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Abstract-The management of Quality-of-Service (QoS) 

constraints in NoC-based MPSoCs, with dozens of tasks running 

simultaneously, is still a challenge. Techniques applied at design 

or run-time to address this issue adopts different QoS metrics. 

Designers include in their systems monitoring techniques, 

adapting at run-time the QoS parameters to cope with the 

required constraints. In order words, MPSoC are able to self­

adapt themselves, while executing a given set of applications. 

Self-adaptation capability is a key feature to meet applications' 

requirements in dynamic systems. Dynamic Voltage and 

Frequency Scaling (DVFS) is an adaptation technique frequently 

used to reduce the overall energy consumption, not coupled to 

QoS constraints, as throughput or latency. Another example of 

adaptation technique is task migration, which focus on 

throughput or latency optimization. The self-adaptation 

technique proposed in this paper adopts Dynamic Frequency 

Scaling (DFS) trading-off power consumption and QoS 

constraints. Each processor running the applications' tasks 

initially reaches a steady state leading each task to a frequency 

level that optimizes the communication with neighbor tasks. The 

goal of the initial state is to reach a trade-off between power 

consumption and communication throughput. Next, the 

application performance is monitored to adjust the frequency 

level of each task according to the QoS parameters. Results show 

that the proposed self-adaptability scheme can meet the required 

QoS constraints, by changing the frequency of the PEs running 

the application tasks. 

Keywords-NoC-Based MPSoCs, 

Adaptability, Energy consumption. 

I. INTRODUCTION 

QoS monitoring, 

MPSoCs with hundreds of processing elements (PEs) 
interconnected through a network-on-chip (NoC) is a reality in 
the design of current embedded systems [I]. According to 
ITRS (http://www.itrs.net/). future MPSoCs will integrate 
more than 1,000 PEs by 2025, and these systems must contain 
mechanisms to self-adapt to the demands of both applications 
and available resources. 

Adaptability is built into MPSoCs by employing different 
techniques, such as priority-based task scheduling, 
communication priorities, task migration, DVFS and circuit 
switching. This adaptability is used to cope with the 
performance degradation while running multiple applications 
simultaneously. Each of these techniques targets a specific 
QoS metric, such as communication priorities for throughput 
and DFVS for energy consumption. 
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Focusing in energy consumption adaptability, DVFS is the 
most used technique. It is based on the fact that the frequency 
has a linear impact on the energy consumption, and the 
voltage a quadratic impact. Therefore, controlling these two 
variables it is possible to adapt the CMOS circuit energy 
consumption. However, the technology scaling, coupled with 
the increasing manufacturing process variability, may interfere 
in the design of DVFS techniques. These variations can result 
in nominally correct DVFS schemes failing to meet frequency 
or energy targets [2] [3]. 

Dynamic Frequency Scaling (DFS) is an alternative to the 
DVFS scheme. In DFS, the voltage of the CMOS circuit is 
kept unchanged, while the frequency changes according to the 
workload applied to the PE. In [4], a clock gating technique 
applied to the reference system clock achieved an important 
energy consumption reduction, with a small increase in the 
total execution time of applications. 

The goal of this paper is to propose an adaptability 
technique using DFS to achieve application QoS constraints, 
as throughput or latency. The adopted DFS scheme is applied 
in both PEs and NoC independently, enabling communication 
flexibility in the network fabric while maintaining the PE with 
the required frequency. If an application with QoS constraints 
is disturbed by any other general-purpose application, the DFS 
scheme is applied to adjust the frequency of the PEs running 
the application with constraints. 

The rest of this paper is organized as follows. Section 2 
analyses related work on MPSoC adaptability, through DVFS, 
aiming QoS applications. Section 3 details the system 
architecture and DFS scheme used in the proposed work, 
while Section 4 describes the adaptability scheme using DFS. 
Section 5 present the scenarios used to evaluate the proposed 
scheme and results that were produced by these scenarios, 
section 6 concludes this paper and gives direction for future 
works. 

II. RELATED WORK 

Goossens et al. [5] propose a combined energy and real­
time task management aiming the composability of the 
MPSoC elements. The Authors present real-time scheduling 
algorithms, highlighting their advantages and disadvantages. 
The Authors briefly explain the composability paradigm 
applied into the MPSoC, and describe how to build a 
composable MPSoC energy management. According to the 



Authors, to establish this management, the MPSoC processing 
element, DMA and memory should have independent clock 
signals. 

