
An Open-source Framework for Heterogeneous
MPSoC Generation

Eduardo W. Wächter, Carlo Lucas, Everton A. Carara, Fernando G. Moraes
FACIN - PUCRS - Av. Ipiranga 6681- Porto Alegre - 90619-900 – Brazil

eduardo.wachter@acad.pucrs.br, carlo.lucas@acad.pucrs.br, everton.carara@pucrs.br, fernando.moraes@pucrs.br

Abstract — The design of a Multiprocessor System-on-Chip
(MPSoC) is a complex task, including steps as application
development, platform configuration, code generation, task
mapping onto the platform and debugging. An integrated
environment covering most of these steps is a gap in the literature.
The present work first details an MPSoC architecture, which
supports the execution of distributed applications, including an
operating system enabling multitask execution at each processing
element. The MPSoC is heterogeneous, due to the support to
different processor architectures. Then, a framework able to cover
the design steps previously mentioned is presented. The framework
enables the design space exploration for applications to be executed
in the MPSoC, varying for example the number and type of
processors, the memory size, the task mapping. Results demonstrate
the correct operation for different MPSoC configurations, generated
from the proposed framework. Such open-source framework
enables the research community to investigate new subjects related
to MPSoC and Network on Chip (NoC) design, as well as evaluate
distributed applications in a multiprocessor environment. (Abstract)

Key words: MPSoC, NoC, CAD tools, prototyping.

I. INTRODUCTION
The use of NoC-based MPSoCs is a clear trend in the
semiconductor industry, since these systems enable complex
products design, coping with performance and power budgets, as
well as with tight time-to-market constraints. The inherent
complexity of MPSoCs requires dedicate frameworks to assist
engineers to develop such systems. Examples of commercial bus-
based MPSoC frameworks include Xilix EDK [1] and SoPC
Builder by Altera [2].
It is possible to identify 5 major steps during the design of an
MPSoC: (i) application development; (ii) platform configuration;
(iii) code generation; (iv) application mapping onto the platform; (v)
debugging. Most MPSoCs works focus on one such steps, for
example platform configuration or application mapping. An
integrated environment covering most of these steps is a gap in the
literature.
Our work presents an open-source framework for heterogeneous
MPSoC generation. Applications are described as task graphs, and it
is possible to assign to each task a specific processor architecture.
The platform is based in the HeMPS MPSoC [3], supporting two
different architectures: Plasma (MIPS architecture) and MBLite
(Microblaze architecture). Each processor executes the same tiny
operating system, named microkernel, customized according to the
processor architecture. Static and dynamic mapping is supported
[4], enabling to load applications at design and execution time. A
dedicated GUI enables to debug the system, displaying the
execution results of each task.

The contributions of this paper are twofold. The first one is to
provide details of the platform, including the heterogeneous
processing element, the parameterizable microkernel and
application modeling. The second contribution is to present the
framework responsible to cover the macro design steps presented
above.
This paper is organized as follows. Section II reviews related works
for MPSoC generation tools. Section III details the proposed
MPSoC architecture. Section IV presents the open-source
framework responsible to generate instances of the proposed MPSC.
Section V present results, and section VI concludes this paper.

II. RELATED WORKS
xENoC [5] is an environment for the automated generation of
NoC-based MPSoCs. It is based on NoCWizard tool, which allows
the generation of NoCs (described in Verilog RTL) from the
specification of various parameters such as topology, flow control,
switching mode and routing algorithm. The environment has an IP
library with different processors and accelerators, which enables
the generation of heterogeneous MPSoCs. The whole system is
described in an XML file (NoC characteristics, and IP mapping),
which is used as input for the generation tools. Besides the
hardware infrastructure, xENoC also includes a software library for
messaging and synchronization between tasks named ocMPI (on-
chip MPI) [6]. This library is an embedded version of the MPI
standard, and it is independent of the operating system. MPI
primitives supported are listed in Figure 1. Depending on the
application requirements, only a subset of the primitives needed to
be included. The amount of memory needed to store the library can
vary from 4942 bytes (basic primitives) to 13258 bytes (complete
set). Since the implemented NoC only supports unicast
transmission, collective communication services as broadcast
(ocMPI_Broadcast ()) are implemented from the basic primitives
ocMPI_Send() and ocMPI_Recv(). Experiments on a 2x2 platform
instance report speed-ups next to the number of processors, for
applications with high degree of data interdependence.

Figure 1 - MPI primitives supported in the ocMPI library.

