
MAZENOC: NOVEL APPROACH FOR FAULT-TOLERANT NOC
ROUTING

Eduardo Weber Wächter, Fernando Gehm Moraes
FACIN – PUCRS – Av. Ipiranga 6681– Porto Alegre – RS – Brazil
eduardo.wachter@acad.pucrs.br, fernando.moraes@pucrs.br

ABSTRACT

This paper presents an original approach to
define a path between two routers in a NoC with
faulty routers. Current state-of-the art adopts non-
scalable solutions, using tables to store paths, or
distributed approaches that keep the status of
neighbor routers. The proposed approach
searched its foundations in the firsts routing algo-
rithms for VLSI circuits, using a three-step process:
seek new path, backtrack the path, store the new
path. Results demonstrate the effectiveness of the
approach, with the algorithm being able to find the
path between routers in complex scenarios, with a
small area overhead over a baseline router.

I. INTRODUCTION
Innovations on integrated circuit fabrication

continuously reduce the size of transistors. From
one side, it becomes possible to implement com-
plex MPSoCs in a single die. From the other side,
the reliability of these systems is compromised due
to increased fault probability in deep submicron
technologies [1].

In the MPSoC design arena, NoCs are becom-
ing widely used to interconnect processing ele-
ments (PEs) due to their scalability and perfor-
mance, compared to buses. In addition, also com-
pared to buses, NoCs provide more opportunities
to implement fault tolerant techniques for intra-chip
communication. For instance, a NoC has multiple
paths for any pair of modules, which can be ex-
ploited to improve the fault tolerance of the com-
munication by using fault-tolerant routing algo-
rithms. A fault-tolerant routing algorithm, besides
being deadlock and livelock free, should present
the following features:
i. generic, being possible to adapt it to different

NoCs, including different NoC topologies;
ii. complete reachability, i.e., if a path between a

given source-target pair exists, the routing al-
gorithm must find it;

iii. independence of the fault location and the

moment it occurs, i.e., faults may reach rou-
ters and/or links at any moment. Some routing
algorithms restrict the number of simultaneous
faults, or the location of the faults, or if the
fault occurs in links or in routers;

iv. scalable, its cost must be independent of the
NoC size. Table-based approaches (dis-
cussed in the state-of-the-art) have their area
cost linked to the NoC size;

v. local path computation, i.e., algorithms with a
PE responsible to store and compute all paths
must be avoided due to the large size of ac-
tual SoCs (feature also related to scalability).
Each router or PE must be able to compute
the new path if a fault happens, without inte-
racting with a central manager;

vi. acceptable cost, i.e., the implementation of
the proposal routing algorithm in a reference
NoC should not severely impact the silicon
area neither its performance (frequency).

The third feature is related to the fault model.
Transient faults, as crosstalk in links, may be
treated with CRC or other coding schemes [2]. The
proposed work assumes permanent faults where
routers or links may fail due to manufacturing prob-
lems or aging reasons.

The goal of this paper is to present an original
approach for fault-tolerant NoC routing, compliant
with the previous features. The proposed approach
searched its foundations in the firsts routing algo-
rithms for VLSI circuits, as the Lee one [3].

This paper is organized as follows. Section II
reviews the state-of-the art in fault-tolerant NoC
routing approaches. Section III presents the pro-
posed routing approach. Section IV evaluates the
proposed algorithm and Section V concludes the
paper.

II. RELATED WORK
Common approaches for fault-tolerant routing

include: distributed routing [4][5], table-based
routing [6][7][8][9][10] or extra hardware added in

978-1-4673-1295-0/12/$31.00 ©2012 IEEE 364

the NoC to help a given routing algorithm to route
packets when faults happens [11].

