www.itrs.net/). future MPSoCs will integrate
more than 1,000 PEs by 2025, and these systems must contain
mechanisms to self-adapt to the demands of both applications
and available resources.

Adaptability is built into MPSoCs by employing different
techniques, such as priority-based task scheduling,
communication priorities, task migration, DVFS and circuit
switching. This adaptability is used to cope with the
performance degradation while running multiple applications
simultaneously. Each of these techniques targets a specific
QoS metric, such as communication priorities for throughput
and DFVS for energy consumption.

978-1-4799-1191-2/13/$31.00 ©2013 IEEE

Focusing in energy consumption adaptability, DVFS is the
most used technique. It is based on the fact that the frequency
has a linear impact on the energy consumption, and the
voltage a quadratic impact. Therefore, controlling these two
variables it is possible to adapt the CMOS circuit energy
consumption. However, the technology scaling, coupled with
the increasing manufacturing process variability, may interfere
in the design of DVFS techniques. These variations can result
in nominally correct DVFS schemes failing to meet frequency
or energy targets [2] [3].

Dynamic Frequency Scaling (DFS) is an alternative to the
DVFS scheme. In DFS, the voltage of the CMOS circuit is
kept unchanged, while the frequency changes according to the
workload applied to the PE. In [4], a clock gating technique
applied to the reference system clock achieved an important
energy consumption reduction, with a small increase in the
total execution time of applications.

The goal of this paper is to propose an adaptability
technique using DFS to achieve application QoS constraints,
as throughput or latency. The adopted DFS scheme is applied
in both PEs and NoC independently, enabling communication
flexibility in the network fabric while maintaining the PE with
the required frequency. If an application with QoS constraints
is disturbed by any other general-purpose application, the DFS
scheme is applied to adjust the frequency of the PEs running
the application with constraints.

The rest of this paper is organized as follows. Section 2
analyses related work on MPSoC adaptability, through DVFS,
aiming QoS applications. Section 3 details the system
architecture and DFS scheme used in the proposed work,
while Section 4 describes the adaptability scheme using DFS.
Section 5 present the scenarios used to evaluate the proposed
scheme and results that were produced by these scenarios,
section 6 concludes this paper and gives direction for future
works.

II. RELATED WORK

Goossens et al. [5] propose a combined energy and real­
time task management aiming the composability of the
MPSoC elements. The Authors present real-time scheduling
algorithms, highlighting their advantages and disadvantages.
The Authors briefly explain the composability paradigm
applied into the MPSoC, and describe how to build a
composable MPSoC energy management. According to the

Authors, to establish this management, the MPSoC processing
element, DMA and memory should have independent clock
signals.

Mansouri et al. [6] propose an adjustment policy on the
DVFS scheme running on the MPSoC local nodes. The
Authors developed a mathematical model of the application
energy consumption, using a consensus algorithm to adjust the
DVFS scheme of each local node. Each node gathers
information from its neighbors to reach a consensus and adapt
its own DVFS. The paper shows results with 87% power
dissipation improvements when compared to the worst-case
scenano.

Garg et al. [7] propose a DVFS control policy applied to
the Voltage and Frequency Islands (VFI) concept. The VFI
divide the MPSoC in different voltage and frequency regions,
which are controlled by a DVFS manager. The proposed
DVFS control policy, named Custom Feedback (CF), is
between the Fully-Centralized (FC) and Fully-Decentralized
(FD) policies. The FC uses global MPSoC information to
control the VFls DVFS, and the FD uses neighboring VFI
information to control the local DVFS. The proposed CF
policy uses both local VFI and neighboring information to
control its own DVFS. The amount of information collected
from the VFI neighborhood, or feedback, is parameterizable
and implies on the performance of the DVFS controlling
scheme. The Authors shows that CF has an 8% improvement
when compared to FC, and 17% when compared to FD
controlling schemes.