Kumar et al. [7] propose an integrated design flow for MPSoC
generation, targeting FPGA devices. The architecture is based on

978-1-4673-0186-2/12/$31.00 ©2012 IEEE

the Silicon Hive processor [8] and the Aethereal NoC [9]. The
input to the generation tool is a specification file that describes the
MPSoC. The tool generates a RTL VHDL description of the
system and simulation models for each of its components. Figure 2
shows part of one specification file, with the corresponding
architecture. The host (Figure 2) is the system master, and can be a
computer or an embedded processor. In addition to debugging the
system, its main functions include the load of the object code of the
tasks in the local memories of processors and configure the NoC
through the establishment of connections between communicating
IPs. The communication service based on connections
implemented by Aethereal allows the specification of connection
parameters (e.g. bandwidth and maximum latency) at design time.
Since the host is responsible for establishing connections, these are
transparent to the IPs. Communication is performed through
memory mapped input/output registers. To validate the flow, two
system configurations were generated. The first consisting of three
processors (one being the host) connected to a router running a
single producer/consumer application. In the second the host is an
external computer and the architecture is similar to Figure 2, using
some of the prototyping board components, as memory and
audio/video. For the second system, various network topologies
were used, from a single router to a 2x2 mesh.

Figure 2 - Example of system proposed in [7], including a partial
system specification file and the corresponding architecture.

Singh et al. [10] present a design flow for NoCs-based MPSoCs,
also targeting FPGAs devices. Initially, the NoC is generated,
using the tool NoC Generator [11]. This tool allows the generation
of NoCs with guaranteed throughput, using spatial division
multiplexing. Next, MicroBlaze processor-based PEs are connected
to the network interfaces through FSL (Fast Simplex Link) ports,
completing the generation of the hardware infrastructure.
Communication between PEs is based on connections, which are
established by a processor that controls the communication of the
MPSoC. The connections are generated at design time by the NoC
Generator, and depend on the communication requirements of
applications to be executed. The processor responsible for the
MPSoC control stores these connections, and establishes
connections before starting the execution of applications.
Experiments carried out in a 3x3 platform instance evaluate only
the connections establishment time, which the authors claim to be
very low. The authors report a time of 2885 clock cycles, while the
proposed platform (Section III) takes only 500 clock cycles.

Alonso et al. [12] present a methodology that helps designers to
build NoC-based MPSoCs, develop applications and evaluate
performance. The processing elements (PEs) are created using the
tool Altera SOPC Builder [2], which allows selection of various
peripherals around the NIOS II processor. The NoC is created
using the tool NoCMaker [13], which offers a simulation
environment where it is possible to evaluate performance, power
consumption and area. As a case study, the Authors created an
MPSoC with15 slaves and 1 master PEs, interconnected by a 2-D
mesh NoC. The master PE has exclusive access to a 16MB off-chip
SDRAM, and is responsible to control the slave PEs. The used
NoC adopts wormhole packet switching, handshake flow control,
and offers only basic communication services. For message
exchange between tasks it is used the ocMPI library.
This set of recent environments to generate NoC-based MPSoCs
support heterogeneous architectures, but there is a lack of
automation, including not only the platform generation, but also
the software development/compilation, simulation/prototyping and
a debug interface enabling designers to evaluate the applications
performance. This is the goal of our work: an extension of the
previous homogeneous MPSoC framework to present the MPSoC
infrastructure and the framework supporting generation and
debugging of the heterogeneous MPSoC.

III. HETEROGENEOUS ARCHITECTURE
This section describes the MPSoC heterogeneous architecture. The
features of the reference MPSoC, HeMPS [3], includes:
homogeneous architecture, supporting only Plasma Processors
(MIPS architecture); processing elements interconnected through a
NoC; message passing communication scheme; parameterizable
size; support to multitask execution.
One goal of the present work is to connect a new processor to the
NoC, making the MPSoC heterogeneous. Despite the apparent
simplicity of the proposal, it implies the definition of the
processing element characteristics, which enables its correct
connection to the NoC, as well as the identification of the operating
system functions requiring modifications according to the
employed processor.
Processing elements (PE) may be configured as slaves or master.
The MPSoC is composed by one master PE (which should be
always a Plasma processor), responsible for managing system
resources, accessing the external task repository, and mapping
tasks to slave PEs. Slave PEs execute application tasks. The present
work focuses on slave PEs, enabling them to be either Plasma or
MB-Lite [14] processors. Figure 3 presents an example of an
MPSoC instance, with 2 MB-Lite and 7 Plasma processors (one
Plasma is configured as master).

