
Achieving Composability in NoC-Based MPSoCs
Through QoS Management at Software Level

Everton Carara1, Gabriel Marchesan Almeida2, Gilles Sassatelli2, Fernando Gehm Moraes1
1PUCRS, Porto Alegre, Brazil, {everton.carara, fernando.moraes}@pucrs.br

2LIRMM, Montpellier, France, {marchesan, sassatelli}@lirmm.fr

Abstract— Multiprocessors systems on chip (MPSoCs) have
become the de-facto standard in embedded systems. The use of
Networks-on-chip (NoCs) provides to these platforms scalability
and support for parallel transactions. The computational power
of these architectures enables the simultaneous execution of
several applications, with different time constraints. However, as
the number of applications executing simultaneously increases,
the performance of such applications may be affected due to
resources sharing. To ensure applications requirements are met,
mechanisms are necessary for ensuring proper isolation. Such a
feature is referred to as composability. As the NoC is the main
shared component in NoC-based MPSoCs, quality-of-service
(QoS) mechanisms are mandatory to meet application
requirements in term of communication. In this work, we
propose a hardware/software approach to achieve applications
composability by means of QoS management mechanisms at the
software level. The conducted experiments show the efficiency of
the proposed method in terms of throughput, latency and jitter
for a real time application sharing communication resources with
best-effort applications. (Abstract)

Keywords-component; MPSoC; NoC; QoS; Composability; API
(key words)

I. INTRODUCTION
The growing interest for MPSoCs lies in their ability to

combine high performance and software-oriented
programming. The mapping of multiple concurrent and
independent applications on such platforms requires special
attention to avoid inter-application interferences. These
interferences arise due to resources sharing among applications
that may lead to significant performance degradation. The
independence degree of an application, irrespective of the
presence or absence of other applications in the platform, is
called [1][2]. This property aims to guarantee application
requirements are met in different scenarios. As applications
with different requirements may be executed simultaneously,
composability must be ensured for those with time constraints
(soft or hard real-time).

Composability is frequently achieved through mechanisms
integrated in the Operating System (OS), such as specific
scheduling polices in the case of real-time operating systems.
For example, in the aerospace and automotive industry,
composability is frequently ensured by not sharing the
resources between applications [2].

For a NoC-based MPSoC, the services offered at the
network level may be advantageously exposed at the software
level to ensure composability at run-time. Most of the related

work ([2]-[4]) relies in hardware designed for a fixed set of
applications, therefore precluding dynamic workload (insertion
of new applications into the system at run-time), an important
feature of present embedded systems.

This work proposes a combined hardware/software
approach to both improve composability and facilitate its
management at the software level. It relies on NoC hardware
QoS mechanisms exposed at the software level, making
possible to ensure composability at higher abstraction levels.

This paper is organized as follows. Section II presents
related works in composability and QoS. Section III overviews
the homogeneous message-passing NoC-based MPSoC used in
this work. Sections IV and V present respectively the hardware
and software support to achieve composability. Section VI
presents throughput and latency results for a real application in
the presence of disturbing traffic, as well as the area overhead
induced by the proposed approach. Section VII draws
conclusions and gives directions for future work.

II. RELATED WORK
Kumar et al. [1] propose a resource manager (RM)

responsible to control inter-applications interferences. The RM
runs on one of the processing tiles and controls the usage of
resources in the system. During system execution, it monitors
application performance through periodically received
messages. If any application is found to be running below the
desired throughput, the application which has the most slack is
suspended. The application is then resumed if remaining
applications are running above the desired throughput. The
system composability was shown through a high-level
simulation model. A case study with an H.263 and a JPEG
decoder demonstrates that the RM ensures that both
applications are able to meet their throughput requirements. It
is important to mention that the employed high-level model
does not take into account the contention on the
communication infrastructure, which can be the main source of
inter-applications interference.

