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Abstract 
Asynchronous circuits are a potential solution to address 

some of the obstacles in deep submicron (DSM) design. One 
of the most frequently used devices to build asynchronous 
circuits is the C-element, a device present as a basic building 
block in several asynchronous design styles. This work 
measures the impact of three different C-element types. The 
paper compares the use of each implementation to build a real 
case asynchronous circuit, an RSA cryptographic core, and 
reports results of precise electrical simulations of each C-
element. Findings in this work show that previous results in 
the literature about C-element implementation types must be 
re-evaluated when using C-elements in DSM technologies. 
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I.  INTRODUCTION 

The interest in non-synchronous circuits is increasing. The 
International Technology Roadmap for Semiconductors 
(ITRS) in its 2008 edition [1] describes a clear need for 
asynchronous communication protocols for control and 
synchronization in integrated circuits (ICs) for the next 
decades. However, one major problem for adopting the 
asynchronous design paradigm is that most commercial EDA 
tools assume that a single (or a few) clock signal(s) globally 
controls an entire IC. Moreover, basic components required to 
implement asynchronous communication, like the C-element, 
are not available off-the-shelf in typical standard cell libraries. 

The C-element is a fundamental primitive for building 
asynchronous logic and implementing the synchronization 
required by most handshaking protocols, which provide the 
basis for asynchronous communication. Three static CMOS 
implementations are the Sutherland pull-up pull-down, the 
weak feedback and the van Berkel1  implementation. Some 
previous work comparing C-element types also mention a 
fourth type, the dynamic C-element. Since the objective of this 
work is to investigate the use of C-elements in the general 
scope of asynchronous implementations, where no systematic 
refresh of dynamic circuits is generally available, this latter 
type is ignored here. 

This work presents a comparison between the three first C-
element mentioned implementations. To do so, these were 
designed and implemented as standard cells in the 
STMicroelectronics (STM) 65nm CMOS technology. Two 
different scopes served to compare the implementations, the 

                                                           
1 Some works in the literature call the van Berkel C-element symmetric, 
because of its special circuit topology and its transition effects. This paper 
avoids this nomenclature to prevent confusion with the behavioral variations 
of C-elements, which are named symmetric and asymmetric or generic. 

single cell level and the application, or core, level. For the 
former scope, delay and power consumption were measured 
through electrical simulations at the standard cell level after 
electrical extraction of the physical layout. For the latter 
scope, the different C-elements were used to build 
asynchronous implementations of an oscillator ring and an 
RSA cryptographic core. A comparison of performance and 
required silicon area of the case studies made it possible to 
scrutinize the systemic effect of using different C-element 
implementations when designing asynchronous circuits in 
DSM technologies. 

The rest of the paper is organized in seven sections. 
Section II describes basic concepts on asynchronous circuits 
and Section III presents a discussion on related works. Section 
IV presents details on the CMOS design and implementation 
of C-elements. Section V approaches the comparison of each 
implementation at the cell level. Section VI presents the case 
study circuits using each of the three C-element 
implementations. Finally, Section 0 draws some conclusions 
and directions for further work. 

II. ASYNCHRONOUS CIRCUITS 

A digital circuit is synchronous if its design implies the 
use of a single clock signal controlling all circuit events. 
Otherwise it is called non-synchronous. As a special case, a 
digital circuit is asynchronous when no clock signal is used to 
control any sequencing of events. These employ explicit 
handshaking among their components to synchronize, 
communicate and operate [2]. The resulting behavior is 
similar to a synchronous system where registers are clocked 
only when and where necessary. Characterizing an 
asynchronous design style requires: (i) the choice of a delay 
model, (ii) an information encoding method and (iii) a set of 
basic devices. Each of these are explored in the rest of this 
Section. 

Asynchronous circuits can be classified according to 
several criteria. One important criterion is based on the delays 
of wires and gates. The most robust and restrictive delay 
model is the delay-insensitive (DI) model, which operates 
correctly regardless of gate and wire delay values. 
Unfortunately, this class is too restrictive. The addition of an 
assumption on wire delays in some carefully selected forks 
enables to define the quasi-delay-insensitive (QDI) circuit 
class. Here, signal transitions must occur at the same time 
only at each end point of the mentioned forks. QDI circuits are 
quite common, although other models, such as bundled-data 
[2] are still used in specific contexts. This work assumes the 
use of QDI as target model. 