Mansouri et al. [6] propose an adjustment policy on the 
DVFS scheme running on the MPSoC local nodes. The 
Authors developed a mathematical model of the application 
energy consumption, using a consensus algorithm to adjust the 
DVFS scheme of each local node. Each node gathers 
information from its neighbors to reach a consensus and adapt 
its own DVFS. The paper shows results with 87% power 
dissipation improvements when compared to the worst-case 
scenano. 

Garg et al. [7] propose a DVFS control policy applied to 
the Voltage and Frequency Islands (VFI) concept. The VFI 
divide the MPSoC in different voltage and frequency regions, 
which are controlled by a DVFS manager. The proposed 
DVFS control policy, named Custom Feedback (CF), is 
between the Fully-Centralized (FC) and Fully-Decentralized 
(FD) policies. The FC uses global MPSoC information to 
control the VFls DVFS, and the FD uses neighboring VFI 
information to control the local DVFS. The proposed CF 
policy uses both local VFI and neighboring information to 
control its own DVFS. The amount of information collected 
from the VFI neighborhood, or feedback, is parameterizable 
and implies on the performance of the DVFS controlling 
scheme. The Authors shows that CF has an 8% improvement 
when compared to FC, and 17% when compared to FD 
controlling schemes. 

Fattah et al. [8] propose a hierarchical monitoring scheme, 
dividing the MPSoC in regions, named clusters. In the 
proposal, the clustering is application oriented (a cluster 
consists of a group of PEs that execute tasks of a given 
application). Each cluster is managed by a mid-level manager, 
named application manager. A top-level manager - system 
manager, is responsible for managing the system as a whole. 

Takase et al. [9] propose an optimization flow, at design 
time, for applications running in a Multi-Purpose Processor 
(MPP). The Authors start the optimization flow by simulating 
the application on a cycle-accurate simulator, which enables to 
profile the application running on the MPP. From these 
profiles, the Authors optimize the energy and the performance 
of the application by exploring DVFS and reconfiguration 
schemes on the MPP. Next, hardware modification 
(DVFS/reconfiguration) checkpoints are automatically 
inserted into the application assembly code. Another 
optimization is in the task allocation, where it is evaluated if 
the task is going to be allocated in the main memory or in the 
cache memory. The inter-task dependencies and deadlines is 
also optimized, verifying energy and time constraints. The 
Authors shows that, by using their framework it is possible to 
reduce the MPP energy consumption up to 49%. 

The evaluated related work are mainly focused on the 
DVFS scheme to address the global energy consumption of an 
MPSoC, however none of them treat the energy consumption 
as a QoS parameter of an application. Reducing the energy 
consumption of the MPSoC could influence other application 
QoS parameters such as throughput and latency, or in the real­
time parameters of other applications. 

The proposed self-adaptable DFS scheme can manage the 
application QoS constraints while optimizing the frequency of 
general-purpose tasks (best-effort applications). The use of 
such scheme can optimize the overall MPSoC energy 
consumption. 

III. SYSTEM ARCHITECTURE 

The reference MPSoC [10] is a homogeneous NoC-based 
MPSoC. Each PE contains the following modules: (i) a 32-bit 
Plasma processor (MIPS-like architecture); (ii) a local 
memory (RAM); (iii) a DMA module, responsible for 
transferring the task object code to the memory and messages 
to/from the NoC from/to the local memory; (iv) a network 
interface (NI). The Hermes N oC is used to interconnect the 
PEs. 

Fig. 1 presents the PE architecture, with the DFS 
controller. A GALS interface is inserted between the router 
and the PE. This GALS interface uses a bisynchronous FIFO 
[II], and two-flop synchronizers in the control signals. The 
microkernel (operating system of the processor) monitors the 
CPU utilization and communication queue occupancy, storing 
them in memory-mapped registers (not_scheduled, pipe_ocup, 
req_msg signals in Fig. 1). Based on this information, the DFS 
controller can take decisions and switch the frequency of the 
processor dynamically. 

It is important to highlight that each individual clock 
generation module receives the system clock as reference, 
generating a new clock from it. The benefit of such approach 
is that the global clock has to feed only the clock generation 
modules, reducing significantly the global clock load, and 
hence simplifying the clock tree generation and its power 
consumption, which is responsible for, at least, 40% of the 
power consumption in MPSoCs. The global system clock is 
defined in the following sections as reference frequency. 

Fig. I - Router-PE GALS interface and the DFS controller responsible for 
generating the PE frequencies [4]. 