CoMPSoC [2] is a composable and predictable NoC-based
MPSoC that gives special attention to the system resources
shared by the applications, such as the NoC and shared
memories. In this platform, the processing elements are not
shared between applications because the used processor
(Silicon Hive) does not support preemptive multitasking. TDM
(time division multiplexing) arbiters are used to achieve
application predictability and composability. The system
prevents any interference between applications through
reservation of hardware resources at design time.

978-3-9810801-7-9/DATE11/©2011 EDAA

Molnos et al. [3] overcome the CoMPSoC processor sharing
limitation through processor virtualization. TDM scheduling is
used in three abstraction levels: application, task, and processor
(MicroBlaze). Each application has a constant time slice
allocated to each TDM period. The application execution order
in a TDM period is static and in case a given application is not
ready to execute, its time slice is wasted (idle slice). In an
application slice, application tasks are executed in sub-slices.
Each application may have a different scheduler, and the task
order inside a slice does not have to be the same at each TDM
period.

Hansson et al. [4] present a composable and predictable
NoC, named aelite. This mesochronous NoC architecture is
based on Aethereal [5] and only offers guaranteed services.
Functional scalability is obtained by completely isolating
applications, and by having a router architecture that does not
limit the number of connections.

Few works address QoS support at run-time across the
software stack, from the application down to packet level [6].
In [7] NoC guarantees are extended to application level through
decoupling buffers at the NI. The work shows how to construct
a Cyclo-Static Dataflow (CSDF) that conservatively models a
NoC connection. This model enables the verification of
application requirements and the sizing of the decoupling
buffers to meet the QoS constraints.

Works presented in [6] and [8] expose the NoC QoS features
at the task level through an application programming interface
(API). Using such approaches, the application programmer
may set some NoC QoS parameters, such as priorities, routing
and connections. This is done explicitly in the application code,
increasing the system programmability, design space
exploration and the software support to composability.

All reviewed works targeting composability ([1]-[4])
employ the Aethereal NoC, which provides guaranteed services
through TDM based connections. Aethereal is not freely
available, which makes its access from the research community
difficult. The work presented in this paper uses the open-source
Hermes NoC [9]. QoS mechanisms have been included in the
Hermes architecture and exposed at the task level through an
implemented API. Contrarily to Aethereal, which has a
configuration master [10] responsible for opening/closing
connections between IPs (Intellectual Property), Hermes
resources can be managed at run-time by the IPs in a
distributed and scalable way.

An architecture is said to be composable with respect to a
specified property if the system integration will not invalidate
this property once the property has been established at the
subsystem level [17]. The properties addressed in this work are
performance figures like throughput and jitter. Our goal is to
define composability mechanisms to be used in applications
with time constraints through the management of the QoS at
the software level. Applications with no constraints are
managed in best-effort mode. This work aims to ensure the
proper functionality of real-time applications even if the
isolation between applications is not total. In this way, a good
trade-off can be set between system flexibility and applications
composability.

III. HS-SCALE ARCHITECTURE OVERVIEW
HS-Scale [11] is a NoC-based homogeneous MPSoC. It is

built using a distributed memory architecture, and tasks
communicate with each other by using a message passing
protocol. Contrary to the MPI standard, tasks are not mapped to
a given processor, but shall freely move in the system
according to user-defined policies to optimize performance
parameters, as execution time and power consumption. Also,
for scalability reasons, there is no master in the system.

The architecture is a homogeneous array of Network
Processing Units (NPUs) communicating through a Network-
on-Chip (described in Section IV). Each NPU has multitasking
capabilities, which enable time-sliced execution of multiple
tasks. This is supported by a preemptive multitasking µKernel
running on each NPU. This µKernel further provides usual
operating systems services such as queues, threads, semaphores
and mutexes. Figure 1 shows the platform architecture.

Figure 1. Structural platform view.

Incoming messages are read from the network interface (NI)
and stored in the target task FIFOs (SW implemented). A target
task has one FIFO for each source task it receives data from.
Outgoing messages are written to the NI, which is responsible
for packaging and injection in the NoC. Figure 2 presents the
NPU functional view.