Fattah et al. [8] propose a hierarchical monitoring scheme,
dividing the MPSoC in regions, named clusters. In the
proposal, the clustering is application oriented (a cluster
consists of a group of PEs that execute tasks of a given
application). Each cluster is managed by a mid-level manager,
named application manager. A top-level manager - system
manager, is responsible for managing the system as a whole.

Takase et al. [9] propose an optimization flow, at design
time, for applications running in a Multi-Purpose Processor
(MPP). The Authors start the optimization flow by simulating
the application on a cycle-accurate simulator, which enables to
profile the application running on the MPP. From these
profiles, the Authors optimize the energy and the performance
of the application by exploring DVFS and reconfiguration
schemes on the MPP. Next, hardware modification
(DVFS/reconfiguration) checkpoints are automatically
inserted into the application assembly code. Another
optimization is in the task allocation, where it is evaluated if
the task is going to be allocated in the main memory or in the
cache memory. The inter-task dependencies and deadlines is
also optimized, verifying energy and time constraints. The
Authors shows that, by using their framework it is possible to
reduce the MPP energy consumption up to 49%.

The evaluated related work are mainly focused on the
DVFS scheme to address the global energy consumption of an
MPSoC, however none of them treat the energy consumption
as a QoS parameter of an application. Reducing the energy
consumption of the MPSoC could influence other application
QoS parameters such as throughput and latency, or in the real­
time parameters of other applications.

The proposed self-adaptable DFS scheme can manage the
application QoS constraints while optimizing the frequency of
general-purpose tasks (best-effort applications). The use of
such scheme can optimize the overall MPSoC energy
consumption.

III. SYSTEM ARCHITECTURE

The reference MPSoC [10] is a homogeneous NoC-based
MPSoC. Each PE contains the following modules: (i) a 32-bit
Plasma processor (MIPS-like architecture); (ii) a local
memory (RAM); (iii) a DMA module, responsible for
transferring the task object code to the memory and messages
to/from the NoC from/to the local memory; (iv) a network
interface (NI). The Hermes N oC is used to interconnect the
PEs.

Fig. 1 presents the PE architecture, with the DFS
controller. A GALS interface is inserted between the router
and the PE. This GALS interface uses a bisynchronous FIFO
[II], and two-flop synchronizers in the control signals. The
microkernel (operating system of the processor) monitors the
CPU utilization and communication queue occupancy, storing
them in memory-mapped registers (not_scheduled, pipe_ocup,
req_msg signals in Fig. 1). Based on this information, the DFS
controller can take decisions and switch the frequency of the
processor dynamically.

It is important to highlight that each individual clock
generation module receives the system clock as reference,
generating a new clock from it. The benefit of such approach
is that the global clock has to feed only the clock generation
modules, reducing significantly the global clock load, and
hence simplifying the clock tree generation and its power
consumption, which is responsible for, at least, 40% of the
power consumption in MPSoCs. The global system clock is
defined in the following sections as reference frequency.

Fig. I - Router-PE GALS interface and the DFS controller responsible for
generating the PE frequencies [4].

A. Dynamic Frequency Scaling

The DFS scheme adopted was originally proposed in [4],
which changes the frequency with a fixed voltage source. The
DFS is applied to the PE and the router independently.

The clock generation module is instantiated at each PE and
each router. This module uses as input the reference
frequency. The principle of the clock generation process is to

generate a new frequency by simply omitting selected cycles
of the reference clock. There are two configuration signals,
num and den, to generate a new frequency. For example, to
obtain 75% of the original frequency, num is set to 3 and den
to 4. With such configuration, 3 out of 4 clock cycles are
propagated to the clock output signal. When the frequency
needs to be changed, the clock is stopped by asserting the
restart signal. Finally, releasing the restart signal, the new
frequency is available to the PE or router. The proposed
module is glitch free by construction.