Figure 3 – Heterogeneous HeMPS: The processing element core can be
MB-Lite or Plasma processor.

A. Processing Element Architecture

The MPSoC is composed by a parameterizable number of PEs
interconnected by the 2-D mesh HERMES NoC [15]. This NoC

has the following features: (i) wormhole packet-switched mesh
topology; (ii) credit-based flow control; (iii) XY routing algorithm;
(iv) 16-bit flit size; (v) 16-flit buffers. The flit size is half of the
processor word, to reduce the silicon area. Each PE, Figure 4,
contains 5 main modules:
(i) Processor: Plasma or MB-Lite;
(ii) Network Interface – NI: responsible to treat packets

sent/received to/from the NoC;
(iii) DMA: responsible to transfer data among PEs, decoupling

communication from computation;
(iv) dual port RAM memory: stores the object code of the tasks

and the microkernel;
(v) Router: main component of the NoC, responsible to

interconnect neighbor PEs.
The interconnection of a given processor in the PE is a function of
its memory architecture. Figure 4 shows the interconnection for
Von Neumann (a) and Harvard (b) processor architectures. In (a)
the processor has only one bus accessing the local RAM, enabling
to assign one memory port to the processor and the second memory
port to the DMA module, allowing parallel accesses to the
memory. In (b) one of the memory ports is shared between the
DMA and the processor, disabling the simultaneous accesses to the
memory.
It is important to point out that just the top module of the PE is
modified. The NI, DMA, RAM and Router modules are the same,
regardless the processor architecture.

Figure 4 – PE architecture according to the processor memory

architecture: (a) Von Neumann. (b) Harvard.

The minimum requirements to include a new processor in the
present MPSoC includes:
(i) Memory mapped register. The address/data interface should

enable access to memory mapped registers, located in the PE
description. These registers are used by the microkernel to
control the communication among the PE modules.

(ii) Interrupt Interface. From the viewpoint of the hardware it is
necessary to have at least one interrupt pin. From the
viewpoint of software it is necessary for the execution of an
interrupt handler function.

(iii) Toolchain for binary code generation. A toolchain to
generate the binary code for the microkernel and tasks, as the
gcc suite, is required. The suite should include a compiler, an
assembler and some disassembly tools to analyze the
generated code, for debugging purposes.

(iv) Word width. The processor must have a 32-bit word to be
connected to the PE modules.

B. Microkernel Architecture

Each slave processor executes a tiny operating system named
microkernel. The master processor executes a different version of
the microkernel, executing only resource management, e.g. task
mapping and control of debug messages. The microkernel is
written mostly in C code and some special functions in assembly
language. The source code of the microkernel is the same for both

processors. Pragmas (e.g. #IFDEF <processor>) differentiate
the sections in the source code that are architecture dependent.
The microkernel architecture is divided in three layers, as shown in
Figure 5. The first layer, boot, is responsible for the initialization of
variables, as stack and global pointers. The second layer, drivers,
contains the drivers which access the hardware modules as NI and
DMA. The third layer implements the interrupt handler, the system
calls and the task scheduler.
Figure 5 highlights the functions that are processor dependent. The
boot layer should be written for each processor, according to its
registers and rules to initialize the data memory. It corresponds
roughly to 5% of the microkernel code.
For each service of the third layer there is a set of general
functions, associated to processor dependent functions. The
interrupt handler function is responsible to call some interrupt
service according to values stored in the interruption vector
memory mapped register (interruption from NI, DMA or time_slice
scheduler). When a new task is scheduled (function scheduler), the
current task context is stored in the TCB (Task Control Block) and
the scheduled task restores its previous state. The context
saving/restoring is a function of the number of registers in the
processor architecture. The communication functions access low-
level drivers responsible to program the DMA module, for
example.

Figure 5 – Microkernel layers: Functions marked with * are processor

dependent.

