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ABSTRACT 

This paper presents an original approach to 
define a path between two routers in a NoC with 
faulty routers. Current state-of-the art adopts non-
scalable solutions, using tables to store paths, or 
distributed approaches that keep the status of 
neighbor routers. The proposed approach 
searched its foundations in the firsts routing algo-
rithms for VLSI circuits, using a three-step process: 
seek new path, backtrack the path, store the new 
path. Results demonstrate the effectiveness of the 
approach, with the algorithm being able to find the 
path between routers in complex scenarios, with a 
small area overhead over a baseline router. 

I. INTRODUCTION 
Innovations on integrated circuit fabrication 

continuously reduce the size of transistors. From 
one side, it becomes possible to implement com-
plex MPSoCs in a single die. From the other side, 
the reliability of these systems is compromised due 
to increased fault probability in deep submicron 
technologies [1]. 

In the MPSoC design arena, NoCs are becom-
ing widely used to interconnect processing ele-
ments (PEs) due to their scalability and perfor-
mance, compared to buses. In addition, also com-
pared to buses, NoCs provide more opportunities 
to implement fault tolerant techniques for intra-chip 
communication. For instance, a NoC has multiple 
paths for any pair of modules, which can be ex-
ploited to improve the fault tolerance of the com-
munication by using fault-tolerant routing algo-
rithms. A fault-tolerant routing algorithm, besides 
being deadlock and livelock free, should present 
the following features: 
i. generic, being possible to adapt it to different 

NoCs, including different NoC topologies; 
ii. complete reachability, i.e., if a path between a 

given source-target pair exists, the routing al-
gorithm must find it; 

iii. independence of the fault location and the 

moment it occurs, i.e., faults may reach rou-
ters and/or links at any moment. Some routing 
algorithms restrict the number of simultaneous 
faults, or the location of the faults, or if the 
fault occurs in links or in routers; 

iv. scalable, its cost must be independent of the 
NoC size. Table-based approaches (dis-
cussed in the state-of-the-art) have their area 
cost linked to the NoC size; 

v. local path computation, i.e., algorithms with a 
PE responsible to store and compute all paths 
must be avoided due to the large size of ac-
tual SoCs (feature also related to scalability). 
Each router or PE must be able to compute 
the new path if a fault happens, without inte-
racting with a central manager; 

vi. acceptable cost, i.e., the implementation of 
the proposal routing algorithm in a reference 
NoC should not severely impact the silicon 
area neither its performance (frequency). 

The third feature is related to the fault model. 
Transient faults, as crosstalk in links, may be 
treated with CRC or other coding schemes [2]. The 
proposed work assumes permanent faults where 
routers or links may fail due to manufacturing prob-
lems or aging reasons. 

The goal of this paper is to present an original 
approach for fault-tolerant NoC routing, compliant 
with the previous features. The proposed approach 
searched its foundations in the firsts routing algo-
rithms for VLSI circuits, as the Lee one [3]. 

This paper is organized as follows. Section II 
reviews the state-of-the art in fault-tolerant NoC 
routing approaches. Section III presents the pro-
posed routing approach. Section IV evaluates the 
proposed algorithm and Section V concludes the 
paper. 

II. RELATED WORK 
Common approaches for fault-tolerant routing 

include: distributed routing [4][5], table-based 
routing [6][7][8][9][10] or extra hardware added in 
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the NoC to help a given routing algorithm to route 
packets when faults happens [11]. 

Rodrigo et. al. [4] present the uLBDR. The first 
version of the algorithm, LBDR, stores the connec-
tivity status of the neighbors’ routers (Ceast, Cwest, 
Cnorth and Csouth) and the turns (Reast-west, Reast-north, 
etc), leading to minimal paths. If with this informa-
tion the algorithm cannot reach the destination, a 
deroute process (algorithm named LBDRdr) is ex-
ecuted, trying to route the packet in a non-minimal 
path, to avoid deadlocks. The problem is that even 
with the deroute process, the complete reachability 
is not achieved. Then, the authors propose the 
replication of the message in two output ports (third 
version of the algorithm, named uLBDR), assuring 
complete reachability. The drawback is that one 
message should be killed, and a virtual cut through 
methodology should be applied to avoid deadlocks. 
The Authors present latency, frequency and power 
estimation for a 65 nm technology. Compared to 
LBDR (algorithm that does not guarantee complete 
reachability), the uLBDR shown a 44.7% increase 
in terms of area. 