Figure 2. Functional NPU view.

The processing layer is based on a simple and compact
RISC microprocessor (Plasma, instruction set compatible with
MIPS-1), its local memory and a few peripherals (timer,
interrupt controller and UART), as shown in Figure 1. To keep
the processor as small as possible, the Plasma processor has 3
pipeline stages, no cache, no Memory Management Unit
(MMU) and no memory protection support. The original
version of the µKernel, as well as the RTL description of the
Plasma processor, used as part of this work are freely available
at open cores [12].

IV. THE HERMES NOC QOS SUPPORT
NoC designs can provide two kinds of services: best-effort

(BE) and guaranteed services. BE services guarantee delivery
of all packets from a source to a target, but provide no bounds
for throughput, jitter or latency. This kind of service usually
assigns the same priority to all packets, leading to
unpredictable transmission delays. The term QoS refers to the
capacity of a network to control traffic constraints to meet
design requirements of an application. Thus, BE services are
inadequate to satisfy QoS requirements for applications/
modules with tight time constraints, as in the case of
multimedia streams. To meet performance requirements and
thus guarantee QoS, the network needs to include specific
characteristics at some level in its protocol stack.

The original Hermes NoC employs a 2D mesh topology and
wormhole packet switching. Routers have input buffers, a
control logic shared by all router ports, an internal crossbar and
up to five bi-directional ports. This NoC provides only BE
services, so no bounds for any kind of performance figures can
be ensured. In order to offer guaranteed services, two kinds of
QoS mechanisms were implemented: (i) priorities, supporting
soft QoS through two priorities levels (high and low) and (ii)
connections, supporting hard QoS through circuit switching.

The main modification applied to the original router to
enable soft QoS lies in the duplication of the physical channels
(bi-directional ports). The resulting router supports up to ten bi-
directional ports. As a result, priority mechanisms can be used
to differentiate flows. Channel replication was preferred to
virtual channels due to its smaller area overhead, increased
router bandwidth, and simpler implementation [13]. Figure 3
illustrates the router architecture.

Figure 3. Router architecture with duplicated physical channels.

The soft QoS support relies on a fixed priorities mechanism.
Two prioritized traffic classes are distinguished inside the NoC:
(i) high priority packets and (ii) low priority packets. One
physical channel (channel 0) is reserved to transmit exclusively
high priority packets, whereas the other one (channel 1) may
transmit both packet classes. Sharing one of the two physical
channels between the traffic classes increases the support to
high priority traffics, because two high priority flows can be

transmitted simultaneously in the same direction. The priorities
mechanism provides a soft guaranteed service (latency and
bandwidth) to high priority traffics through a virtual resource
reservation (dark gray resources in Figure 3). However, when
more than two high priority flows compete for common paths
inside the NoC, the soft QoS guarantees may be affected. In
fact, NoCs employing priority mechanism to ensure QoS tend
to perform like BE NoCs as the amount of high priority traffic
increases [14].

The hard QoS support is based on a circuit switching
mechanism. A connection is established between a
source/target pair and the NoC resources stay allocated
throughout the entire duration of the communication. The
connections are unidirectional and established/released by the
source through connection establishment/release packets.
Resources are reserved for worst case allowing the applications
to achieve its maximum throughput without any interference
from other communications. Bounds for performance
parameters as latency, jitter and throughput are guaranteed.
Since the worst-case allocation can be a drawback when
applications throughput is low or paths are blocked for a long
time, connections are restricted only to channel 0. As the NoC
combines circuit and packet switching modes, one physical
channel is always available for packet switching.

The NoC router differentiates incoming flows through
specific fields in each packet header. When a new packet
reaches the router, the Switch Control (Figure 3) reads the
header to execute the routing algorithm and physical channel
allocation or deallocation (in case of connection release
packets). Figure 4 illustrates the packet structure. The first flit
is the packet header, and the remaining ones are payload flits.
The last packet flit is signaled by a side band signal named eop
(end-of-packet). The header flit contains the following fields:
Service (4 bits): connection establishment/release, switching
mode; P (1 bit): packet priority bit (‘0’: high; ‘1’: low); Target
(8 bits): indicates the packet target IP address.