The PE DFS controller computes the communication load
and CPU utilization level according to values provided by the
microkernel. The key parameter to control the PE frequency is
the communication load. Each PE contains a global vector in
the local memory, named pipe, controlled by the microkernel,
which stores the messages to be sent for the remote PEs. As
applications are modeled as task graphs, monitoring the pipe
occupation enables to adjust the data flows by regulating the
PE frequencies.

In addition, the PE DFS controller implements a
communication mechanism to balance power consumption
and performance. It takes into account that a consumer
processor must receive the data in a frequency that is not
inferior to its operating frequency. Thus, if the producer
processor is operating at higher frequency than the consumer
processor, the message can be sent at a lower frequency to
save power. On the other hand, if the producer is operating at
a lower frequency than the consumer, its frequency should be
temporally increased to not penalize the consumer
performance.

The DFS controller integrated at each router is responsible
for defining the router frequency. Each input buffer obtains its
frequency from the received packets, which carries in the
header field the frequency value that it needs to be transmitted.
With this information, the NoC frequency controller is able to
switch the router frequency for each traffic being routed. Also,
the controller can identify the router activity and put the router
in a low power mode in case of inactivity, saving a significant
amount of energy. When two or more traffic flows are passing
through router, the controller selects the higher frequency
between them, avoiding performance loss in the network.

IV. ADAPTABILITY USING DFS

To meet application QoS requirements, different
techniques can be used at design time and at run-time [12]. In
MPSoC architectures, with several applications disputing a
limited amount of resources, failure to meet the application
QoS constraints can be a constant.

As illustrated in Fig. 2, applications are modeled as task
graphs, with one or more initial tasks, n computational tasks,
and an output task. At design time, a profile of the application
is obtained to define the QoS constraints. At execution time
the output task is monitored, verifying the actual performance
against the defined constraints.

Tasks communicate through message passing, using MPI­
like send/receive primitives. Non-blocking sends insert
messages in the communication queues (as illustrated in Fig.

2), while blocking receives read from the communication
queues. Such communication scheme reduces the overall NoC
traffic, since a message is only injected into the network when
it is required. If the communication queues are placed at the
receiver side, messages could block the NoC when the queues
become completed filled.

Initial
task

Computational
tasks

Performance
monitor

Output Communication
task JII] queue

Fig. 2 - Application modeled as a task graph, being the final task monitored
for QoS purposes.

When a given application starts its execution, the DFS
scheme proposed in [4] is used to lower the overall application
energy consumption. The DFS main goal is to put all
communication queues with an average occupancy, such that
all PEs have data to consume when requested.

The proposed self-adaptation technique can be seen as a
closed control loop, as depicted in Fig. 3. Two monitors are
used: (i) hardware monitors to register the QoS parameters;
Cii) software monitors, implemented in the microkernel, to
evaluate QoS violations. The hardware monitor can be used
without the software monitor, to profile a given application
QoS parameter. Both share the same evaluation window
(parameterizable value) when used together.

The QoS Evaluation module combines the use of the two
monitors, a steady state monitor and a QoS monitor. This
module, implemented in the microkernel, verifies the severity
of the QoS violations, and if it is necessary switch from the
original DFS policy to the one controlled by the microkernel
(activating the adaptability mechanism).

QoS

y
Monitoring

~
Adaptability � QoS

Module Evaluation

Fig. 3 - Conceptual adaptability scheme.

The monitored application is, in our approach, the
application output task. The QoS Evaluation module detects
when the frequency reaches a steady state. This steady state is
achieved when the PE frequency does not change for a given
period (parameterizable value). At this point, the clock
generation module of the DFS Controller starts to be managed
by the microkernel of the processor, and the QoS monitor
starts to evaluate the number of the QoS constraints violations
(In the present implementation, throughput is the monitored
performance parameter).

The evaluation window and the QoS constraints are
defined at the application level, through a system calls. For
example:

Enable_Monitoring «task_ID>, <nb#cycles»

QoS Set_Throughput«task_ID>, <nb#bits»

Where: task _ ID, corresponds to the identification of the
monitored task; nb#cycles corresponds to the parametrizable
evaluation window; nb#bi ts corresponds to the expected
number of bits to be received in the monitoring period.

