
Impact of C-Elements in Asynchronous Circuits

Matheus Moreira, Bruno Oliveira, Fernando Moraes, Ney Calazans
Faculdade de Informática

Pontifícia Universidade Católica do Rio Grande do Sul
Porto Alegre, Brazil

{matheus.moreira, bruno.scherer}@acad.pucrs.br {fernando.moraes, ney.calazans}@pucrs.br

Abstract
Asynchronous circuits are a potential solution to address

some of the obstacles in deep submicron (DSM) design. One
of the most frequently used devices to build asynchronous
circuits is the C-element, a device present as a basic building
block in several asynchronous design styles. This work
measures the impact of three different C-element types. The
paper compares the use of each implementation to build a real
case asynchronous circuit, an RSA cryptographic core, and
reports results of precise electrical simulations of each C-
element. Findings in this work show that previous results in
the literature about C-element implementation types must be
re-evaluated when using C-elements in DSM technologies.

Keywords
asynchronous circuits; standard cell; C-element; deep

submicron

I. INTRODUCTION

The interest in non-synchronous circuits is increasing. The
International Technology Roadmap for Semiconductors
(ITRS) in its 2008 edition [1] describes a clear need for
asynchronous communication protocols for control and
synchronization in integrated circuits (ICs) for the next
decades. However, one major problem for adopting the
asynchronous design paradigm is that most commercial EDA
tools assume that a single (or a few) clock signal(s) globally
controls an entire IC. Moreover, basic components required to
implement asynchronous communication, like the C-element,
are not available off-the-shelf in typical standard cell libraries.

The C-element is a fundamental primitive for building
asynchronous logic and implementing the synchronization
required by most handshaking protocols, which provide the
basis for asynchronous communication. Three static CMOS
implementations are the Sutherland pull-up pull-down, the
weak feedback and the van Berkel1 implementation. Some
previous work comparing C-element types also mention a
fourth type, the dynamic C-element. Since the objective of this
work is to investigate the use of C-elements in the general
scope of asynchronous implementations, where no systematic
refresh of dynamic circuits is generally available, this latter
type is ignored here.

This work presents a comparison between the three first C-
element mentioned implementations. To do so, these were
designed and implemented as standard cells in the
STMicroelectronics (STM) 65nm CMOS technology. Two
different scopes served to compare the implementations, the

1 Some works in the literature call the van Berkel C-element symmetric,
because of its special circuit topology and its transition effects. This paper
avoids this nomenclature to prevent confusion with the behavioral variations
of C-elements, which are named symmetric and asymmetric or generic.

single cell level and the application, or core, level. For the
former scope, delay and power consumption were measured
through electrical simulations at the standard cell level after
electrical extraction of the physical layout. For the latter
scope, the different C-elements were used to build
asynchronous implementations of an oscillator ring and an
RSA cryptographic core. A comparison of performance and
required silicon area of the case studies made it possible to
scrutinize the systemic effect of using different C-element
implementations when designing asynchronous circuits in
DSM technologies.

The rest of the paper is organized in seven sections.
Section II describes basic concepts on asynchronous circuits
and Section III presents a discussion on related works. Section
IV presents details on the CMOS design and implementation
of C-elements. Section V approaches the comparison of each
implementation at the cell level. Section VI presents the case
study circuits using each of the three C-element
implementations. Finally, Section 0 draws some conclusions
and directions for further work.

II. ASYNCHRONOUS CIRCUITS

A digital circuit is synchronous if its design implies the
use of a single clock signal controlling all circuit events.
Otherwise it is called non-synchronous. As a special case, a
digital circuit is asynchronous when no clock signal is used to
control any sequencing of events. These employ explicit
handshaking among their components to synchronize,
communicate and operate [2]. The resulting behavior is
similar to a synchronous system where registers are clocked
only when and where necessary. Characterizing an
asynchronous design style requires: (i) the choice of a delay
model, (ii) an information encoding method and (iii) a set of
basic devices. Each of these are explored in the rest of this
Section.