Figure 4. Packet structure.

V. ACHIEVING COMPOSABILITY AT THE TASK LEVEL
Both QoS approaches (priorities and circuit-switching) were

integrated in the HS-Scale API allowing NoC resources
management at the task level. The link between the API and
the NoC QoS services is accomplished by the µKernel. In this
way, the programmer is able to avoid interferences on real-time
applications through the primitives provided by the API. The
composability of a given application can be exploited from its
source code. Listing 1 presents the HS-Scale API primitives to
be used by programmers to control the QoS. The parameter
target, present in the primitives, refers to the target task. Tasks
location is transparent to the programmer, and the µKernel is
responsible for resolving destination address based on mapping

tables. This approach grants a higher abstraction level to the
programmer.

The non-blocking MPISend()primitive is used to send
local/remote messages to another task (int target). Before
transmission, the message (void *data) is split into
multiple packets by the µKernel. Each packet has its header
priority bit (Figure 4) set to the parameter int priority.
This process effectively links the NoC soft QoS support to the
task level. The priority values are constants defined as HIGH,
LOW and GT (guaranteed throughput, used for connection). The
parameter int fifo specifies the FIFO where the target task
must store the received messages (Figure 2) and int size
represents the message size in bytes. MPIRcv() is a blocking
primitive used to read a message from a specific FIFO (int
fifo).

LISTING 1 – HS-SCALE API PRIMITIVES.

/* Sends a message to a target task */
void MPISend(int target, int fifo, void *data,

 int size, int priority);

/* Reads a message from a FIFO */
void MPIRcv(int fifo, void *data, int size);

/* Establishes a connection */
void Connect(int target);

/* Releases a connection */
void Unconnect(int target);

The establishing/releasing of a connection between a

source/target pair is done by the Connect()/
Unconnect() primitives, respectively. By means of these
primitives, connection establishment/release packets are
created and sent through the NoC. These packets perform the
allocation/deallocation of NoC resources for a given
connection as they are forwarding towards the target. Once the
connection is established, messages can be sent using the
MPISend() primitive setting the priority parameter as GT. In
this case, the GT parameter is not used to set the packet header
priority bit, but rather the service (Figure 4). The packet header
sent through a GT connection is used only end-to-end and is
handled by the routers as payload.

The GT connection is established at the task level
(Connect()). As each router can handle one GT connection,
only one task per-NPU can establish a connection at the time.
This connection stays open until the call of the Unconnect()
primitive, even if the task connection owner is not scheduled. If
another task in the same NPU tries to establish a connection,
this task will stay blocked until the connection has been
released. This limitation enables, per-NPU, one task
communicating with hard QoS guarantees, and the remaining
tasks communicating with soft QoS guarantees.

MPSoCs execute several applications with different traffic
patterns and QoS requirements. A use-case is a set of these
applications executing simultaneously in the MPSoC,
characterizing the system from the user perspective [1][15].
Assuming, for example, at most one real-time application being
executed in all use-cases. Soft QoS can guarantee the
composability of this application by setting all communication

events as high priority, via MPISend()primitive. As the
number of real time applications per use-case increases, soft
QoS may not be enough to achieve composability, since the
NoC tends to perform like a best-effort as the number of high
priority flows increases. Therefore, a combination of soft and
hard QoS can extend the guarantees to support several real time
applications. This set of primitives allows tasks to manage the
NoC resources in a distributed way, without the need of having
a central resource manager.

When a given NPU is shared among several applications
tasks, the operating system scheduling priorities can be used to
avoid interferences from best-effort on real time applications.
However, share the same NPU between real time applications
tasks may harm the composability.