There are different ways to encode data to adequately 
support delay models. The use of regular binary encoding of 
data implies the use of separate request-acknowledge control 
signals. While this makes design straightforward for those 
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used to synchronous techniques, the timing relationship 
between control and data signals need to be guaranteed at 
every handshake point, making design of large asynchronous 
modules difficult and hard to scale. As an alternative, DI 
encodings are robust to wire delay variations, because request 
signals are embedded within data signals. An example is the 
dual-rail encoding, that uses two wires to represent each bit, 
and can represent bit values as well as the absence of data. 
The request signal is computed from the data and therefore 
demands extra hardware. Throughout this work, circuits will 
employ dual rail encoding. More efficient DI encodings exist 
and are discussed in detail in several publications e.g. in [3]. 

Most of the asynchronous design techniques proposed to 
date require devices other than ordinary logic gates and flip-
flops available in current standard cell sets. These include e.g. 
metastability filters, event fork, join and merge devices. 
Although most of these may be built from logic gates this is 
inefficient. A fundamental device that enables to build such 
elements more effectively is the C-element. Its importance 
comes from the fact that C-elements operate as an event 
synchronizer. Figure 1depicts the truth table and state diagram 
for a C-element with symmetric behavior. Its output only 
switches when all inputs have the same logical value. When 
inputs A and B are equal, the output Q assumes this same 
value. However, when the inputs are different, the output 
keeps the previous logic value. It is possible to build and use 
several alternative similar behaviors, by individually negating 
the inputs or the output, increasing the number of inputs and 
associating differentiated logic behavior to distinct inputs. 
This last characteristic produces the asymmetric C-elements, 
which are discussed for example in [4]. On the rest of this 
paper the discussion restricts attention to different CMOS 
implementation of the Figure 1 C-element. 

A B Qi 

0 0 0 

0 1 
Qi-

1 

1 0 
Qi-

1 
1 1 1   

Figure 1 - A basic C-element truth table and state diagram for symmetric 
behavior with regard to the inputs. 

III. RELATED WORK 

As far as the Authors could verify, only four works 
propose a comparison of different CMOS implementations of 
C-elements. In the first two works, Shams et al. [5] [6] present 
a comparison of four CMOS implementations of the C-
element. Initially, first-order models are proposed to quickly 
approximate delay and energy dissipation of such C-elements. 
Next, CMOS implementations are designed in a 0.8 µm 
technology. Measurements of energy dissipation and delay 
through simulation showed to be in good agreement with the 
analytical predictions. The authors conclude that the Van 
Berkel C-element is the best option for energy-efficient, high-
speed and high density circuits. However, the conducted study 
did not take into account layout considerations, and results 
obtained through analytical models do not agree with the more 
precise results presented here. Moreover, Shams et al. ignored 
wire loads and their effect on circuits during simulations, 
which is not acceptable in DSM technologies. 

In [7], Elissati et al. conducted a study comparing four 
different CMOS implementations of the C-element for a 
specific case of application, self-timed rings. The work 
compares the performance of rings using each C-element 
implementation and through simulation for a 65nm 
technology. Results show that the van Berkel implementation 
seems to be the best trade-off between low power and 
operating speed. However, the work does not take into 
account any layout consideration either. Besides, the results 
presented are valid mostly for self-timed rings only. In [8], 
Bastos et al. evaluated transient-fault effects on four C-
element implementations. The work shows that the weak-
feedback C-element is the most transient-fault robust 
implementation. Moreover, results show that the van Berkel 
C-element is the fastest and lowest power and area consuming 
implementation. Albeit the work provides concrete results on 
the robustness of each implementation for transient faults, 
speed, power consumption and area results were not evaluated 
through a layout-aware approach. Wire loads and parasitic 
were also not taken into account during simulations. 