Sem-Jacobsen et al. [5] propose two modifica-
tions in the original FDOR algorithm [12]: (i) create 
a boundary around a failed router; (ii) reroute 
packets around the failed router. The boundary 
around the failed router is made reconfiguring its 
neighbor routers as boundary routers. For exam-
ple, if a router R1 has a faulty router in the north, 
R1 is reconfigured as north edge router. To assure 
deadlock freedom, two virtual channels are used. 
Each VC prohibits one turn. The VC 0 prohibits the 
turn north-west and VC 1 north-east. The authors 
do not discuss the reachability feature. 

Schonwald et. al. [6] propose an algorithm us-
ing routing tables at each router. The algorithm is 
named Force-Directed Wormhole Routing (FDWR). 
FDWR stores the number of hops to each destina-
tion for each port. This information enables to 
compute all possible paths to all destinations, not 
only the shortest one. This table is updated each 
time a packet is sent. Before send any packet, the 
router asks to all its neighbors the number of hops 
to the destination. Then, it chooses the neighbor 
with the minimum hop number and updates its 
table. This process is made at each router. Due to 
this process, the average time between sending 
packets is between 50 and 100 cycles, which is too 
high compared to non-fault tolerant NoCs (2-5 

clock cycles). There are no results regarding area 
occupation. 

Feng et al. [7] present a fault-tolerant routing 
algorithm, named FTDR, based on the Q-routing 
approach [13], taking into account the hop count to 
route packets in the network. This table-based 
routing algorithm was modified to divide the net-
work in regions, resulting in the FTDR-H algorithm. 
For example, when a packet reaches a router, the 
router first checks if the destination is in the same 
region as the current router. In an affirmative case, 
the routing decision is based on the local routing 
table. If not, the router decision is based on the 
region routing table. Compared to FTDR router, 
FTDR-H router reduces up to 27% the area. When 
compared to a non-fault tolerant router, for a 4x4 
NoC, the FTDR-H area overhead reaches 100%. It 
is important to mention that, even if the routing-
algorithm decreases the area occupation, com-
pared to FTDR, the number of tables increases 
with the NoC size. 

A similar approach to reduce the tables’ size 
was taken by Flich et. al. [8]. According to Rodrigo 
et al. [4], the drawback of such mechanism is that, 
even with a great number of regions, full reachabili-
ty is not achieved, and the performance is pena-
lized due to a longest critical path. 

DeOrio et. al. [9] and Fick et. al. [10] also pro-
pose fault-tolerant routing algorithms based on 
tables. All routers contain a table to all router’s 
destinations. The algorithm is divided in two steps. 
First, each router selects the direction to route a 
given destination based on its neighbors, updating 
the entry in its own table. Second the router ap-
plies a set of rules to avoid deadlock. These rules 
disable turns or links without requiring virtual chan-
nels or duplicated physical links. In the other hand, 
this approach does not ensure full reachability. 
Presented results for mesh and torus topologies 
guarantee that at least 99,99% of paths are dead-
lock free with up to 10% of faulty links. 

Tsai et. al. in [11] propose a fault-tolerant NoC 
scheme using bidirectional links, named Bidirec-
tional Fault-Tolerant NoC (BFT-NoC). This me-
chanism is devised to mitigate potential perfor-
mance degradation due to faulty links through dy-
namic sharing of other non-faulty links. For exam-
ple, an extra hardware is inserted to the TX and RX 
links for each direction of the network. If one of the 
links fails, the non-faulty link can share the bus,
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Table 1: State-of-the-art comparison (N/A not available). 
Proposal References Type Fault Model Area overhead Scalable Topology 

agnostic? Reachability 

uLBDR [4] 2011 distributed links/routers 46% yes yes yes 

iFDOR [5] 2011 distributed router ~279% compared to 
FDOR yes yes N/A 

FDWR [6] 2007 table links/routers N/A no yes N/A 
FTDR-H [7] 2010 table links/routers ~100% in 12x12 NoC no yes N/A 

Flich et. al. [8] 2007 region based 
tables links/routers 240 gates in 8x8 NoC no N/A not 

Vicis [9] 2012 
[10] 2009 table links/routers 300 gates per router (4x4) 