VI. RESULTS
In this section, the task level QoS management is applied in

a scenario mixing real and synthetic applications. The real
application is a synchronized audio/video decoder composed of
7 tasks (Figure 5) that requires specific timing constraints. The
video pipeline decoding is executed by a MJPEG decoder split
into 3 tasks (MJ1, MJ2 and MJ3) and the audio pipeline
decoding is composed by an ADPCM decoder (AD) and a
finite impulse response filter (FIR). An initial task called
SPLIT performs the demultiplexing of the compressed
audio/video streams and sends them to the respective decoder
pipelines whereas the task JOIN synchronizes decoded streams.
The required minimum throughput is set at 30 frames/s for
video and 32,000 audio samples/s; with image-level
audio/video synchronization. The synthetic applications (best-
effort) are dummy tasks executing memory accesses or
accessing some output device. Memory and output devices are
emulated by software tasks.

Figure 5. Application task graph.

Results were obtained on a 4x4 instance of the HS-Scale,
through cycle accurate simulation. Both the NoC and the NI are
described in synthesizable RTL VHDL, whereas the NPU
processor employs a SystemC ISS. The first use-case contains
the audio/video decoder mapped into the platform (optimal
mapping, illustrated in Figure 6), and the measured throughput
at the output of the JOIN task was 31.13 frames/s, value used
as reference. Soft QoS is used in this use-case.

The mapping shown in Figure 6 is obtained during system
initialization. In a dynamic system, new applications are
frequently mapped and removed, resulting in a dispersion of
the available resources (fragmentation). Therefore, an optimal
mapping is rarely achievable at run-time, unless a remapping of
currently running application is acceptable. The new mapped
applications commonly share system resources used with

already mapped applications. Figure 7 shows a use-case that is
representative of such a situation (non-optimal mapping
incurring inter-application interferences). Four new
applications were added, each one with two tasks: T1�MEM,
T2�MEM, T3�OUT and T4�OUT. Dashed lines show the
audio/video decoder data flows and solid lines show the new
applications flows, according to the Hamiltonian routing
algorithm [16] employed by the NoC.

Figure 6. Optimal mapping for the audio/video decoder application.

Figure 7. Audio/video decoder disturbed by the new applications.

Table 1 presents the measured audio/video decoder
throughput varying the number of flows with high priority in
the use-case presented in Figure 7, for six different scenarios.
When only the audio/video decoder flows have high priority
(scenario S1), the obtained throughput is 1.6% smaller
compared to the reference one, but still guaranteeing the
application requirement (30 frames/s). The QoS mechanisms
isolate the real time application flows from the best-effort
flows avoiding interferences. Scenarios S2 to S5 show the
throughput degradation as the number of high priority flows
increases. The throughput is reduced by 52% when all
application flows have high priority (scenario S5). In this
situation, the NoC works in best-effort mode, and the high
router bandwidth is not enough to ensure the application
requirements. Since the video decoder generates higher traffic
rates than the audio one, it was chosen to use GT connections.
This is shown in scenario S6, where the video decoder tasks
communicate through GT whereas all other tasks use high
priority. Note that the QoS guarantees were extended and the
audio/video decoder throughput increased 3.5% with regard to

the reference one. The results obtained in scenarios S1 and S6
show the effectiveness of the management of the QoS
mechanisms at the task level to achieve composability in use-
cases with multiple applications flows competing for common
NoC links.

TABLE I. THROUGHPUT RESULTS FOR 6 DIFFERENT SCENARIOS
CORRESPONDING TO THE USE-CASE OF FIGURE 7.

Flows
 Low

Priority
High Priority GT

Connection
Throughput

S1 T1,T2,T3,T4 Audio, Video - 30.62 frames/s

S2 T1,T2,T3 Audio, Video, T4 - 23.8 frames/s

S3 T1,T2 Audio,Video,T3,T4 - 16.76 frames/s

S4 T2 Audio, Video, T1,T3,T4 - 16.08 frames/s

S5 -
Audio, Video,

T1,T2,T3,T4
- 14.81 frames/s

S6 - Audio,T1,T2,T3,T4 Video 32.24 frames/s

The transmission of a given flow through the NoC may

modify the original data rate, inducing variable latency values
and resulting in missed deadlines at the target IP. Jitter is this
instantaneous variation in latency and must be minimized in
applications with QoS constraints. Figures 8 and 9 show the
video decoder pipeline jitter. The X-axis represents the time
interval between decoded blocks arriving at the JOIN task and
the Y-axis represents the number of decoded blocks arriving
within each time interval.