Asynchronous circuits can be classified according to
several criteria. One important criterion is based on the delays
of wires and gates. The most robust and restrictive delay
model is the delay-insensitive (DI) model, which operates
correctly regardless of gate and wire delay values.
Unfortunately, this class is too restrictive. The addition of an
assumption on wire delays in some carefully selected forks
enables to define the quasi-delay-insensitive (QDI) circuit
class. Here, signal transitions must occur at the same time
only at each end point of the mentioned forks. QDI circuits are
quite common, although other models, such as bundled-data
[2] are still used in specific contexts. This work assumes the
use of QDI as target model.

There are different ways to encode data to adequately
support delay models. The use of regular binary encoding of
data implies the use of separate request-acknowledge control
signals. While this makes design straightforward for those

978-1-4673-1036-9/12/$31.00 ©2012 IEEE 437 13th Int'l Symposium on Quality Electronic Design

used to synchronous techniques, the timing relationship
between control and data signals need to be guaranteed at
every handshake point, making design of large asynchronous
modules difficult and hard to scale. As an alternative, DI
encodings are robust to wire delay variations, because request
signals are embedded within data signals. An example is the
dual-rail encoding, that uses two wires to represent each bit,
and can represent bit values as well as the absence of data.
The request signal is computed from the data and therefore
demands extra hardware. Throughout this work, circuits will
employ dual rail encoding. More efficient DI encodings exist
and are discussed in detail in several publications e.g. in [3].

Most of the asynchronous design techniques proposed to
date require devices other than ordinary logic gates and flip-
flops available in current standard cell sets. These include e.g.
metastability filters, event fork, join and merge devices.
Although most of these may be built from logic gates this is
inefficient. A fundamental device that enables to build such
elements more effectively is the C-element. Its importance
comes from the fact that C-elements operate as an event
synchronizer. Figure 1depicts the truth table and state diagram
for a C-element with symmetric behavior. Its output only
switches when all inputs have the same logical value. When
inputs A and B are equal, the output Q assumes this same
value. However, when the inputs are different, the output
keeps the previous logic value. It is possible to build and use
several alternative similar behaviors, by individually negating
the inputs or the output, increasing the number of inputs and
associating differentiated logic behavior to distinct inputs.
This last characteristic produces the asymmetric C-elements,
which are discussed for example in [4]. On the rest of this
paper the discussion restricts attention to different CMOS
implementation of the Figure 1 C-element.

A B Qi

0 0 0

0 1
Qi-

1

1 0
Qi-

1
1 1 1

Figure 1 - A basic C-element truth table and state diagram for symmetric
behavior with regard to the inputs.

III. RELATED WORK

As far as the Authors could verify, only four works
propose a comparison of different CMOS implementations of
C-elements. In the first two works, Shams et al. [5] [6] present
a comparison of four CMOS implementations of the C-
element. Initially, first-order models are proposed to quickly
approximate delay and energy dissipation of such C-elements.
Next, CMOS implementations are designed in a 0.8 µm
technology. Measurements of energy dissipation and delay
through simulation showed to be in good agreement with the
analytical predictions. The authors conclude that the Van
Berkel C-element is the best option for energy-efficient, high-
speed and high density circuits. However, the conducted study
did not take into account layout considerations, and results
obtained through analytical models do not agree with the more
precise results presented here. Moreover, Shams et al. ignored
wire loads and their effect on circuits during simulations,
which is not acceptable in DSM technologies.

In [7], Elissati et al. conducted a study comparing four
different CMOS implementations of the C-element for a
specific case of application, self-timed rings. The work
compares the performance of rings using each C-element
implementation and through simulation for a 65nm
technology. Results show that the van Berkel implementation
seems to be the best trade-off between low power and
operating speed. However, the work does not take into
account any layout consideration either. Besides, the results
presented are valid mostly for self-timed rings only. In [8],
Bastos et al. evaluated transient-fault effects on four C-
element implementations. The work shows that the weak-
feedback C-element is the most transient-fault robust
implementation. Moreover, results show that the van Berkel
C-element is the fastest and lowest power and area consuming
implementation. Albeit the work provides concrete results on
the robustness of each implementation for transient faults,
speed, power consumption and area results were not evaluated
through a layout-aware approach. Wire loads and parasitic
were also not taken into account during simulations.