330 (12x12) no Only mesh 
and torus. no 

BFT-NoC [11] 2011 extra hardware 
for links links/routers 4% yes yes no 

Proposed 
Work  path search links/routers 42% in LUTS/ 58% in FFs yes yes yes 

 
enabling TX and RX in the same bus. The problem 
is that this approach does not solve the problem if 
the TX and the RX links are failed. The Author 
proposed a integration with the routing algorithm 
proposed in [10], showing a 99.94% of reachability 
for a 8x8 NoC with up to 7 faulty channels. The 
overhead in terms of gates is around 4% compared 
to a NoC without bidirectional channel. These re-
sults do not include the routing algorithm, only the 
bidirectional channel. 

Table 1 compares the approaches evaluated in 
this paper. The main drawback of table-base ap-
proaches is their scalability and the fact they not 
ensure reachability. The closest approach in terms 
of desired coverage of features is uLBDR ap-
proach. The uLBDR results also shown that the 
duplication of packets impacts in the traffic on the 
network, and this traffic is not scalable, i.e. the 
traffic increases when the NoC size increases. Our 
approach is compliant with the features presented 
in the Introduction, and its type is named path 
search, detailed in the next Section. 

III.OVERVIEW OF THE ROUTING ALGORITHM 
The proposed routing algorithm comprises 3 

steps: (i) seek new path; (ii) backtrack the new 
path; (iii) clear the seek structures and store the 
new path. 

A. Seek New Path 
The first step of the algorithm requires a hard-

ware module, added to each router, named seek 
module. The seek module communicates with oth-
er routers through the interface illustrated in Figure 
1. The seek module adds, in the present imple-
mentation, 26 wires at each link: RS, RT, hop num-
ber, seek request, clear request, seek and clear 
acknowledgements. 

 
Figure 1 – External interface of the seek module. 

The seek module contains a finite state ma-
chine and a 4-entry table. Each entry of the table 
contains 5 fields: slot availability, RS, RT, input port, 
hop counter. This represents a constant cost of 
100 bits, regardless the NoC size. The table has 4 
entries to support up to 4 simultaneous seek re-
quests (this is a parameterizable value).  

If a 5th seek request arrives at the seek module 
the module will delay the answer until the availabili-
ty of a free entry. We consider this situation unlike-
ly to occur, because communicating tasks are sup-
posed to be mapped closer to each other. Due to 
the locality of the communication, the probability of 
more than 4 simultaneous faults seeking a path in 
the same NoC region is very low. 

 Figure 2 details the first step of the algorithm. 
The source router starts the algorithm to the target 
router. It is out of the scope of the present work to 
detect faults. It is assumed that a set of routers or 
links is faulty. In the example presented in Figure 
2, we assume only faulty routers for sake of sim-
plicity. The source router starts the new path com-
putation by receiving a request from the IP con-
nected to it. 

When the algorithm starts, Figure 2(a), one en-
try of the table receives the values S/T/L/0, mean-
ing RS, RT, local port (input port), zero (hop coun-
ter). These values are broadcasted to all neighbor 
seek modules, Figure 2(b). The seek module con-
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nected to the north port of RS stores in its table 
S/T/S/1, writing S (south) in the input port field, 
meaning that the seek request came from this di-
rection; and 1 in the hop counter field (this value is 
obtained by adding 1 to the value in the hop coun-
ter signal). This broadcast process continues until 
reaching RT, as illustrated in Figure 2(c) and Figure 
2(d).  

 
Figure 2 – Seek steps of the algorithm in a 4x4 mesh, with four 

faulty routers. 

The broadcast process continues, even if RT is 
reached. As shown in Figure 2(d), RT was reached 
by its east port, with a hop counter equal to 8. Note 
that it possible to reach a given RT by the more 
than one port, since two or more routers can acti-
vate the seek request to RT.  

B. Backtrack Step  
Once RT is reached, the backtrack process 

starts. In this second step, the seek module of RT 
injects into the NoC a packet that will contain the 
new path. Note that in the first step the seek 
process does not interfere with the NoC traffic. In 
this second step, the NoC is used to transmit to RS 
the new path through a new packet type: backtrack 
packet. The backtrack packet header contains an 
identifier signalizing it as a backtrack packet and 
RS. The payload size if a function of the hop coun-
ter (HC). 