Figure 8 presents the jitter for the optimal mapping use-case
(Figure 6); high priority for audio/video tasks (scenario S1);
and GT connections for video tasks (scenario S6). For these
three scenarios, most of the decoded blocks arrive at the JOIN
task within the intervals (average and standard deviation
values): 191 ± 55, 192 ± 59, 189 ± 57 kilo-clock cycles for
optimal mapping, S1 and S6 respectively. Besides equivalent
throughput values are achieved, the similarity between the
three plots shows that proposed mechanisms efficiently
decorrelates the target application, ensuring equivalent latency
and jitter for different scenarios, even with disturbing traffic.

Figure 8. Jitter for scenarios guaranteeing the application requirement.

Figure 9 depicts the jitter for the scenarios S2-S5. The
decoded blocks arrive at the JOIN task wit hin the interval: 254
± 212, 416 ± 1042, 366 ± 1119, 382 ± 1132 kilo-clock cycles
for each scenario. The disturbing traffic, flows T1 to T4,
increase the average time between blocks, as well the jitter,
being responsible of the throughput degradation observed in
the Table 1.

��

���

����

����

����

����

����

����

�� ������� �������� �������� �������� �������� �������� �������� ��������

�����������	
��

�
�

���

��

���

���

	��

��

����

����

����

�	��

�
��

����

�� ������ ������� ������� ������� ������� ������� ������� ������� ������� �������

�
�

��
��
��
��
��
��
��

��
��������������������������������

���
�

Figure 9. Jitter for scenarios not guaranteeing the application requirement.

Figure 10 shows the area, measured in LUTs and FFs, for
the main components of the NPU: (i) PE, containing the
Plasma Processor, the network interface and local memory; (ii)
NoC Router. The original NPU design, mapped for a Xilinx
Virtex-5 LX330 device, uses 4016/1997 LUTs/FFs and the
NPU design with duplicated physical channels, priorities and
circuit-switching uses 5652/2384 LUTs/FFs. The area overhead
for the NPU design with support to soft and hard QoS is
40.74%/19.38% in LUTs/FFs. The overhead comes from the
increased size of the NoC router, 165%, due to the physical
channels duplication which doubles the router bandwidth. This
area overhead, 40.74%, may be smaller when processors more
complex than Plasma are used. For example, the CoMPSoC [2]
reports an area of 57,882 LUTs for an MPSoC with 3
processors, SRAM, and audio/video I/O.

Figure 10. Number of LUTs and FF for the main NPU components. Black

bars represent the overhead induced by the included QoS mechanisms. Target
device: Virtex5 LX330

VII. CONCLUSIONS AND FUTURE WORK
This work proposed an approach for achieving

composability based on NoC QoS mechanisms, with the
associated software API made available to application
programmers. Performance results show the efficiency of the
software controlled QoS mechanisms to isolate communication
flows of applications with different time constraints and thus
achieve composability. The obtained area results reveal a
significant area overhead in the NoC design to support the
different levels of QoS. Such an overhead can however be
better amortized for systems based on complex processors
which may include MMU, cache memories and multithreading
support.

Exposing low-level hardware services in the API is a

generic approach applicable to any platform. This increases the
system programmability and enhances the control of the
programmer over the platform at a high level of abstraction.

Future work lies in extending this approach to system
adaptation; which promotes endowing the system with a certain
degree of self-awareness. By continuously monitoring the
achieved performance, the system software could adapt itself
through selecting and tuning various QoS strategies, such as
control over both communication and computation resources.