This paper stands off by scrutinizing the electrical
behavior of each C-element CMOS topology after the
extraction of the physical implementation. Moreover, it
presents a layout- and application-aware comparison of them
in generic asynchronous circuits. Comparisons presented here
are impartial, because the physical design of the C-elements is
based in a parameterizable flow that allows the generation of
different cells with the same driving capability. Results
showed that, differently from previous works concluded, the
van Berkel is not the best option for low area, low power and
high-speed designs. An in-depth discussion on electrical
design and simulation of C-elements is conducted to
demonstrate that each C-element type is advantageous in some
context. This is, as far as the Authors could verify, the first
work to compare C-elements taking into account parasitic
devices and wire loads, guaranteeing a fairer comparison.

IV. C-ELEMENT CMOS IMPLEMENTATION

Three different static CMOS topologies of the C-element
were implemented and compared in this work. Figure 2(a)
shows the Sutherland pull-up pull-down implementation,
proposed by Sutherland in [9] and employed in his
micropipeline design method. Another C-element type, shown
in Figure 2(b), was proposed by van Berkel in [10]. Finally,
Figure 2(c) shows the weak feedback C-element, proposed by
Martin in [11] and used extensively in the asynchronous
microprocessors designed at Caltech. These three
implementations were implemented in the scope of the present
work as standard cells for a specially designed library [12].

A standard cell is an elementary device, such as a logic
gate, defined at the chip layout level, with some predefined
characteristics that usually comprise cell height and current
driving strength (capability of charging/discharging a given
load). To efficiently implement C-elements as standard cells
in a real technology (in this case, STMicroelectronics 65nm),
this work employs a specific design flow, detailed in [13]. The
flow comprises three main steps, briefly described herein:
specification, design and validation. Furthermore, it is
parameterizable, depending on the required driving strength.

Figure 2 - CMOS implementations of the C-element: (a) Sutherland’s
pull-up pull-down, (b) van Berkel’s, (c) Martin’s weak feedback.

Specification includes defining the precise cell
functionality and its electrical requirements. The goal of this
step is to find optimal dimensions of PMOS and NMOS
transistors to meet timing and power requirements for the cell.
The flow proposes tools to automate transistor size generation,
simulation and transistor sizing choice processes. The design
phase, second step of the flow, consists in taking the selected
transistor dimensions and producing a physical view (layout)
that fulfills this specification. This includes drawing the cell in
a layout editor for the chosen process, extracting parasitics and
electrically characterizing the resultant circuit for the given
fabrication process. The last flow step, validation, consists in
checking if the information generated during electrical
characterization is equivalent to that defined in the cell
specification. Moreover, timing simulation must be carried for
a design composed by a single cell to check if the delay of the
electrical characterization is correctly annotated and the
behavior is correctly implemented.

After verification, the cell can be used in a design. Besides
the layout, two other views are produced: an abstract view
employed by place and route tools and assemble the circuit on
a chip; and a behavioral view, destined to support high level
simulations. Both correspond to automated steps in the
proposed flow.

V. STANDARD CELL COMPARISON

Each of the three implementations of the C-element was
designed through the design flow mentioned in Section IV.
They employ general purpose, standard threshold transistors
for the 65nm STMicroelectronics CMOS technology. The
obtained cells are able to drive the same load with the same
speed, a maximum of 270fF in 1ns. In other words, the driving
strength of each implementation is normalized, in order to
precisely compare performance and area efficiency in a fair
manner. The standard-cells are fully integrated within the
synthesis flow of the Teak tool [14], which builts
asynchronous circuits from a high level description language,
Balsa. Therefore the complexity of designing asynchronous
ICs is significantly reduced. Figure 3 shows an example
layout for each of the designed standard cells.