A. Dynamic Frequency Scaling 

The DFS scheme adopted was originally proposed in [4], 
which changes the frequency with a fixed voltage source. The 
DFS is applied to the PE and the router independently. 

The clock generation module is instantiated at each PE and 
each router. This module uses as input the reference 
frequency. The principle of the clock generation process is to 



generate a new frequency by simply omitting selected cycles 
of the reference clock. There are two configuration signals, 
num and den, to generate a new frequency. For example, to 
obtain 75% of the original frequency, num is set to 3 and den 
to 4. With such configuration, 3 out of 4 clock cycles are 
propagated to the clock output signal. When the frequency 
needs to be changed, the clock is stopped by asserting the 
restart signal. Finally, releasing the restart signal, the new 
frequency is available to the PE or router. The proposed 
module is glitch free by construction. 

The PE DFS controller computes the communication load 
and CPU utilization level according to values provided by the 
microkernel. The key parameter to control the PE frequency is 
the communication load. Each PE contains a global vector in 
the local memory, named pipe, controlled by the microkernel, 
which stores the messages to be sent for the remote PEs. As 
applications are modeled as task graphs, monitoring the pipe 
occupation enables to adjust the data flows by regulating the 
PE frequencies. 

In addition, the PE DFS controller implements a 
communication mechanism to balance power consumption 
and performance. It takes into account that a consumer 
processor must receive the data in a frequency that is not 
inferior to its operating frequency. Thus, if the producer 
processor is operating at higher frequency than the consumer 
processor, the message can be sent at a lower frequency to 
save power. On the other hand, if the producer is operating at 
a lower frequency than the consumer, its frequency should be 
temporally increased to not penalize the consumer 
performance. 

The DFS controller integrated at each router is responsible 
for defining the router frequency. Each input buffer obtains its 
frequency from the received packets, which carries in the 
header field the frequency value that it needs to be transmitted. 
With this information, the NoC frequency controller is able to 
switch the router frequency for each traffic being routed. Also, 
the controller can identify the router activity and put the router 
in a low power mode in case of inactivity, saving a significant 
amount of energy. When two or more traffic flows are passing 
through router, the controller selects the higher frequency 
between them, avoiding performance loss in the network. 

IV. ADAPTABILITY USING DFS 

To meet application QoS requirements, different 
techniques can be used at design time and at run-time [12]. In 
MPSoC architectures, with several applications disputing a 
limited amount of resources, failure to meet the application 
QoS constraints can be a constant. 

As illustrated in Fig. 2, applications are modeled as task 
graphs, with one or more initial tasks, n computational tasks, 
and an output task. At design time, a profile of the application 
is obtained to define the QoS constraints. At execution time 
the output task is monitored, verifying the actual performance 
against the defined constraints. 

Tasks communicate through message passing, using MPI­
like send/receive primitives. Non-blocking sends insert 
messages in the communication queues (as illustrated in Fig. 

2), while blocking receives read from the communication 
queues. Such communication scheme reduces the overall NoC 
traffic, since a message is only injected into the network when 
it is required. If the communication queues are placed at the 
receiver side, messages could block the NoC when the queues 
become completed filled. 

Initial 
task 

Computational 
tasks 

Performance 
monitor 

Output Communication 
task JII] queue 

Fig. 2 - Application modeled as a task graph, being the final task monitored 
for QoS purposes. 

When a given application starts its execution, the DFS 
scheme proposed in [4] is used to lower the overall application 
energy consumption. The DFS main goal is to put all 
communication queues with an average occupancy, such that 
all PEs have data to consume when requested. 

The proposed self-adaptation technique can be seen as a 
closed control loop, as depicted in Fig. 3. Two monitors are 
used: (i) hardware monitors to register the QoS parameters; 
Cii) software monitors, implemented in the microkernel, to 
evaluate QoS violations. The hardware monitor can be used 
without the software monitor, to profile a given application 
QoS parameter. Both share the same evaluation window 
(parameterizable value) when used together. 

The QoS Evaluation module combines the use of the two 
monitors, a steady state monitor and a QoS monitor. This 
module, implemented in the microkernel, verifies the severity 
of the QoS violations, and if it is necessary switch from the 
original DFS policy to the one controlled by the microkernel 
(activating the adaptability mechanism). 

QoS 

y 
Monitoring 

~ 
Adaptability � QoS 

Module Evaluation 

Fig. 3 - Conceptual adaptability scheme. 