ACKNOWLEDGMENTS
This research was supported partially by CNPq (Brazilian

Research Agency), projects 301599/2009-2 and 142045/2008-0
and CAPES project 3503-09-7.

REFERENCES
[1] A. Kumar, B. Mesman, B. Theelen, H. Corporaal, and H. Ha,

“Analyzing composability of applications on MPSoC platforms”.
Journal of Systems Architecture: The EUROMICRO Journal, v.54(3-4),
pp. 369-383, 2008.

[2] A. Hansson, K. Goossens, M. Bekooij, and J. Huisken, “CoMPSoC: A
Template for Composable and Predictable Multi-Processor System on
Chips”. ACM Transactions on Design Automation of Electronic
Systems, v.14(1), pp. 1-24, 2009.

[3] A. Molnos, A. Milutinovic, D. She, and K. Goossens, “Composable
Processor Virtualization for Embedded Systems”. In: Computer
Architecture and Operating System Co-Design, 2010.

[4] Hansson, A.; Subburaman, M.; Goossens, K. “Aelite: A flit-synchronous
Network on Chip with Composable and Predictable services”. In:
Design, Automation and Test in Europe Conference, pp. 250-255, 2009.

[5] K. Goossens, J. Dielissen, A. Radulescu, "AEthereal Network on Chip:
Concepts, Architectures, and Implementations". Design & Test of
Computers, v.22(5), pp. 414- 421, 2005.

[6] J. Murillo, “HW-SW Components for Parallel Embedded Computing on
NoC-Based MPSoCS”. PhD Thesis, Universitat Autònoma de
Barcelona, 2010.

[7] A. Hansson, M. Wiggers, A. Moonen, K. Goossens, and M. Bekooij,
“Enabling Application-Level Performance Guarantees in Network-Based
Systems on Chip by Applying Dataflow Analysis”. Computers & Digital
Techniques, v.3(5), pp.398-412, 2009.

[8] E. Carara, N. Calazans and F. Moraes, “Managing QoS Flows at Task
Level in NoC-Based MPSoCs”. In: International Conference on VLSI
and System-on-Chip, 2009.

[9] F. Moraes, N. Calazans, A. Mello, L. Möller, and L. Ost, “HERMES: an
Infrastructure for Low Area Overhead Packet-switching Networks on
Chip”. Integration the VLSI Journal, v.38(1), pp. 69-93, 2004.

[10] A. Hansson and K. Goossens, “Trade-offs in the Configuration of a
Network on Chip for Multiple Use-Cases”. In: International Symposium
on Networks-on-Chip, pp. 233-242, 2007.

[11] G. M. Almeida, et al. “An Adaptive Message Passing MPSoC
Framework”. International Journal of Reconfigurable Computing, vol.
2009, 20 pages, 2009.

[12] S. Rhoads, “Plasma - Most MIPS I(TM) opcodes”. Available at:
http://www.opencores.org/project,plasma.

[13] E. Carara, N. Calazans, and F. Moraes, “A New Router Architecture for
High-performance Intrachip Networks”, Journal of Integrated Circuits
and Systems, v.3(1), pp. 23-31, 2008.

[14] A. Mello, L. Tedesco, N. Calazans, and F. Moraes, "Evaluation of
Current QoS Mechanisms in Networks on Chip". In: International
Symposium on System-on-Chip, pp.1-4, 2006.

[15] S. Gheorghita, T. Basten, and H. Corporaal, “Application Scenarios in
Streaming-Oriented Embedded System Design”. Design & Test, v.25(6),
pp. 581-589, 2008.

[16] X. Lin, P. K. McKinley, and L. M. Ni, “Deadlock-free Multicast
Wormhole Routing in 2-D Mesh Multicomputers”. IEEE Transactions
on Parallel and Distributed Systems, 5(8), 1994, pp. 793-804.

[17] H. Kopetz. “Real-Time Systems: Design Principles for Distributed
Embedded Applications”, Kluwer Academic Publishers, 1997.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