Rodrigo et. al. [4] present the uLBDR. The first
version of the algorithm, LBDR, stores the connec-
tivity status of the neighbors’ routers (Ceast, Cwest,
Cnorth and Csouth) and the turns (Reast-west, Reast-north,
etc), leading to minimal paths. If with this informa-
tion the algorithm cannot reach the destination, a
deroute process (algorithm named LBDRdr) is ex-
ecuted, trying to route the packet in a non-minimal
path, to avoid deadlocks. The problem is that even
with the deroute process, the complete reachability
is not achieved. Then, the authors propose the
replication of the message in two output ports (third
version of the algorithm, named uLBDR), assuring
complete reachability. The drawback is that one
message should be killed, and a virtual cut through
methodology should be applied to avoid deadlocks.
The Authors present latency, frequency and power
estimation for a 65 nm technology. Compared to
LBDR (algorithm that does not guarantee complete
reachability), the uLBDR shown a 44.7% increase
in terms of area.

Sem-Jacobsen et al. [5] propose two modifica-
tions in the original FDOR algorithm [12]: (i) create
a boundary around a failed router; (ii) reroute
packets around the failed router. The boundary
around the failed router is made reconfiguring its
neighbor routers as boundary routers. For exam-
ple, if a router R1 has a faulty router in the north,
R1 is reconfigured as north edge router. To assure
deadlock freedom, two virtual channels are used.
Each VC prohibits one turn. The VC 0 prohibits the
turn north-west and VC 1 north-east. The authors
do not discuss the reachability feature.

Schonwald et. al. [6] propose an algorithm us-
ing routing tables at each router. The algorithm is
named Force-Directed Wormhole Routing (FDWR).
FDWR stores the number of hops to each destina-
tion for each port. This information enables to
compute all possible paths to all destinations, not
only the shortest one. This table is updated each
time a packet is sent. Before send any packet, the
router asks to all its neighbors the number of hops
to the destination. Then, it chooses the neighbor
with the minimum hop number and updates its
table. This process is made at each router. Due to
this process, the average time between sending
packets is between 50 and 100 cycles, which is too
high compared to non-fault tolerant NoCs (2-5

clock cycles). There are no results regarding area
occupation.

Feng et al. [7] present a fault-tolerant routing
algorithm, named FTDR, based on the Q-routing
approach [13], taking into account the hop count to
route packets in the network. This table-based
routing algorithm was modified to divide the net-
work in regions, resulting in the FTDR-H algorithm.
For example, when a packet reaches a router, the
router first checks if the destination is in the same
region as the current router. In an affirmative case,
the routing decision is based on the local routing
table. If not, the router decision is based on the
region routing table. Compared to FTDR router,
FTDR-H router reduces up to 27% the area. When
compared to a non-fault tolerant router, for a 4x4
NoC, the FTDR-H area overhead reaches 100%. It
is important to mention that, even if the routing-
algorithm decreases the area occupation, com-
pared to FTDR, the number of tables increases
with the NoC size.

A similar approach to reduce the tables’ size
was taken by Flich et. al. [8]. According to Rodrigo
et al. [4], the drawback of such mechanism is that,
even with a great number of regions, full reachabili-
ty is not achieved, and the performance is pena-
lized due to a longest critical path.

DeOrio et. al. [9] and Fick et. al. [10] also pro-
pose fault-tolerant routing algorithms based on
tables. All routers contain a table to all router’s
destinations. The algorithm is divided in two steps.
First, each router selects the direction to route a
given destination based on its neighbors, updating
the entry in its own table. Second the router ap-
plies a set of rules to avoid deadlock. These rules
disable turns or links without requiring virtual chan-
nels or duplicated physical links. In the other hand,
this approach does not ensure full reachability.
Presented results for mesh and torus topologies
guarantee that at least 99,99% of paths are dead-
lock free with up to 10% of faulty links.