The monitored application is, in our approach, the 
application output task. The QoS Evaluation module detects 
when the frequency reaches a steady state. This steady state is 
achieved when the PE frequency does not change for a given 
period (parameterizable value). At this point, the clock 
generation module of the DFS Controller starts to be managed 
by the microkernel of the processor, and the QoS monitor 
starts to evaluate the number of the QoS constraints violations 
(In the present implementation, throughput is the monitored 
performance parameter). 



The evaluation window and the QoS constraints are 
defined at the application level, through a system calls. For 
example: 

Enable_Monitoring «task_ID>, <nb#cycles» 

QoS Set_Throughput«task_ID>, <nb#bits» 

Where: task _ ID, corresponds to the identification of the 
monitored task; nb#cycles corresponds to the parametrizable 
evaluation window; nb#bi ts corresponds to the expected 
number of bits to be received in the monitoring period. 

The QoS constraints may not be reached in the following 
situations: (i) the performance obtained at the steady state is 
inferior to the specified constraint; (ii) disturbing traffic 
interferes with the monitored application, reducing its 
performance. Also, the performance may be superior to the 
specified, enabling a frequency reduction. 

The QoS evaluation module, using the information 
generated by the monitors, may decide to increase the 
frequency, if QoS violations are detected, or decrease it, if the 
performance is superior to a given threshold. This behavior 
guarantees the application QoS compliance while maintaining 
a low energy consumption profile. 

It is important to note that each application task may be 
executing with distinct frequencies when the steady state is 
reached. To avoid a central manager responsible to keep the 
state of each PE, a distributed approach was adopted. The 
principle is to use a back-propagate message, ordering an 
adaptation in the PE frequency. If the QoS evaluation module 
decides to modify the frequency, the adaptability module 
back-propagate a message to the tasks sending data to the 
current task, up to the initial task. For example, in Fig. 2 task 
T5 back-propagate to tasks T4 and T3. If a given task receives 
two messages to modify the frequency, as Tl in Fig. 2, it 
discards one of these messages. 

When a given PE receives a frequency change message, it 
verifies if the message should be discarded or not, as 
previously explained. Then, the following actions are 
executed: (i) the new frequency is transmitted to the DFS 
Controller; (ii) the PE frequency changes; (iii) the microkernel 
create frequency change messages to all PEs generating data 
to the current PE, injecting them in the NoC. 

V. RESULTS 

Two synthetic applications are used to evaluate the 
proposed adaptability scheme: a 6-stage pipeline (Pipe) and a 
producer-consumer (PCapp)' The computation time of each 
task is emulated by a loop. 

Five test scenarios were simulated: 
1. Pipe application running alone in the MPSoC. It is used to 

create a throughput profile of the application, and the QoS 
constraint value. 

2. Pipe application running togheter with one PCapp (tasks 
DIO and Dll), without adaptivitiy. 

3. Pipe application running togheter with one PCapp (tasks 
DIO and Dll), with monitoring and DFS adaptability. 

4. Pipe application running togheter with three PCapp (tasks 
DlO-Dll, D21-D22, D31-D32), without adaptivitiy. 

5. Pipe application running togheter with three PCapp (tasks 
DlO-Dll, D21-D22, D31-D32), with monitoring and 
DFS adaptability. 

Fig. 4 illustrates the task mapping. The arrows indicate the 
flows generated by the applications' tasks. It is important to 
observe the disturbing induced by the PCapp applications. 

031 

032 

Fig. 4 - Task mapping. Tasks A to F correspond to the pipeline application. 
Flows D 10-7 D I I, D21-7 D22 and D31-7 D32 disturb the pipeline application 

(MST -7 manager processor) 

Fig. 5 illustrates the behavior of Scenario I, for profiling 
purposes. The X-axis corresponds to the simulation time, 
measured in clock cycles. The left Y-axis corresponds to the 
throughput, in bits per 10,000 clock cyclesl, and the right Y­
axis to the PE frequency, as a percentage of the reference 
frequency. 
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Fig. 5 - Scenario I, application pipe without disturbing tasks, used for 
profiling purposes. 

I 10,000 clock cycles is the monitors evaluation window. 200 bits per 

10,000 clock cycles, with a frequency of 100 MHz, correspond to a 

throughput of 2 Gbps. 
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Fig. 6 - Scenario 2, pipe application running together with one PCapp, without 
adaptivitiy. 
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Fig. 8 - Scenario 4, pipe application running together with two PCapp, without 
adaptivitiy. 