The local memory is segmented in equally sized pages. The first
page is used by the microkernel, and the subsequent pages are
employed by user tasks. A memory mapped register, named page,
indicates the task being executed. If the page value is zero, the
microkernel is being executed. Otherwise, some other task is in
execution. The physical address value is obtained concatenating
the page value with the address generated by the processor
(instruction and data). This simple mechanism ensures protection
among tasks, constraining the microkernel or the tasks to their
corresponding pages.
Message passing is supported through communication primitives
Send() and Receive(). The Send() primitive is executed by user
tasks, firing a system call. The microkernel stores the message in a
vector, named pipe, and the task continues its execution (non
blocking writing). The Receive() primitive seeks the message in the
pipe. If the data to be read is located in the same processor, data is
transferred from the pipe to the task. Otherwise, a request is sent
through the NoC.
The microkernel has a task table, with the location of local and
remote tasks. The location of each task is received from the master
PE, when it maps a new task into the system. With this mechanism,
tasks do not need to know where other tasks are located, only their
identifier is required. When a Send() or Receive() is executed, the
microkernel obtains the address of the target task from the task
table.
The scheduler enables multitasking execution. The adopted
algorithm is a simple round robin. A counter, named time_slice,

interrupts the processor when it reaches a predefined value. This
interruption causes the execution of the context saving, the
scheduler function, and context restoring for the new scheduled
task.

C. Application Modeling

User applications are modeled as task graphs, where vertices
represent tasks and edges the communication between tasks. Figure
6 illustrates an application composed by 4 tasks, where tasks A and
B send messages to task C, and this to the task D. All user tasks are
described in C language.

Figure 6– Application Modeling: in the left the task graph and in the

right the taskC code, with Send() and Receive() primitives.

IV. HEMPS FRAMEWORK
The HeMPS framework encapsulates a set of tools to help designers
in the following MPSoC design steps: (i) platform configuration;
(ii) code generation; (iii) application mapping onto the platform; (iv)
debugging. The HeMPS framework GUI is presented in Figure 7.
The left panel of the framework (number 1 in the Figure) contains
the list of applications to be executed in the MPSoC. Applications
are inserted/removed from this panel using buttons add
application/ delete application. In this example, two applications
were loaded: mpeg (composed by 5 tasks: start, ivlc, idtc, iquant,
print) and communication (composed by 4 tasks: taskA, taskB,
taskC, taskD). Note that a set of tasks were assigned to some
processors, e.g. iquant to processor 02. This corresponds to the
mapping of the initial tasks (those without dependences), which is
defined by the user by moving a task from the application panel to

a given processor.
The repository panel (number 3 in the Figure) receives the
remaining tasks, which are dynamically mapped during system
execution. Note that the user may select in which processor each
task will execute. For example, if a given task has some feature
that improves its performance in one of the processors, this
processor is selected to execute the task.
The region of the framework identified by the number 2 configures
the platform:
• X/Y: size of the MPSoC;
• Page size, max task/slave, memory size: configure the

processor memory;
• Processor description (RTL/ISS): RTL corresponds to the

VHDL description, enabling synthesis and detailed
debugging. ISS corresponds to a cycle accurate Instruction Set
Simulator, written in SystemC, enabling faster simulations.

• Generate button: generate all output files (detailed in Figure
17). It is important to mention that a dedicated makefile is
generated for each MPSoC configuration.

• Debug button: opens a debug GUI (Figure 11), displaying
results obtained during simulation (presented in the Results
Section).

Each processor has also a set of possible configurations (see
numbers 4 and 5 in Figure). Processors may be slave or master
(only one master is allowed), and also it is possible to select the
processor type: Plasma or MB-Lite. The master processor is always
configured as Plasma, because only slave microkernel was written
for both processors. Note that the set of tasks assigned to a given
processor is compiled using the toolchain of the select processor,
when the button generate is pressed. The remove button clears all
selected tasks assigned to the processor.
Figure 7 also presents the set of input and output files treated by the
framework. The configuration of the MPSoC under design can be
stored, enabling the exploration of different application scenarios.
The input files include:
• Microkernel source codes. Set of C and assembly files.
• Platform description. Source code of the platform, in

Figure 7 – HeMPS framework GUI.

synthesizable VHDL or SystemC.
• User application files.
The output files generated by the framework include:
• Platform configuration: a VHDL package containing the

MPSoC size, the type of each processor, the master PE
position, among other parameters detailed later.

• Object code for the master and slave microkernels, described
as a memory initialization file in VHDL. These files are static
loaded to each local memory at design time.

• Task repository, corresponding to a unique file with all user
application object codes, described as a VHDL memory
initialization file.

V. RESULTS
To evaluate the generated MPSoC instances, the application
illustrated in Figure 8(a) is used as benchmark. Each task of the
application executes simple loops (to emulate the execution time of
real applications). Initial tasks A and B transmit data to task C,
which retransmit the received data to tasks E and D. Finally, task F
receive data from E and D, sending the results to the master PE.
This process is repeated 100 times.