Tsai et. al. in [11] propose a fault-tolerant NoC
scheme using bidirectional links, named Bidirec-
tional Fault-Tolerant NoC (BFT-NoC). This me-
chanism is devised to mitigate potential perfor-
mance degradation due to faulty links through dy-
namic sharing of other non-faulty links. For exam-
ple, an extra hardware is inserted to the TX and RX
links for each direction of the network. If one of the
links fails, the non-faulty link can share the bus,

365

Table 1: State-of-the-art comparison (N/A not available).
Proposal References Type Fault Model Area overhead Scalable Topology

agnostic? Reachability

uLBDR [4] 2011 distributed links/routers 46% yes yes yes

iFDOR [5] 2011 distributed router ~279% compared to
FDOR yes yes N/A

FDWR [6] 2007 table links/routers N/A no yes N/A
FTDR-H [7] 2010 table links/routers ~100% in 12x12 NoC no yes N/A

Flich et. al. [8] 2007 region based
tables links/routers 240 gates in 8x8 NoC no N/A not

Vicis [9] 2012
[10] 2009 table links/routers 300 gates per router (4x4)

330 (12x12) no Only mesh
and torus. no

BFT-NoC [11] 2011 extra hardware
for links links/routers 4% yes yes no

Proposed
Work path search links/routers 42% in LUTS/ 58% in FFs yes yes yes

enabling TX and RX in the same bus. The problem
is that this approach does not solve the problem if
the TX and the RX links are failed. The Author
proposed a integration with the routing algorithm
proposed in [10], showing a 99.94% of reachability
for a 8x8 NoC with up to 7 faulty channels. The
overhead in terms of gates is around 4% compared
to a NoC without bidirectional channel. These re-
sults do not include the routing algorithm, only the
bidirectional channel.

Table 1 compares the approaches evaluated in
this paper. The main drawback of table-base ap-
proaches is their scalability and the fact they not
ensure reachability. The closest approach in terms
of desired coverage of features is uLBDR ap-
proach. The uLBDR results also shown that the
duplication of packets impacts in the traffic on the
network, and this traffic is not scalable, i.e. the
traffic increases when the NoC size increases. Our
approach is compliant with the features presented
in the Introduction, and its type is named path
search, detailed in the next Section.

III.OVERVIEW OF THE ROUTING ALGORITHM
The proposed routing algorithm comprises 3

steps: (i) seek new path; (ii) backtrack the new
path; (iii) clear the seek structures and store the
new path.

A. Seek New Path
The first step of the algorithm requires a hard-

ware module, added to each router, named seek
module. The seek module communicates with oth-
er routers through the interface illustrated in Figure
1. The seek module adds, in the present imple-
mentation, 26 wires at each link: RS, RT, hop num-
ber, seek request, clear request, seek and clear
acknowledgements.

Figure 1 – External interface of the seek module.

The seek module contains a finite state ma-
chine and a 4-entry table. Each entry of the table
contains 5 fields: slot availability, RS, RT, input port,
hop counter. This represents a constant cost of
100 bits, regardless the NoC size. The table has 4
entries to support up to 4 simultaneous seek re-
quests (this is a parameterizable value).

If a 5th seek request arrives at the seek module
the module will delay the answer until the availabili-
ty of a free entry. We consider this situation unlike-
ly to occur, because communicating tasks are sup-
posed to be mapped closer to each other. Due to
the locality of the communication, the probability of
more than 4 simultaneous faults seeking a path in
the same NoC region is very low.

 Figure 2 details the first step of the algorithm.
The source router starts the algorithm to the target
router. It is out of the scope of the present work to
detect faults. It is assumed that a set of routers or
links is faulty. In the example presented in Figure
2, we assume only faulty routers for sake of sim-
plicity. The source router starts the new path com-
putation by receiving a request from the IP con-
nected to it.

When the algorithm starts, Figure 2(a), one en-
try of the table receives the values S/T/L/0, mean-
ing RS, RT, local port (input port), zero (hop coun-
ter). These values are broadcasted to all neighbor
seek modules, Figure 2(b). The seek module con-

366

nected to the north port of RS stores in its table
S/T/S/1, writing S (south) in the input port field,
meaning that the seek request came from this di-
rection; and 1 in the hop counter field (this value is
obtained by adding 1 to the value in the hop coun-
ter signal). This broadcast process continues until
reaching RT, as illustrated in Figure 2(c) and Figure
2(d).