This paper stands off by scrutinizing the electrical 
behavior of each C-element CMOS topology after the 
extraction of the physical implementation. Moreover, it 
presents a layout- and application-aware comparison of them 
in generic asynchronous circuits. Comparisons presented here 
are impartial, because the physical design of the C-elements is 
based in a parameterizable flow that allows the generation of 
different cells with the same driving capability. Results 
showed that, differently from previous works concluded, the 
van Berkel is not the best option for low area, low power and 
high-speed designs. An in-depth discussion on electrical 
design and simulation of C-elements is conducted to 
demonstrate that each C-element type is advantageous in some 
context. This is, as far as the Authors could verify, the first 
work to compare C-elements taking into account parasitic 
devices and wire loads, guaranteeing a fairer comparison. 

IV. C-ELEMENT CMOS IMPLEMENTATION 

Three different static CMOS topologies of the C-element 
were implemented and compared in this work. Figure 2(a) 
shows the Sutherland pull-up pull-down implementation, 
proposed by Sutherland in [9] and employed in his 
micropipeline design method. Another C-element type, shown 
in Figure 2(b), was proposed by van Berkel in [10]. Finally, 
Figure 2(c) shows the weak feedback C-element, proposed by 
Martin in [11] and used extensively in the asynchronous 
microprocessors designed at Caltech. These three 
implementations were implemented in the scope of the present 
work as standard cells for a specially designed library [12]. 

A standard cell is an elementary device, such as a logic 
gate, defined at the chip layout level, with some predefined 
characteristics that usually comprise cell height and current 
driving strength (capability of charging/discharging a given 
load). To efficiently implement C-elements as standard cells 
in a real technology (in this case, STMicroelectronics 65nm), 
this work employs a specific design flow, detailed in [13]. The 
flow comprises three main steps, briefly described herein: 
specification, design and validation. Furthermore, it is 
parameterizable, depending on the required driving strength. 

 



 
Figure 2 - CMOS implementations of the C-element: (a) Sutherland’s  
pull-up pull-down, (b) van Berkel’s, (c) Martin’s weak feedback. 

Specification includes defining the precise cell 
functionality and its electrical requirements. The goal of this 
step is to find optimal dimensions of PMOS and NMOS 
transistors to meet timing and power requirements for the cell. 
The flow proposes tools to automate transistor size generation, 
simulation and transistor sizing choice processes. The design 
phase, second step of the flow, consists in taking the selected 
transistor dimensions and producing a physical view (layout) 
that fulfills this specification. This includes drawing the cell in 
a layout editor for the chosen process, extracting parasitics and 
electrically characterizing the resultant circuit for the given 
fabrication process. The last flow step, validation, consists in 
checking if the information generated during electrical 
characterization is equivalent to that defined in the cell 
specification. Moreover, timing simulation must be carried for 
a design composed by a single cell to check if the delay of the 
electrical characterization is correctly annotated and the 
behavior is correctly implemented.  

After verification, the cell can be used in a design. Besides 
the layout, two other views are produced: an abstract view 
employed by place and route tools and assemble the circuit on 
a chip; and a behavioral view, destined to support high level 
simulations. Both correspond to automated steps in the 
proposed flow. 

V. STANDARD CELL COMPARISON 

Each of the three implementations of the C-element was 
designed through the design flow mentioned in Section IV. 
They employ general purpose, standard threshold transistors 
for the 65nm STMicroelectronics CMOS technology. The 
obtained cells are able to drive the same load with the same 
speed, a maximum of 270fF in 1ns. In other words, the driving 
strength of each implementation is normalized, in order to 
precisely compare performance and area efficiency in a fair 
manner. The standard-cells are fully integrated within the 
synthesis flow of the Teak tool [14], which builts 
asynchronous circuits from a high level description language, 
Balsa. Therefore the complexity of designing asynchronous 
ICs is significantly reduced. Figure 3 shows an example 
layout for each of the designed standard cells. 

The silicon areas required by each C-element standard cell 
appear in Table I. The cell that requires less area is the weak 
feedback C-element. Table I also shows the resultant internal 
parasitic after RC extraction. As expected, van Berkel, 
implementation that requires more silicon area, presented 

highest parasitic capacitance, over two times the parasitic of 
the weak feedback C-element. 

 

   

(a) (b) (c) 
Figure 3 – Example physical layout at the cell level of the designed C-

elements: (a) Sutherland’s pull-up pull-down, (b) van Berkel’s, (c) Martin’s 
weak feedback. 