The silicon areas required by each C-element standard cell
appear in Table I. The cell that requires less area is the weak
feedback C-element. Table I also shows the resultant internal
parasitic after RC extraction. As expected, van Berkel,
implementation that requires more silicon area, presented

highest parasitic capacitance, over two times the parasitic of
the weak feedback C-element.

(a) (b) (c)
Figure 3 – Example physical layout at the cell level of the designed C-

elements: (a) Sutherland’s pull-up pull-down, (b) van Berkel’s, (c) Martin’s
weak feedback.

TABLE I – AREA AND PARASITIC CAPACITANCE REQUIRED BY CMOS
IMPLEMENTATIONS OF THE C-ELEMENTS (CAP. OBTAINED THROUGH RC

EXTRACTION).

C-element Implementation Cell Area (um2) Parasitic Cap. (fF)

Sutherland 6.24 6.066
van Berkel 7.28 9.383

Weak feedback 5.72 4.469

After electrical extraction, each cell was characterized for
a typical fabrication process corner, with typical delay for the
NMOS and PMOS transistors, for an operational condition of
25 degrees Celsius and 1 V power supply. Table II shows
electrical results obtained through the electrical
characterization. The weak feedback implementation presents
the highest capacitance on its inputs. In fact, in comparison
with the van Berkel implementation, which presents lower
input capacitance, it shows an overhead of 85% of capacitance
on its inputs. That is due to the fact that, albeit the van Berkel
implementation is the most area consuming, due to the
elevated number of required transistors, the weak feedback C-
element is the one that employs larger transistors, as Figure 3
shows.

As for the internal power required to switch the output of
the standard cell, the Sutherland and the van Berkel
implementations are equivalent for rise and fall transitions.
The former consumes slightly less internal power, roughly 2%
in average. However, the weak feedback cell requires roughly
4 times the power required by the other implementations in
rise transitions and almost twice the power required for fall
transitions. As expected, weak feedback implementations have
the highest leakage power consumption, when compared to
the others. This is also a consequence of transistor size.

TABLE II - CAPACITANCE OF THE INPUT PINS AND POWER CONSUMPTION OF
DESIGNED STANDARD CELLS, AFTER ELECTRICAL EXTRACTION.

Input
Capacitance (fF)

Average Internal
Power2 (fW)

C-element
Implementation

A B Rise Fall

Cell Leakage
Power (nW)

Sutherland 4.565 4.410 1.316 12.454 20.447
van Berkel 3.113 3.081 1.190 12.871 17.628

Weak feedback 5.633 5.849 4.889 21.930 30.591

2 Average internal power was measured as the average power consumption
of the input pins, for a scenario where the cell switches its logical value with
an input slope of 1.2ps and an output load of 0.015pF.

(a) (b)

Figure 4 - Propagation delay of the designed standard cells after electrical extraction, as a function of the (a) output load capacitance and (b) input slope. In
(a), results were obtained by fixing the input slope in 1.2ps and varying the output load from 0.001pF to 0.15pF. In (b), results were obtained by fixing the

output load in 1fF and varying the input slope load from 0.0012ns to 0.180ns.

The average propagation delay of each cell, measured as
the average delay of rise and fall transitions, was also
obtained through electrical characterization. Figure 4 shows
the obtained results for two scenarios. In Figure 4(a), the
input slope was fixed in 1.2ps and the output load varied from
0.001pF to 0.15pF. The time required for the Sutherland and
the van Berkel implementations to switch their respective
outputs is equivalent, as illustrated by the overlapping values.
Moreover, the weak feedback presents equivalent propagation
delay for small output loads (from 0.001pF to 0.015pF).
However, the higher the load gets, the worse its propagation
delay is, in comparison to the other implementations. This
behavior shows that the weak feedback is also the
implementation most sensitive to output load variations.