The QoS constraints may not be reached in the following
situations: (i) the performance obtained at the steady state is
inferior to the specified constraint; (ii) disturbing traffic
interferes with the monitored application, reducing its
performance. Also, the performance may be superior to the
specified, enabling a frequency reduction.

The QoS evaluation module, using the information
generated by the monitors, may decide to increase the
frequency, if QoS violations are detected, or decrease it, if the
performance is superior to a given threshold. This behavior
guarantees the application QoS compliance while maintaining
a low energy consumption profile.

It is important to note that each application task may be
executing with distinct frequencies when the steady state is
reached. To avoid a central manager responsible to keep the
state of each PE, a distributed approach was adopted. The
principle is to use a back-propagate message, ordering an
adaptation in the PE frequency. If the QoS evaluation module
decides to modify the frequency, the adaptability module
back-propagate a message to the tasks sending data to the
current task, up to the initial task. For example, in Fig. 2 task
T5 back-propagate to tasks T4 and T3. If a given task receives
two messages to modify the frequency, as Tl in Fig. 2, it
discards one of these messages.

When a given PE receives a frequency change message, it
verifies if the message should be discarded or not, as
previously explained. Then, the following actions are
executed: (i) the new frequency is transmitted to the DFS
Controller; (ii) the PE frequency changes; (iii) the microkernel
create frequency change messages to all PEs generating data
to the current PE, injecting them in the NoC.

V. RESULTS

Two synthetic applications are used to evaluate the
proposed adaptability scheme: a 6-stage pipeline (Pipe) and a
producer-consumer (PCapp)' The computation time of each
task is emulated by a loop.

Five test scenarios were simulated:
1. Pipe application running alone in the MPSoC. It is used to

create a throughput profile of the application, and the QoS
constraint value.

2. Pipe application running togheter with one PCapp (tasks
DIO and Dll), without adaptivitiy.

3. Pipe application running togheter with one PCapp (tasks
DIO and Dll), with monitoring and DFS adaptability.

4. Pipe application running togheter with three PCapp (tasks
DlO-Dll, D21-D22, D31-D32), without adaptivitiy.

5. Pipe application running togheter with three PCapp (tasks
DlO-Dll, D21-D22, D31-D32), with monitoring and
DFS adaptability.

Fig. 4 illustrates the task mapping. The arrows indicate the
flows generated by the applications' tasks. It is important to
observe the disturbing induced by the PCapp applications.

031

032

Fig. 4 - Task mapping. Tasks A to F correspond to the pipeline application.
Flows D 10-7 D I I, D21-7 D22 and D31-7 D32 disturb the pipeline application

(MST -7 manager processor)

Fig. 5 illustrates the behavior of Scenario I, for profiling
purposes. The X-axis corresponds to the simulation time,
measured in clock cycles. The left Y-axis corresponds to the
throughput, in bits per 10,000 clock cyclesl, and the right Y­
axis to the PE frequency, as a percentage of the reference
frequency.

450.00 �-

50,00 r
0.00

Scenario 1

13791 93791 173791 253791 333791 413791 493791 573791 653791 733791

60

50

40

- 30

20

10

Fig. 5 - Scenario I, application pipe without disturbing tasks, used for
profiling purposes.

I 10,000 clock cycles is the monitors evaluation window. 200 bits per

10,000 clock cycles, with a frequency of 100 MHz, correspond to a

throughput of 2 Gbps.

400 Scenario 2 ,----- - 60

350 I-- -TROUGHPUT

I-- \
-FREQUENCY

�
\,

50

40

30

300

250

200

�
- -

-
20

150

100

- Iy - 10
50

o � , " 0
17581 107581 197581 287581 377581 467581 557581 647581 737581

Fig. 6 - Scenario 2, pipe application running together with one PCapp, without
adaptivitiy.