TABLE I – AREA AND PARASITIC CAPACITANCE REQUIRED BY CMOS 
IMPLEMENTATIONS OF THE C-ELEMENTS (CAP. OBTAINED THROUGH RC 

EXTRACTION). 

C-element Implementation Cell Area (um2) Parasitic Cap. (fF) 

Sutherland 6.24 6.066 
van Berkel 7.28 9.383 

Weak feedback 5.72 4.469 

After electrical extraction, each cell was characterized for 
a typical fabrication process corner, with typical delay for the 
NMOS and PMOS transistors, for an operational condition of 
25 degrees Celsius and 1 V power supply. Table II shows 
electrical results obtained through the electrical 
characterization. The weak feedback implementation presents 
the highest capacitance on its inputs. In fact, in comparison 
with the van Berkel implementation, which presents lower 
input capacitance, it shows an overhead of 85% of capacitance 
on its inputs. That is due to the fact that, albeit the van Berkel 
implementation is the most area consuming, due to the 
elevated number of required transistors, the weak feedback C-
element is the one that employs larger transistors, as Figure 3 
shows. 

As for the internal power required to switch the output of 
the standard cell, the Sutherland and the van Berkel 
implementations are equivalent for rise and fall transitions. 
The former consumes slightly less internal power, roughly 2% 
in average. However, the weak feedback cell requires roughly 
4 times the power required by the other implementations in 
rise transitions and almost twice the power required for fall 
transitions. As expected, weak feedback implementations have 
the highest leakage power consumption, when compared to 
the others. This is also a consequence of transistor size. 

 

TABLE II - CAPACITANCE OF THE INPUT PINS AND POWER CONSUMPTION OF 
DESIGNED STANDARD CELLS, AFTER ELECTRICAL EXTRACTION. 

Input 
Capacitance (fF) 

Average Internal 
Power2 (fW) 

C-element 
Implementation

A B Rise Fall 

Cell Leakage 
Power (nW) 

Sutherland 4.565 4.410 1.316 12.454 20.447 
van Berkel 3.113 3.081 1.190 12.871 17.628 

Weak feedback 5.633 5.849 4.889 21.930 30.591 
 

                                                           
2 Average internal power was measured as the average power consumption 
of the input pins, for a scenario where the cell switches its logical value with 
an input slope of 1.2ps and an output load of 0.015pF. 



  

(a) (b) 

Figure 4 - Propagation delay of the designed standard cells after electrical extraction, as a function of the (a) output load capacitance and (b) input slope. In 
(a), results were obtained by fixing the input slope in 1.2ps and varying the output load from 0.001pF to 0.15pF. In (b), results were obtained by fixing the 

output load in 1fF and varying the input slope load from 0.0012ns to 0.180ns. 

The average propagation delay of each cell, measured as 
the average delay of rise and fall transitions, was also 
obtained through electrical characterization. Figure 4 shows 
the obtained results for two scenarios. In Figure 4(a), the 
input slope was fixed in 1.2ps and the output load varied from 
0.001pF to 0.15pF. The time required for the Sutherland and 
the van Berkel implementations to switch their respective 
outputs is equivalent, as illustrated by the overlapping values. 
Moreover, the weak feedback presents equivalent propagation 
delay for small output loads (from 0.001pF to 0.015pF). 
However, the higher the load gets, the worse its propagation 
delay is, in comparison to the other implementations. This 
behavior shows that the weak feedback is also the 
implementation most sensitive to output load variations. 

Figure 4(b) shows the electrical behavior of each 
implementation when the output load is fixed in 1fF and the 
input slope varied from 0.0012ns to 0.180ns. In this scenario, 
the fastest implementation is the van Berkel, followed by the 
Sutherland and next the weak feedback. The obtained results 
show that for small input slopes (0.0012ns to 0.0132ns), the 
speed of Sutherland and weak feedback C-elements is 
equivalent. However, as the input slope gets more significant, 
the propagation delay of the weak feedback C-element gets 
worse. In this way, the weak feedback implementation is, 
also, the most sensitive to input slope variations. As Figure 
4(b) shows, the delay of this implementation grows at a much 
higher rate as the input slope grows, while the other two 
implementations see their delay grow more linearly. The van 
Berkel implementation displays the smallest propagation 
delay, regardless of input slope variations. Therefore, we can 
consider the van Berkel C-element the most robust 
implementation for both input slope and output load 
variations. Results show an agreement with the work 
presented in [10], which conducted an analysis of the 
threshold of C-elements. 