Figure 4(b) shows the electrical behavior of each
implementation when the output load is fixed in 1fF and the
input slope varied from 0.0012ns to 0.180ns. In this scenario,
the fastest implementation is the van Berkel, followed by the
Sutherland and next the weak feedback. The obtained results
show that for small input slopes (0.0012ns to 0.0132ns), the
speed of Sutherland and weak feedback C-elements is
equivalent. However, as the input slope gets more significant,
the propagation delay of the weak feedback C-element gets
worse. In this way, the weak feedback implementation is,
also, the most sensitive to input slope variations. As Figure
4(b) shows, the delay of this implementation grows at a much
higher rate as the input slope grows, while the other two
implementations see their delay grow more linearly. The van
Berkel implementation displays the smallest propagation
delay, regardless of input slope variations. Therefore, we can
consider the van Berkel C-element the most robust
implementation for both input slope and output load
variations. Results show an agreement with the work
presented in [10], which conducted an analysis of the
threshold of C-elements.

VI. C-ELEMENTS ON ASYNCHRONOUS CIRCUITS

A. Oscillator ring case study

As an initial comparison of the impact of each C-element
implementation on asynchronous circuits, a low complexity
circuit was described in the SPICE language, an oscillator
ring. As Figure 5 shows, the circuit is composed by a NAND
and 10 C-elements. Extensive simulation defined the number

of C-elements in the ring (10) as an amount sufficient to
normalize the effect of the NAND and allow correct
evaluation of the C-elements. The NAND is required to keep
the circuit static, when the “IN” pin is set to ‘0’, and to make
the circuit oscillate, when the “IN” pin is switched to ‘1’. In
this way, static and dynamic power consumption and
operational frequency can be precisely measured. Three
oscillator rings were generated, one for each implementation
of the C-element after RC extraction.

Figure 5 - Oscillator ring employed for an initial comparison of the impact

of each C-element implementation in an asynchronous circuit.

After simulating each oscillator ring, power consumption
and operational frequency, were obtained through the SPICE
“.measure” function, as Table III shows. Leakage power was
measured as the average power consumed from the power
source while the circuit was quiescent, and the dynamic
power was measured as the average power consumption from
the source when the ring is oscillating. The frequency is
measured as the inverse of the period between two similar
edges in any node of the ring (in this case “n5”).

TABLE III - PERFORMANCE FIGURES OF THE OSCILLATOR RINGS.

C-element
Implementation

Operational
Frequency (GHz)

Leakage Power
(µW)

Dynamic
Power (µW)

Sutherland 0.865 0.17 74.41
van Berkel 1.148 0.13 74.33

Weak feedback 0.808 0.28 119.20

As Table III shows, the conducted experiment confirms
the results obtained through the electrical characterization of
the C-elements. The van Berkel implementation presents the
lowest leakage power consumption, while its dynamic power
consumption is equivalent to the Sutherland C-element. The
weak feedback implementation presents higher dynamic and
leakage power, as expected. Power figures enforce the
statement that the weak feedback is the most power
consuming and the Sutherland and van Berkel present similar
power consumption figures.

It would be expected that at least two of the rings, the ones
composed by the Sutherland and the van Berkel
implementation, presented equivalent operating frequency.
However, the one generated with van Berkel C-elements
operates roughly 32% and 42% faster than the one composed
by Sutherland and weak feedback C-elements, respectively.
As Table II shows, the sum of the pin capacitances of the
Sutherland C-element is 8.975fF, while for the van Berkel
implementation it is only 6.194fF. In other words, each cell of
the ring in Sutherland implementations, except the one that
drives the NAND, must drive a load roughly 44% bigger than
that of the van Berkel C-elements ring. Both implementations
showed to be equivalently sensitive to output load variations.
However, these variations interfere in the transition time of
their output, which feeds the next cell in the ring. Thus, the
slope in the input of the next cell increases. In this case, the
resulting input slope generated in the inputs of each
Sutherland C-element, after the circuit stabilizes its oscillating
frequency, is roughly 0.06ns, as Figure 6 shows. Considering
that the Sutherland C-element is more sensitive to input slope
variations, it is clear why the rings operate at different
frequencies ranges.

Figure 6 - Input slope of a single cell of an oscillator ring composed by

Sutherland C-elements.