Figure 8– (a) Synthetic benchmark to validate the MPSoC and (b) its

corresponding task mapping.

All simulated scenarios adopt a 3x3 MPSoC, with a fixed task
mapping, as illustrated in Figure 8(b). The goal of this scenario is
to: (i) evaluate local task communication (e.g in PE 02 task B
sends data to task C), and remote task communication (e.g in PE 02
task C sends messages for tasks E and D, located at PE 11); (ii)
evaluate multitasking execution, PEs 02 and 11 execute two tasks
each.
Five scenarios were simulated, as presented in Table 1. Scenarios
SC1 and SC2 are homogenous. The other 3 scenarios are
heterogeneous. As can be observed, the most complex task, in
terms of communication, is task C, mapped to PE 02. Task C sends
data to tasks E/D, located in PE 11. Scenarios SC3 and SC4 vary
the type of the processor chosen to PEs 02 and 11. Scenario SC5
employs two instances of MB-lite and two instances of the Plasma
processor.

Table 1 – Simulation scenarios: 1 and 2 are homogeneous MPSoCs; 3,

4 and 5 are heterogeneous MPSoCs. Tasks C and F uses multiplication.
 PE02

tasks B/C
PE 11

tasks E/D
PE 20
task A

PE 22
task F

Execution
time

SC1 Plasma Plasma Plasma Plasma 168 ms
SC2 MB-Lite MB-Lite MB-Lite MB-Lite 188 ms
SC3 MB-Lite Plasma Plasma Plasma 177 ms
SC4 Plasma MB-Lite Plasma Plasma 165 ms
SC5 MB-Lite MB-Lite Plasma Plasma 177 ms

A. Execution time

The last column of Table 1 shows the total execution time to
execute the benchmark, with the MPSoC executing at 50 MHz,
(each loop iteration consumed, in average, 85,000 clock cycles).
The difference between the best and worst case is 14%. The
execution in SC2 takes longer, since the MB-Lite shares the
memory access with the NI, stalling its execution when
transmitting/receiving data.
The simulation of SC1 with processors/memories described in
VHDL took in average 240 minutes, while with the Plasma
processor and the RAM described in SystemC (ISS), the simulation
for the same scenario took 20 minutes (Intel Xeon 64 bits, quad-
core, 12 GB RAM). In both cases, the obtained results were the
same, validating the cycle-accurate Plasma ISS.
Figure 9 presents the average execution time to execute task C.
Scenarios SC2, SC3 and SC5 present higher execution time, since
in these scenarios task C was executed in an MB-Lite processor.

50000

55000

60000

65000

70000

75000

80000

85000

90000

95000

SC1 SC2 SC3 SC4 SC5

cl
oc

k
cy

cl
es

Figure 9 – Average execution time, in clock cycles, for each iteration of
taskC. Red bars indicate min/max execution time for each simulated

scenario.

The most relevant result is the validation of the system with
different processors, automatically generated from the framework.

B. Area and Operating Frequency

Figure 10 presents area and frequency estimation for both PEs
(processor, DMA, NI and Router) on a Xilinx FPGA
5vlx330tff1738-2. Despite the higher area consumption (LUTs) of
the MB-Lite (1,882) compared to the Plasma (1,198), these
processors are smaller than other embedded processors, as Leon3
[16] and OpenRisc [17], both with roughly 3,000 LUTs.

0

20

40

60

80

100

120

140

160

0

500

1000

1500

2000

2500

3000

3500

Plasma MB-Lite

Fr
eq

ue
nc

y
(M

H
z)

N
um

be
r o

f L
U

TS
/F

F

FFs

LUTs

Freq

Figure 10 – Area and frequency operation for Plasma and MB-Lite
processor.

One remarkable result is the frequency estimation. The MB-Lite
achieves a frequency 73% higher than Plasma, due to the higher
number of pipeline stages and the Harvard memory organization.
This feature enables to improve the system performance, by
increasing the processor frequency, while keeping the router in the
same frequency. This is achievable including an asynchronous
interface between the router and the network interface.

C. Debug Interface

The debug GUI (Figure 11), invoked after the simulation, contains
one panel for each processor, and tabs for each task executing in a
given processor. In the panel corresponding to the master processor
(processor 10), two microkernel messages are displayed. The other
panels contain the messages sent by tasks. Observe for example
processor 02, it contains two tabs, one for task B and the other one
for task C, accordingly to task mapping in Figure 8(b). The
numbers displayed corresponds to the generate data, and to the
number of clock cycles spent since the beginning of the system
execution, obtained through the gettick() system call. The use of
this system call enables to compute the task execution time,
latency, and throughput.