VI. C-ELEMENTS ON ASYNCHRONOUS CIRCUITS 

A. Oscillator ring case study 

As an initial comparison of the impact of each C-element 
implementation on asynchronous circuits, a low complexity 
circuit was described in the SPICE language, an oscillator 
ring. As Figure 5 shows, the circuit is composed by a NAND 
and 10 C-elements. Extensive simulation defined the number 

of C-elements in the ring (10) as an amount sufficient to 
normalize the effect of the NAND and allow correct 
evaluation of the C-elements. The NAND is required to keep 
the circuit static, when the “IN” pin is set to ‘0’, and to make 
the circuit oscillate, when the “IN” pin is switched to ‘1’. In 
this way, static and dynamic power consumption and 
operational frequency can be precisely measured. Three 
oscillator rings were generated, one for each implementation 
of the C-element after RC extraction. 

 
Figure 5 - Oscillator ring employed for an initial comparison of the impact 

of each C-element implementation in an asynchronous circuit. 

After simulating each oscillator ring, power consumption 
and operational frequency, were obtained through the SPICE 
“.measure” function, as Table III shows. Leakage power was 
measured as the average power consumed from the power 
source while the circuit was quiescent, and the dynamic 
power was measured as the average power consumption from 
the source when the ring is oscillating. The frequency is 
measured as the inverse of the period between two similar 
edges in any node of the ring (in this case “n5”). 

TABLE III  - PERFORMANCE FIGURES OF THE OSCILLATOR RINGS. 

C-element 
Implementation 

Operational 
Frequency (GHz) 

Leakage Power 
(µW) 

Dynamic 
Power (µW)

Sutherland 0.865 0.17 74.41 
van Berkel 1.148 0.13 74.33 

Weak feedback 0.808 0.28 119.20 

As Table III shows, the conducted experiment confirms 
the results obtained through the electrical characterization of 
the C-elements. The van Berkel implementation presents the 
lowest leakage power consumption, while its dynamic power 
consumption is equivalent to the Sutherland C-element. The 
weak feedback implementation presents higher dynamic and 
leakage power, as expected. Power figures enforce the 
statement that the weak feedback is the most power 
consuming and the Sutherland and van Berkel present similar 
power consumption figures. 



It would be expected that at least two of the rings, the ones 
composed by the Sutherland and the van Berkel 
implementation, presented equivalent operating frequency. 
However, the one generated with van Berkel C-elements 
operates roughly 32% and 42% faster than the one composed 
by Sutherland and weak feedback C-elements, respectively. 
As Table II shows, the sum of the pin capacitances of the 
Sutherland C-element is 8.975fF, while for the van Berkel 
implementation it is only 6.194fF. In other words, each cell of 
the ring in Sutherland implementations, except the one that 
drives the NAND, must drive a load roughly 44% bigger than 
that of the van Berkel C-elements ring. Both implementations 
showed to be equivalently sensitive to output load variations. 
However, these variations interfere in the transition time of 
their output, which feeds the next cell in the ring. Thus, the 
slope in the input of the next cell increases. In this case, the 
resulting input slope generated in the inputs of each 
Sutherland C-element, after the circuit stabilizes its oscillating 
frequency, is roughly 0.06ns, as Figure 6 shows. Considering 
that the Sutherland C-element is more sensitive to input slope 
variations, it is clear why the rings operate at different 
frequencies ranges. 

 
Figure 6 - Input slope of a single cell of an oscillator ring composed by 

Sutherland C-elements. 

For the weak feedback C-element, the operational 
frequency range is even worse. That is due to the fact that this 
implementation presents not only higher input capacitance, 
which contributes for an elevated slope in the input of each 
cell of the ring, but it is also much more sensitive to input 
slope variations than the Sutherland C-element. Its 
performance would be yet worsened if, for instance, each C-
element was required to drive a load bigger than 0.015pF. See 
Figure 4(a), where the delay of the weak feedback 
implementation starts to get worse than the other two. In this 
case, the sum of its input pins, load that each cell (except the 
one that drives the NAND) must drive, is 11.482fF. 