Scenario 4
400 ,--- -TROUGH PUT

- 60

350 I-- -FREQUENCY

I-- \
�

-

f- ,......, \ �

300

250

200

50

40

30

r- \ 150
20

100 I-- ------1

1-----1 -
t-50

10

" 0
17415 97415 177415 257415 337415 417415 497415 577415 657415 737415

Fig. 8 - Scenario 4, pipe application running together with two PCapp, without
adaptivitiy.

It is important to follow in the graph of Fig. 5 the
frequency changes, and the corresponding throughput. The
DFS controller set the initial frequency to 50% of the
reference frequency. The frequency continuously decreases,
with the goal to keep the communication pipes with an
average occupancy. At a given point the frequency is too low
and the communication queues begin to get empty. At this
moment, the DFS Controller reacts and increases the
frequency to reestablish nominal queue occupancy. At the end
of the simulation, there is no more data to be consumed,
leading the DFS Controller to increase the frequency. From
this scenario, it is possible to fix the throughput constraint at
l.92 Gbps.

In scenario 2 the disturbing traffic starts at 470,000 clock
cycles, as highlight in Fig. 6. The effect of the disturbing
traffic is observed after the minimal frequency value. In Fig. 5
the throughput is reestablished, while in Fig. 6 the throughput
oscillates and not reaches the defined constraint.

It would be expected a similar behavior between Fig. 6 and
Fig. 7 in the beginning of the simulation, up to the start of the
disturbing traffic. The observed difference in the throughput
comes from the additional processing load of the monitors,
which evaluate when the application reaches a steady state.

The pipe application reaches a steady state around 420
Kcycles, and the DFS scheme starts to be controlled by the
microkemel. The pipe application starts to be disturbed at the

Scenario 3
400 60

350
50

300
40

250

200 30

150
20

100
Frequency Change 10

50

17581 117581 217581 317581 417581 517581 617581 717581 817581

Fig. 7 - Scenario 3, pipe application running together with one PCapp, with
adaptivitiy.

Scenario 5
400 60

350
50

300
40 250

200 30

150
20

100
Frequency Change 1 10

50

17415 117415 217415 317415 417415 517415 617415 717415 817415

Fig. 9 - Scenario 5, pipe application running together with two PCapp, with
adaptivitiy.

same time as the scenario 2, around 470 Kcycles. The QoS
module verifies that there is an increase of the QoS violations,
and then fires the DFS adaptability process switches from the
original DFS policy to the new policy which change the PE
frequency and sends a back-propagated frequency change
message. After the frequency change (depicted in Fig. 7), the
application throughput remains stable and in compliance with
QoS constraints (l.92 Gbps).

In scenario 4 the pipe application is disturbed by 3 other
applications around 497 Kcycles, as highlighted in Fig. 8. As
in Fig. 6 the throughput oscillates after the minimal frequency
value, and not reaches the defined constraint.

In the scenario 5 (Fig. 9), the pipe application reaches a
steady state around 450 Kcycles, and the DFS begins to be
controlled by the microkernel. The pipe application starts to be
disturbed at the same moment, around 497 K cycles. The QoS
module verifies that there is an increase of the QoS violations,
and then fires the DFS adaptability process which changes the
PE frequency. After the first frequency change (highlighted in
Fig. 9), the application throughput remains unstable and the
QoS module continues to register QoS violations. This is due
to the disturbing traffic. After a few more QoS violations, the
QoS module fires a second DFS adaptability, which again
changes the PE frequency. After the second frequency change
(highlighted in Fig. 9), the application throughput reaches the
QoS constraints (1.92 Gbps).

These scenarios show that the proposed DFS self­
adaptable scheme can manage the QoS constraints of a given
application, without a central manager, ensuring scalability to
the proposal.

VI. CONCLUSIONS AND FUTURE WORK

MPSoCs are commonplace today, as in cell phones and
media centers. As an example, new Samsung state-of-the-art
mobile devices are embedded with 8-cores CPU and a
dedicated GPu. For these types of devices, performance and
energy consumption must be managed at run-time.