For the weak feedback C-element, the operational
frequency range is even worse. That is due to the fact that this
implementation presents not only higher input capacitance,
which contributes for an elevated slope in the input of each
cell of the ring, but it is also much more sensitive to input
slope variations than the Sutherland C-element. Its
performance would be yet worsened if, for instance, each C-
element was required to drive a load bigger than 0.015pF. See
Figure 4(a), where the delay of the weak feedback
implementation starts to get worse than the other two. In this
case, the sum of its input pins, load that each cell (except the
one that drives the NAND) must drive, is 11.482fF.

B. RSA cryptographic core case study

A more realistic comparison of the impact of the C-
elements implementation was conducted through the design
of a 32 bit RSA cryptographic core. The circuit was described
in the Balsa language [2] and synthesized through the Teak
System [14]. Teak automatically maps the Balsa description
into a specific set of cells, a group of C-elements with
different functionalities, generating asynchronous QDI
circuits. ASCEnD [13], a standard cell library composed by
asynchronous components, was designed to support Teak

synthesis for the 65nm STMicroelectronics CMOS
technology. The library contains the required C-elements for
the three CMOS topologies compared in this work.

Three versions of the asynchronous RSA cryptographic
core were generated using Teak, each one employing
exclusively one distinct C-element type implementation on its
schematic. The choice for the RSA function was due to the
fact that its algorithm employs arithmetic operations as well
as control functions. Arithmetic operations are implemented
through delay insensitive minterm synthesis (DIMS) logic,
which is basically constructed with C-elements [2]. In this
way, the impact of the choice of C-element on the circuit can
be efficiently evaluated.

The total number of standard-cells employed in all
designs, without taking into account physical cells, was
57,168. Physical cells are the cells used to connect the power
lines to the substrate, tap cells, and the filler cells employed in
the core. The circuits had the same number of logic cells due
to the fact that the only difference between them is the choice
of C-element implementation and Teak does not optimize
cells dimensions and employs a well defined set of cells for
each handshake component. From the total cells, 22,063 were
C-elements. This result shows the importance of this device in
typical asynchronous design. For these examples, roughly
40% of the required logical standard cells were C-elements.

Table IV shows the physical characteristics of the
generated RSA cryptographic cores, obtained after place and
route. The design implemented with weak feedback C-
elements requires less silicon area, while the ones
implemented with van Berkel and Sutherland C-elements
were the largest. The area overhead imposed by both in
comparison with the weak feedback is roughly 12% and 7%,
respectively. Therefore, the weak feedback C-element is the
most efficient implementation for high density designs and
the van Berkel C-element is the most area and wire
consuming implementation. These results are in agreement
with the information obtained at layout level.

TABLE IV - AREA AND WIRE RESULTS FOR THE THREE ASYNCHRONOUS RSA
CRYPTOGRAPHIC CORE IMPLEMENTATIONS AFTER PLACE AND ROUTE.

C-element Implementation Sutherland van Berkel Weak feedback

Number of Standard Cells 92,922 94,015 91,276
Total cell area (mm²) 0.295 0.311 0.276

Cell area - physical cells (mm²) 0.244 0.258 0.228
C-elements cell area (mm²) 0.161 0.175 0.145

Total wire length (mm) 648.208 703.694 616.176
Average wire length (µm) 10.746 11.665 10.215

The RSA netlists’ delay of the paths generated after place
and route were annotated and served as input to a set of
simulations. Thesr comprised multiple cryptographic
operations for each netlist, collecting performance results.
Employed operational conditions were 25ºC, 1V supply for a
typical fabrication process corner. The average delay to
perform a cryptographic operation for the weak feedback, the
Sutherland and the van Berkel C-element based
implementations were 104.311µs, 83.96µs and 73.241µs,
respectively. These results are in agreement with the
information obtained in the simulation of an oscillator ring.
The van Berkel implementation presented higher operating
speed, due to the fact that it is the less sensitive
implementation to input slope and output load variations and
Teak synthesis is not able to optimize dimensioning of the
selected standard cells. In other words, every standard cell

employed in the circuit has the same output driving strength
and input capacitance, some of these ending up overloaded.
This is a limitation of the tool, which leads to slower designs
mostly when employing Sutherland or weak feedback C-
elements, since these present higher delay for high output
loads and input slopes.