B. RSA cryptographic core case study 

A more realistic comparison of the impact of the C-
elements implementation was conducted through the design 
of a 32 bit RSA cryptographic core. The circuit was described 
in the Balsa language [2] and synthesized through the Teak 
System [14]. Teak automatically maps the Balsa description 
into a specific set of cells, a group of C-elements with 
different functionalities, generating asynchronous QDI 
circuits. ASCEnD [13], a standard cell library composed by 
asynchronous components, was designed to support Teak 

synthesis for the 65nm STMicroelectronics CMOS 
technology. The library contains the required C-elements for 
the three CMOS topologies compared in this work.  

Three versions of the asynchronous RSA cryptographic 
core were generated using Teak, each one employing 
exclusively one distinct C-element type implementation on its 
schematic. The choice for the RSA function was due to the 
fact that its algorithm employs arithmetic operations as well 
as control functions. Arithmetic operations are implemented 
through delay insensitive minterm synthesis (DIMS) logic, 
which is basically constructed with C-elements [2]. In this 
way, the impact of the choice of C-element on the circuit can 
be efficiently evaluated. 

The total number of standard-cells employed in all 
designs, without taking into account physical cells, was 
57,168. Physical cells are the cells used to connect the power 
lines to the substrate, tap cells, and the filler cells employed in 
the core. The circuits had the same number of logic cells due 
to the fact that the only difference between them is the choice 
of C-element implementation and Teak does not optimize 
cells dimensions and employs a well defined set of cells for 
each handshake component. From the total cells, 22,063 were 
C-elements. This result shows the importance of this device in 
typical asynchronous design. For these examples, roughly 
40% of the required logical standard cells were C-elements. 

Table IV shows the physical characteristics of the 
generated RSA cryptographic cores, obtained after place and 
route. The design implemented with weak feedback C-
elements requires less silicon area, while the ones 
implemented with van Berkel and Sutherland C-elements 
were the largest. The area overhead imposed by both in 
comparison with the weak feedback is roughly 12% and 7%, 
respectively. Therefore, the weak feedback C-element is the 
most efficient implementation for high density designs and 
the van Berkel C-element is the most area and wire 
consuming implementation. These results are in agreement 
with the information obtained at layout level. 

TABLE IV - AREA AND WIRE RESULTS FOR THE THREE ASYNCHRONOUS RSA 
CRYPTOGRAPHIC CORE IMPLEMENTATIONS AFTER PLACE AND ROUTE. 

C-element Implementation Sutherland van Berkel Weak feedback

Number of Standard Cells 92,922 94,015 91,276 
Total cell area (mm²) 0.295 0.311 0.276 

Cell area - physical cells (mm²) 0.244 0.258 0.228 
C-elements cell area (mm²) 0.161 0.175 0.145 

Total wire length (mm) 648.208 703.694 616.176 
Average wire length (µm) 10.746 11.665 10.215 

 

The RSA netlists’ delay of the paths generated after place 
and route were annotated and served as input to a set of 
simulations. Thesr comprised multiple cryptographic 
operations for each netlist, collecting performance results. 
Employed operational conditions were 25ºC, 1V supply for a 
typical fabrication process corner. The average delay to 
perform a cryptographic operation for the weak feedback, the 
Sutherland and the van Berkel C-element based 
implementations were 104.311µs, 83.96µs and 73.241µs, 
respectively. These results are in agreement with the 
information obtained in the simulation of an oscillator ring. 
The van Berkel implementation presented higher operating 
speed, due to the fact that it is the less sensitive 
implementation to input slope and output load variations and 
Teak synthesis is not able to optimize dimensioning of the 
selected standard cells. In other words, every standard cell 



employed in the circuit has the same output driving strength 
and input capacitance, some of these ending up overloaded. 
This is a limitation of the tool, which leads to slower designs 
mostly when employing Sutherland or weak feedback C-
elements, since these present higher delay for high output 
loads and input slopes. 