It is important to follow in the graph of Fig. 5 the 
frequency changes, and the corresponding throughput. The 
DFS controller set the initial frequency to 50% of the 
reference frequency. The frequency continuously decreases, 
with the goal to keep the communication pipes with an 
average occupancy. At a given point the frequency is too low 
and the communication queues begin to get empty. At this 
moment, the DFS Controller reacts and increases the 
frequency to reestablish nominal queue occupancy. At the end 
of the simulation, there is no more data to be consumed, 
leading the DFS Controller to increase the frequency. From 
this scenario, it is possible to fix the throughput constraint at 
l.92 Gbps. 

In scenario 2 the disturbing traffic starts at 470,000 clock 
cycles, as highlight in Fig. 6. The effect of the disturbing 
traffic is observed after the minimal frequency value. In Fig. 5 
the throughput is reestablished, while in Fig. 6 the throughput 
oscillates and not reaches the defined constraint. 

It would be expected a similar behavior between Fig. 6 and 
Fig. 7 in the beginning of the simulation, up to the start of the 
disturbing traffic. The observed difference in the throughput 
comes from the additional processing load of the monitors, 
which evaluate when the application reaches a steady state. 

The pipe application reaches a steady state around 420 
Kcycles, and the DFS scheme starts to be controlled by the 
microkemel. The pipe application starts to be disturbed at the 

Scenario 3 
400 60 

350 
50 

300 
40 

250 

200 30 

150 
20 

100 
Frequency Change 10 

50 

17581 117581 217581 317581 417581 517581 617581 717581 817581 

Fig. 7 - Scenario 3, pipe application running together with one PCapp, with 
adaptivitiy. 
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Fig. 9 - Scenario 5, pipe application running together with two PCapp, with 
adaptivitiy. 

same time as the scenario 2, around 470 Kcycles. The QoS 
module verifies that there is an increase of the QoS violations, 
and then fires the DFS adaptability process switches from the 
original DFS policy to the new policy which change the PE 
frequency and sends a back-propagated frequency change 
message. After the frequency change (depicted in Fig. 7), the 
application throughput remains stable and in compliance with 
QoS constraints (l.92 Gbps). 

In scenario 4 the pipe application is disturbed by 3 other 
applications around 497 Kcycles, as highlighted in Fig. 8. As 
in Fig. 6 the throughput oscillates after the minimal frequency 
value, and not reaches the defined constraint. 

In the scenario 5 (Fig. 9), the pipe application reaches a 
steady state around 450 Kcycles, and the DFS begins to be 
controlled by the microkernel. The pipe application starts to be 
disturbed at the same moment, around 497 K cycles. The QoS 
module verifies that there is an increase of the QoS violations, 
and then fires the DFS adaptability process which changes the 
PE frequency. After the first frequency change (highlighted in 
Fig. 9), the application throughput remains unstable and the 
QoS module continues to register QoS violations. This is due 
to the disturbing traffic. After a few more QoS violations, the 
QoS module fires a second DFS adaptability, which again 
changes the PE frequency. After the second frequency change 
(highlighted in Fig. 9), the application throughput reaches the 
QoS constraints (1.92 Gbps). 



These scenarios show that the proposed DFS self­
adaptable scheme can manage the QoS constraints of a given 
application, without a central manager, ensuring scalability to 
the proposal. 

VI. CONCLUSIONS AND FUTURE WORK 

MPSoCs are commonplace today, as in cell phones and 
media centers. As an example, new Samsung state-of-the-art 
mobile devices are embedded with 8-cores CPU and a 
dedicated GPu. For these types of devices, performance and 
energy consumption must be managed at run-time. 

This paper presented a QoS adaptability mechanism, based 
on a DFS technique. The proposal is an alternative to very 
complex DVFS techniques associated to QoS schemes. The 
main features of the proposed solution include: (i) the overall 
energy consumption reduction enabled by the DFS in the 
whole MPSoC; (ii) the adaptation of the application's tasks 
frequencies, at run-time, by monitoring QoS constraints in the 
application's output task, (iii) possibility to run the application 
on a expected QoS range (minimal and maximal limit values). 

Results show the effectiveness of the approach. However, 
the works must be extended in several directions: (i) include 
other monitored performance parameters, such as latency and 
jitter; (ii) evaluate the proposed method when several tasks 
execute in the same PE; (iii) evaluate the proposal with real 
benchmarks; (iv) associate other adaptability techniques, such 
as task migration, enabling to meet QoS constraints when the 
DFS reach its limits. 
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