From the simulations, the switching activity in the nets of
each circuit was annotated for a period of 3ms and served as
input to evaluate power consumption. Table V shows the
information obtained for the three netlists. Employing
Sutherland or van Berkel C-elements generated circuits with
similar power consumption. Comparing these
implementations, the latter consumed less leakage power,
roughly 5%, while the former presented lower dynamic power
consumption, roughly 4%. The circuit generated with
Sutherland C-elements presents slightly less total power
consumption. This is due to the fact that the power consumed
while the circuit is quiescent represents a smaller portion of
the total power than the dynamic power consumption.
Notably, weak feedback was the less power efficient
implementation.

TABLE V - POWER CONSUMPTION OF THE THREE ASYNCHRONOUS RSA
CRYPTOGRAPHIC CORE IMPLEMENTATIONS.

C-element Implementation Sutherland van Berkel Weak feedback

Internal Power (mW) 1.878 2.161 4.361
Switching Power (mW) 1.581 1.433 1.342
Leakage Power (mW) 1.729 1.639 2.162

Total Power (mW) 5.188 5.233 7.865

These results are in agreement with those obtained at
layout level and in the simulation of an oscillator ring, except
for the dynamic power consumption of the Sutherland C-
element. In the first case study, this presented worse dynamic
power consumption than the van-Berkel C-element. However,
in that case, each cell was driving a single two-input cell,
while in the circuit generated by Teak, the cells were required
to drive multiple nets and, consequently, higher loads. In this
scenery, the van Berkel dynamic power efficiency was
compromised.

Figure 7 - C-elements power consumption for each asynchronous RSA

cryptographic core implementation.

Figure 7 shows details the power consumption of the C-
elements from the total power consumed by the placed and
routed netlists. The total power consumed by the Sutherland,
the weak feedback and the van Berkel C-elements, in their
respective netlists, was 2.803mW (54%), 5.722mW (73%)
and 2.815mW (54%), respectively. These results show that, in
a realistic application, the reason for the Sutherland C-
element to consume less power than the van Berkel is because
the internal power consumed by the latter is more significant.
One aspect that worsens internal power consumption is the
amount of transistors in short circuit when switching the van

Berkel C-element output logical value. Moreover, the bigger
the input slope is, the bigger is the period of time that the
transistors are in short circuit when switching the output of
the C-element.

VII. CONCLUSIONS AND FUTURE WORK

This paper presented a comparison of 3 different CMOS
implementations of C-elements: Sutherland, van Berkel and
weak feedback. The comparison considered layout effects on
a DSM technology, together with the systemic effect of using
these C-elements in building asynchronous cores. The results
obtained show that previous findings for the electrical
behavior of C-elements must be reevaluated. The use of a
realistic asynchronous synthesis tool like Teak allowed to
evaluate C-elements’ behavior in current state of the art
situations. The inability of the tool to optimize standard cell
selection based on current drive capacity indicates the need of
enhanced synthesis tools for asynchronous circuits.

In summary, albeit the van Berkel C-element appears as
the lowest static power consuming implementation, it has
been shown to consume more dynamic power than the
Sutherland C-element for bigger input slopes. Moreover, the
dynamic power consumption represents a bigger portion of
the total power than the static power consumption. In this
way, the Sutherland C-element appears as the most indicated
for low power designs, regardless of input slope variations.
The weak feedback presented the worst propagation delay,
regardless output load or input slope variations. Moreover, the
van Berkel and the Sutherland C-elements proved to be
equally robust to output load variations. However, the
Sutherland implementation presented higher propagation
delay for high input slopes. Therefore, the van Berkel C-
element appears as the most speed efficient implementation.
The results on required area for each C-element, showed that
the van Berkel implementation is the most silicon area
consuming, while the weak feedback is the most area
efficient. Hence, the latter is the most suitable for high density
designs.