Figure 11 – HeMPS debug GUI.

VI. CONCLUSION AND FUTURE WORKS
The main contribution of the present work is the validation of an
open-source framework for heterogeneous NoC-based MPSoC
generation, available at www.inf.pucrs.br/~gaph. Even if the two
integrated processors have similar architectures (32-bit RISC
processors), the method to include new processors is well defined,
and the microkernel supports parameterization. Our results shown
several MPSoC instances, and the simulation reported the correct
operation of the executed applications.
Future work includes the addition of: (i) hardware monitors to
collect data related to power, latency and throughput; (ii) new
processors, with specialized functions; (iii) a decentralized control
mechanism, to avoid a communication bottleneck on the master
processor, (iv) an task migration mechanism and (v) port the
mapping algorithm to the heterogeneous platform (today, in
heterogeneous configurations only static mapping is allowed).

ACKNOWLEDGMENTS
The Author Fernando Moraes acknowledge the support of CNPq
and FAPERGS, projects 301599/2009-2 and 10/0814-9,
respectively.

REFERENCES

[1] http://www.xilinx.com/tools/platform.htm
[2] http://www.altera.com/support/software/system/sopc/sof-

sopc_builder.html
[3] Carara, E. A.; Oliveira, R. P.; Calazans, N. L. V.; Moraes, F. G.

HeMPS - a framework for NoC-based MPSoC Generation. In:
ISCAS, 2009, pp. 1345-1348.

[4] Mandelli, M.; Ost, L.; Carara, E. A.; Guindani, G. M.; Rosa, T.;
Medeiros, G.; Moraes, F. G. Energy-Aware Dynamic Task Mapping
for NoC-based MPSoCs. In: ISCAS, 2011.

[5] Joven, J.; Font-Bach, O.; Castells-Rufas, D.; Martinez, R.; Teres, L.;
Carrabina, J. xENOC – An eXperimental Network-on-Chip
Enviroment for Parallel Distributed Computing on NoC-based
MPSoC Archtectures. In: Euromicro pp. 141-148.

[6] Joven, J. A Lightweight MPI-based Programming Model and its HW
Support for NoC-based MPSoCs. In: PhD Forum DATE’09, 2009.

[7] Kumar, A.; Hansson, A.; Huisken, J.; Corporaal, H. An FPGA Design
Flow for Reconfigurable Network-Based Multi-Processor Systems on
Chip. In: DATE, 2007.

[8] Silicon Hive. Available from: http://www.silicon-hive.com.
[9] Goossens, K.; Dielissen, J.; Radulescu, A. Æthereal network-on-chip:

concepts, architectures, and implementations. IEEE Design & Test of
Computers, v.22(5), 2005, pp. 414-421.

[10] Singh, A. K.; Kumar, A.; Srikanthan, T.; Ha, Y. Mapping Real-life
Applications on Run-time Reconfigurable NoC-based MPSoC on
FPGA. In: FPT, 2010, pp. 365 – 368.

[11] Yang, Z. J.; Kumar, A.; Yajun H.. An Area-efficient Dynamically
Reconfigurable Spatial Division Multiplexing Network-on-Chip with
Static Throughput Guarentee. In: FPT, 2010, pp. 389 – 392.

[12] Fernandez-Alonso, E.; Castells-Rufas, D.; Risueno, S.; Carrabina, J.;
Joven, J. A NoC-based multi-{soft}core with 16 cores. In: ICECS,
2010, pp. 259-252.

[13] Castells-Rufas, D.; Joven, J.; Risuefto, S.; Fernandez, E.; Carrabina, J.
NocMaker: A Cross-Platform Open-Source Design Space Exploration
Tool for Networks on Chip. In: INA-OCMC Workshop, 2009.

[14] Kranenburg, T.; van Leuken, R. MB-LITE: A Robust, Light-Weight
Soft-Core Implementation of the MicroBlaze Architecture. In: DATE,
2010, pp. 997-1000.

[15] Moraes, F.; Calazans, N.; Mello, A.; Möller, L.; Ost, L. Hermes: an
Infrastructure for Low Area Overhead Packet-switching Networks on
Chip. Integration, the VLSI Journal, Vol. 38(1), 2004, pp. 69-93.

[16] Leon3 Processor, http://www.gaisler.com
[17] OpenRisc 1200, http://opencores.org/project,or1200_hp

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