One possible implementation of this second 
step include two adaptations in the original NoC 
router: (i) multiplexing the local port with the seek 
module, making this module to act as a second IP 
connected to the router; (ii) modify the router con-
trol to accept packets with the output port coded in 
the packet.  

When the backtrack packet enters into the rou-
ter, the output port is selected by the seek module. 
This information is obtained by reading the input 
port field of the seek table, in the position indexed 
by RS.  

The initial payload of the backtrack packet con-
tains the input port from where the seek request 
came. This information is inserted in the payload 
position indexed by HC+1. In the example of Fig-
ure 2, RT was reached by the East port, with a 
number of eight hops. In Figure 3, the initial payl-
oad corresponds to eight don´t cares and the in-
serted direction ([--------E]). 

The payload in the second and succeeding 
routers in the path receive the port index from 
which the backtrack packet came. In the example, 
the payload transmitted by the router connect on 
the south of RT is [-------WE]. 

S/T/L/0

Faulty router

Faulty router

Faulty router

SOURCE

Faulty router S/T/E/8

TARGET

S/T/S/6

S/T/S/1

S/T/S/2 S/T/W/3 S/T/W/4

S/T/N/6

S/T/W/5

S/T/N/7

S/T/S/3 S/T/S/5

[‐‐‐‐‐‐‐E] [‐‐‐‐‐‐WE]

[‐‐‐‐‐SWE]

[‐‐‐‐SSWE][‐‐‐‐ESSWE][‐‐‐EESSWE][‐‐EEESSWE]

[‐NEEESSWE]

[NNEEESSWE]

 
Figure 3 – Backtracking process. 

The second step finishes when the packet ar-
rives at RS, since the backtrack packet has RS in its 
header. This is the process used to identify that the 
source router was reached. The new path, in the 
example, is [N N E E E S S W E]. Note that the last 
part of the path seems invalid, because the packet 
arriving in the East port should be transmitted to 
the East port. Such invalid directions are used to 
detect the target router in the new path. 

C. Clear and compute path  
Once RS is reached with the packet containing 

the path, the third step of the method starts. It in-
cludes two actions: broadcast the clear signal to 
the seek modules and store the new path. The 
cleaning process is very similar to the seek step, 
resetting the availability bit of the seek table entry 
containing RS. 

The new path is transmitted to the IP con-
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nected to the router. In the present approach the 
NoC adopts source routing and duplicated physical 
channels [14] (smaller area compared to virtual 
channels). The new path may present turns lead-
ing to deadlocks. One solution to avoid deadlocks 
in adaptive routing algorithms is to divide the NoC 
in two disjoint networks, each one implementing a 
partial adaptive routing algorithm, for example, 
west-first and east-first. Therefore, one of the phys-
ical channels transmits packets using the west-first 
routing algorithm, and the other one the east-first. 
Such method ensures that no deadlocks will occur. 

The IP connected to the source router eva-
luates the path, adding for each hop one of the 
channels, according to one of the routing algo-
rithms. The chosen channel is a function of the 
turns taken in the path. The packet changes the 
channel when an invalid turn of the current routing 
algorithm should be taken. In our case, the west-
first routing algorithm is used in channel 0 and the 
east-first in the channel 1. For example, if a packet 
starts the path in the channel 0 and there is a turn 
from south to west, the path should be changed 
from the channel 0 to 1 because it is a turn prohi-
bited by west-first, but allowed by east-first. In the 
example, the last turn must change the channel. 
The path with the right channel, generated by the 
IP is: [N0 N0 W0 W0 W0 S0 S0 W1 E1]. From this 
moment, the IP connected to RS can send mes-
sages to RT with source routing, using the com-
puted path.  

Concluding, if there is a path from a given 
source to a given target, the proposed approach 
finds a path in a NoC with faulty routers or links. To 
transmit packets using this path, deadlock free 
routing algorithms should be used, as previously 
mentioned. Other adaptive routing algorithms, as 
well as other NoC features could be adopted. It is 
important to mention that the proposed method can 
be applied to other topologies, since the seek 
broadcast does not require a regular structure. 