From the simulations, the switching activity in the nets of 
each circuit was annotated for a period of 3ms and served as 
input to evaluate power consumption. Table V shows the 
information obtained for the three netlists. Employing 
Sutherland or van Berkel C-elements generated circuits with 
similar power consumption. Comparing these 
implementations, the latter consumed less leakage power, 
roughly 5%, while the former presented lower dynamic power 
consumption, roughly 4%. The circuit generated with 
Sutherland C-elements presents slightly less total power 
consumption. This is due to the fact that the power consumed 
while the circuit is quiescent represents a smaller portion of 
the total power than the dynamic power consumption. 
Notably, weak feedback was the less power efficient 
implementation. 

TABLE V  - POWER CONSUMPTION OF THE THREE ASYNCHRONOUS RSA 
CRYPTOGRAPHIC CORE IMPLEMENTATIONS. 

C-element Implementation Sutherland van Berkel Weak feedback

Internal Power (mW) 1.878 2.161 4.361 
Switching Power (mW) 1.581 1.433 1.342 
Leakage Power (mW) 1.729 1.639 2.162 

Total Power (mW) 5.188 5.233 7.865 

These results are in agreement with those obtained at 
layout level and in the simulation of an oscillator ring, except 
for the dynamic power consumption of the Sutherland C-
element. In the first case study, this presented worse dynamic 
power consumption than the van-Berkel C-element. However, 
in that case, each cell was driving a single two-input cell, 
while in the circuit generated by Teak, the cells were required 
to drive multiple nets and, consequently, higher loads. In this 
scenery, the van Berkel dynamic power efficiency was 
compromised. 

 

 
Figure 7 - C-elements power consumption for each asynchronous RSA 

cryptographic core implementation. 

Figure 7 shows details the power consumption of the C-
elements from the total power consumed by the placed and 
routed netlists. The total power consumed by the Sutherland, 
the weak feedback and the van Berkel C-elements, in their 
respective netlists, was 2.803mW (54%), 5.722mW (73%) 
and 2.815mW (54%), respectively. These results show that, in 
a realistic application, the reason for the Sutherland C-
element to consume less power than the van Berkel is because 
the internal power consumed by the latter is more significant. 
One aspect that worsens internal power consumption is the 
amount of transistors in short circuit when switching the van 

Berkel C-element output logical value. Moreover, the bigger 
the input slope is, the bigger is the period of time that the 
transistors are in short circuit when switching the output of 
the C-element.  

VII. CONCLUSIONS AND FUTURE WORK 

This paper presented a comparison of 3 different CMOS 
implementations of C-elements: Sutherland, van Berkel and 
weak feedback. The comparison considered layout effects on 
a DSM technology, together with the systemic effect of using 
these C-elements in building asynchronous cores. The results 
obtained show that previous findings for the electrical 
behavior of C-elements must be reevaluated. The use of a 
realistic asynchronous synthesis tool like Teak allowed to 
evaluate C-elements’ behavior in current state of the art 
situations. The inability of the tool to optimize standard cell 
selection based on current drive capacity indicates the need of 
enhanced synthesis tools for asynchronous circuits.  

In summary, albeit the van Berkel C-element appears as 
the lowest static power consuming implementation, it has 
been shown to consume more dynamic power than the 
Sutherland C-element for bigger input slopes. Moreover, the 
dynamic power consumption represents a bigger portion of 
the total power than the static power consumption. In this 
way, the Sutherland C-element appears as the most indicated 
for low power designs, regardless of input slope variations. 
The weak feedback presented the worst propagation delay, 
regardless output load or input slope variations. Moreover, the 
van Berkel and the Sutherland C-elements proved to be 
equally robust to output load variations. However, the 
Sutherland implementation presented higher propagation 
delay for high input slopes. Therefore, the van Berkel C-
element appears as the most speed efficient implementation. 
The results on required area for each C-element, showed that 
the van Berkel implementation is the most silicon area 
consuming, while the weak feedback is the most area 
efficient. Hence, the latter is the most suitable for high density 
designs. 

Finally, the work described here shows that the choice of  
C-element type in a DSM asynchronous design is a triple 
(speed/area/power) tradeoff. Future work includes 
prototyping the circuits designed as case studies in the STM 
65nm technology in order to evaluate and compare the C-
elements on silicon. In this way, information about the 
robustness and the effect of process variations, for the 
different implementations can be obtained and compared. 
Moreover, a study is under way to scrutinize the use of 
different C-element implementations in a single design in 
order to generate hybrid and optimized designs. 
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