Finally, the work described here shows that the choice of
C-element type in a DSM asynchronous design is a triple
(speed/area/power) tradeoff. Future work includes
prototyping the circuits designed as case studies in the STM
65nm technology in order to evaluate and compare the C-
elements on silicon. In this way, information about the
robustness and the effect of process variations, for the
different implementations can be obtained and compared.
Moreover, a study is under way to scrutinize the use of
different C-element implementations in a single design in
order to generate hybrid and optimized designs.

ACKNOWLEDGMENTS

This work is partially supported by the CAPES-PROSUP,
the CNPq-PIBIC Program, and by the FAPERGS (under
grants 11/1445-0 and 10/0814-9). Professors Moraes and
Calazans also acknowledge the CNPq support under grants
301599/2009-2 and 309255/2008-2, respectively. Authors
would like to acknowledge the support granted by CNPq to
the INCT-SEC (National Institute of Science and Technology
– Critical Embedded Systems – Brazil), process no.
573963/2008-8.

REFERENCES
[1] Semiconductor Industry Association, “The International

Technology Roadmap for Semiconductors”, ITRS 2008
Edition, 2008.

[2] J. Sparsø and S. Furber, “Principles of Asynchronous
Circuit Design – A Systems Perspective”, Kluwer
Academic Publishers, Boston, 360 p., 2001.

[3] M. Agyekum and S. Nowick, “An error-correcting
unordered code and hardware support for robust
asynchronous global communication”, in: Design,
Automation and Test in Europe (DATE), pp. 765-770,
2010.

[4] W. B. Toms, “Synthesis of Quasi-Delay-Insensitive
Datapath Circuits”, PhD Thesis, University of
Manchester, 237 p., Feb. 2006.

[5] M. Shams, J. C. Ebergen, and M. I. Elmasry, “A
comparison of CMOS implementations of an
asynchronous circuits primitive: the C-element”, in:
International Symposium on Low Power Electronics and
Design (ISLPED), pp. 93-96, Aug. 1996.

[6] M. Shams, J. C. Ebergen, and M. I. Elmasry, “Modeling
and comparing CMOS implementations of the C-
element”, IEEE Transactions on Very Large Scale
Integration , 6(4), pp. 563-567, Dec. 1998.

[7] O. Elissati, E. Yahya, S. Rieubon, and L. Fesquet,
“Optimizing and Comparing CMOS Implementations of
the C-element in 65nm Technology: Self-Timed Ring
Case”, in: International Workshop on Power and Timing
Modeling (PATMOS), pp. 137-149, Sep. 2010.

[8] R. P. Bastos, G. Sicard, F. Kastensmidt, M. Renaudin,
and R. Reis, “Evaluating transient-fault effects on
traditional C-element’s implementations”, in:
International On-Line Testing Symposium (IOLTS), pp.
35-40, Jul. 2010.

[9] I. E. Sutherland, “Micropipelines”, Communications of
the ACM, 32, pp. 720-738, Jun. 1989.

[10] K. van Berkel, “Beware the isochronic fork”,
Integration, the VLSI journal, 13(2), pp. 103-128, Jun.
1992.

[11] A. J. Martin, “Formal program transformations for VLSI
circuit synthesis”, in: Formal Development of Programs
and Proofs, E. W. Dijkstra, ed., Addison-Wesley, pp. 59-
80, 1989.

[12] M. T. Moreira, “Design and Implementation of a
Standard Cell Library for Building Asynchronous
ASICs”, End of Term Work. Computer Engineering –
PUCRS, 139 p., Dec. 2010.

[13] M. T. Moreira, B. S. Oliveira, J. J. H. Pontes, and N. L.
V. Calazans, “A 65nm Standard Cell Set and Flow
Dedicated to Automated Asynchronous Circuits
Design”, in: 24th IEEE International SoC Conference
(SoCC), pp. 99-104, Sep. 2011.

[14] A. Bardsley, L. Tarazona, D. Edwards, “Teak: A Token-
Flow Implementation for the Balsa Language”, in:
International Conference on Application of Concurrency
to System Design (ACSD), pp. 23-31, Jul. 2009.