IV.RESULTS 
Our approach adopts as reference the router 

proposed in [15], which has the following features: 
(i) Hamiltonian routing algorithm, (ii) 16-bit wide flit, 
(iii) duplicated physical channel, with high and low 
priorities; (iv) circuit switching over packet switch-
ing. The main reason to adopt this NoC is the repli-
cation of physical channels, feature required to to 

avoid deadlock when using adaptive source 
routing. Three main modifications were performed 
in the reference router: (i) addition of the seek 
module; (ii) modification of the router control 
(named switch control), allowing to support source 
routing and reading the table of the seek module; 
(iii) addition of logic to enable the seek module to 
inject packets in the NoC. 

A. Experimental Setup 
This section evaluates the proposed approach 

with four routers simultaneously asking a new path. 
As experimental scenario, we consider a 10x10 2-
D Mesh, with a set of faulty routers, as presented 
in Figure 4. This scenario contains one bottleneck 
for the seek request at router 42, and at least 2 
channel changes after the seek completion. 

 
Figure 4 – Evaluation scenario of a NoC 10x10. 

This algorithm returned the expected paths for 
each pair RS→RT. For example, the path returned 
for 0 49 was: 

[NNNNEEENNNNNEEEEEESSWWSSSEEW] 
To avoid deadlock, assuming west-first and 

east-first for channel 0 and 1, respectively, the IP 
connected to the router must change the channel 
in the 20st direction from 0 to 1 and in the 25st from 
1 to 0. The following string presents the path with 
the channel: 

[N0 N0 N0 N0 E0 E0 E0 N0 N0 N0 N0 N0 E0 E0 
E0 E0 E0 E0 S0 S0 W1 W1 S1 S1 S1 E0 E0 W0] 

 
B. Evaluation 

Our approach was evaluated in terms of clock 
cycles for each step of the algorithm. Table 2 
shows the number of clock cycles for each step for 
the four pairs of RS→RT. The whole process takes 
in average 38 clock cycles per hop to find the path 
(last column of the Table). We consider this an 
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excellent result, since: (i) as the number of hops 
between tasks is frequently small due to the map-
ping process, few tasks will be mapped far from 
each other (task migration may mitigate this prob-
lem); (ii) few hundreds of clock cycles represents a 
smaller amount of time compared to a dedicated 
algorithm executed in a given PEs. For example, 
the Vicis NoC [9] takes around 1000 cycles only to 
reconfigure the network when a fault happens. 

Table 2 – Results in terms of the number of clock cycles for 
each step of the approach. 

Rt→Rs hops # cycles 
step 1 

# cycles 
step 2 

# cycles 
step 3 

all 
process 

Cycles 
per hop 

99→50 28 390 350 332 1072 38,3
78→48 25 353 308 246 907 36,2
00→49 28 390 350 293 1033 36,9
21→51 24 320 292 285 897 37,3

Table 3 presents the area overhead in terms of 
look up tables (LUTs) and flip-flops (FFs) com-
pared to the baseline router. Regarding the LUTs 
occupation, the overhead is 42%. The overhead in 
terms of FFs is higher, 58%. This is due to the fact 
that the VHDL code was not optimized for FPGAs 
(LUTRAMs). As a consequence, the operating 
frequency was reduced 34%, from 193 MHz to 128 
MHz. 

Table 3 – Area overhead for Xilinx xc5vlx330tff1738-2 device. 
 Area Occupation  

sub module LUTs FFs module 
Switch Control 351 97 

baseline router 
TOTAL 1610 433 
Seek module 370 184 

baseline router mod-
ified + seek module 

Switch Control 339 157 
TOTAL 2293 682 
overhead  42% 58%  

The router was synthesized using Cadence 
Encounter RTL Compiler, targeting a 65 nm tech-
nology library from STMicroelectronics. The router 
with the seek module required 6,204 cells, occupy-
ing 43,049 um². For comparative purposes, the 
uLBDR [4] router, with the same technology, con-
sumed approximately 62,050 um². 

V.CONCLUSION 
Our main contribution is to present an original 

approach for fault-tolerant routing in NoCs. The 
approach is generic (can be ported to other topolo-
gies); presents complete reachability; is indepen-
dent of where and when the fault occurs; and sca-
lability is achieved by a constant table size, diffe-
rently from the traditional table-based approaches.  

As future work, the implementation should be 
optimized to reduce the number of FFs and in-
crease the operating frequency. Also, the proposed 
scheme will be integrated in an MPSoC platform, 
enabling the evaluation of the approach at the ap-
plication layer. The proposed method can also 
consider the NoC congestion if the seek process is 
weighted with the NoC traffic status. 
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