This paper presented a QoS adaptability mechanism, based
on a DFS technique. The proposal is an alternative to very
complex DVFS techniques associated to QoS schemes. The
main features of the proposed solution include: (i) the overall
energy consumption reduction enabled by the DFS in the
whole MPSoC; (ii) the adaptation of the application's tasks
frequencies, at run-time, by monitoring QoS constraints in the
application's output task, (iii) possibility to run the application
on a expected QoS range (minimal and maximal limit values).

Results show the effectiveness of the approach. However,
the works must be extended in several directions: (i) include
other monitored performance parameters, such as latency and
jitter; (ii) evaluate the proposed method when several tasks
execute in the same PE; (iii) evaluate the proposal with real
benchmarks; (iv) associate other adaptability techniques, such
as task migration, enabling to meet QoS constraints when the
DFS reach its limits.

ACKNOWLEDGMENTS

Fernando Moraes is supported by CNPq project
302625/2012-7, and CAPES projects CAPES-COFECUB
708/ I I and AEX 8418/13-6.

REFERENCES

[1] Howard, 1; Dighe, S.; Hoskote, Y. "A 4S-Core IA-32 message­
passing processor with DYFS in 45nm CMOS". In: ISSCC,
pp.l0S-109, 201O.

[2] Herbert, S.; Marculescu, Dx. "Variation-aware dynamic
voltage/frequency scaling". In: HPCA, pp. 301-312, 2009.

[3] Garg, S.; Marculescu. D.; Marculescu. R; Ogras,
U."Technology-driven limits on DVFS controllability of
multiple voltage-frequency island designs: A system-level
perspective". In: DAC, pp. SIS-S21, 2009.

[4] da Rosa, T. R.; Larrea, Y.; Calazans, N.; Moraes, F. G. "Power
consumption reduction in MPSoCs through DFS." In: SBCCI,
pp. 1-6, 2012.

[5] Goossens, K.; Molnos, A; Ambrose, l.A; Nelson, A; Stefan,
R.; Cotofana, S. "A composable, energy-managed, real-time
MPSOC platform," OPTTM, pp.S70,S76, 2010.

[6] Mansouri, 1.; Clermidy, F.; Benoit, P.; Torres, L., "A run-time
distributed cooperative approach to optimize power
consumption in MPSoCs," SOC Conference (SOCC), pp.25,30,
2010.

[7] Garg, Siddharth; Marculescu, D.; Marculescu, R, "Custom
Feedback control: Enabling truly scalable on-chip power
management for MPSoCs," ISLPED, pp.425,430, 2010.

[8] Fattah, M.; Daneshtalab, M.; Liljeberg, P.; Plosila, 1
"Exploration of MPSoC Monitoring and Management Systems".
In: ReCoSoC, pp. 1-3, 2011.

[9] Takase, H.; Gang Zeng; Gauthier, L.; Kawashima, H.; Atsumi,
N.; Tatematsu, T.; Kobayashi, Y.; Kohara, S.; Koshiro, T.;
Ishihara, T.; Tomiyama, H.; Takada, H., "An integrated
optimization framework for reducing the energy consumption of
embedded real-time applications," ISLPED, pp.271,276, 2011.

[10] Carara, E.A; de Oliveira, RP.; Calazans, N.L.Y.; Moraes, F.G.
"HeMPS - a framework for NoC-based MPSoC generation". In:
ISCAS, pp. 1345-134S, 2009.

[11] Chelcea, T.; Nowick, S. "A low latency FIFO for mixed-clock
systems". In: Computer Society Workshop on VLSI, pp. 119-
126, 2000.

[12] Mello, A; Tedesco, L.; Calazans, N.; Moraes, F. "Evaluation of
Current QoS Mechanisms in Networks on Chip". In: SoC, 2006,
pp. 115-1 IS.