Figure 2 – Seek steps of the algorithm in a 4x4 mesh, with four

faulty routers.

The broadcast process continues, even if RT is
reached. As shown in Figure 2(d), RT was reached
by its east port, with a hop counter equal to 8. Note
that it possible to reach a given RT by the more
than one port, since two or more routers can acti-
vate the seek request to RT.

B. Backtrack Step
Once RT is reached, the backtrack process

starts. In this second step, the seek module of RT
injects into the NoC a packet that will contain the
new path. Note that in the first step the seek
process does not interfere with the NoC traffic. In
this second step, the NoC is used to transmit to RS
the new path through a new packet type: backtrack
packet. The backtrack packet header contains an
identifier signalizing it as a backtrack packet and
RS. The payload size if a function of the hop coun-
ter (HC).

One possible implementation of this second
step include two adaptations in the original NoC
router: (i) multiplexing the local port with the seek
module, making this module to act as a second IP
connected to the router; (ii) modify the router con-
trol to accept packets with the output port coded in
the packet.

When the backtrack packet enters into the rou-
ter, the output port is selected by the seek module.
This information is obtained by reading the input
port field of the seek table, in the position indexed
by RS.

The initial payload of the backtrack packet con-
tains the input port from where the seek request
came. This information is inserted in the payload
position indexed by HC+1. In the example of Fig-
ure 2, RT was reached by the East port, with a
number of eight hops. In Figure 3, the initial payl-
oad corresponds to eight don´t cares and the in-
serted direction ([--------E]).

The payload in the second and succeeding
routers in the path receive the port index from
which the backtrack packet came. In the example,
the payload transmitted by the router connect on
the south of RT is [-------WE].

S/T/L/0

Faulty router

Faulty router

Faulty router

SOURCE

Faulty router S/T/E/8

TARGET

S/T/S/6

S/T/S/1

S/T/S/2 S/T/W/3 S/T/W/4

S/T/N/6

S/T/W/5

S/T/N/7

S/T/S/3 S/T/S/5

[‐‐‐‐‐‐‐E] [‐‐‐‐‐‐WE]

[‐‐‐‐‐SWE]

[‐‐‐‐SSWE][‐‐‐‐ESSWE][‐‐‐EESSWE][‐‐EEESSWE]

[‐NEEESSWE]

[NNEEESSWE]

Figure 3 – Backtracking process.

The second step finishes when the packet ar-
rives at RS, since the backtrack packet has RS in its
header. This is the process used to identify that the
source router was reached. The new path, in the
example, is [N N E E E S S W E]. Note that the last
part of the path seems invalid, because the packet
arriving in the East port should be transmitted to
the East port. Such invalid directions are used to
detect the target router in the new path.

C. Clear and compute path
Once RS is reached with the packet containing

the path, the third step of the method starts. It in-
cludes two actions: broadcast the clear signal to
the seek modules and store the new path. The
cleaning process is very similar to the seek step,
resetting the availability bit of the seek table entry
containing RS.

The new path is transmitted to the IP con-

367

nected to the router. In the present approach the
NoC adopts source routing and duplicated physical
channels [14] (smaller area compared to virtual
channels). The new path may present turns lead-
ing to deadlocks. One solution to avoid deadlocks
in adaptive routing algorithms is to divide the NoC
in two disjoint networks, each one implementing a
partial adaptive routing algorithm, for example,
west-first and east-first. Therefore, one of the phys-
ical channels transmits packets using the west-first
routing algorithm, and the other one the east-first.
Such method ensures that no deadlocks will occur.

The IP connected to the source router eva-
luates the path, adding for each hop one of the
channels, according to one of the routing algo-
rithms. The chosen channel is a function of the
turns taken in the path. The packet changes the
channel when an invalid turn of the current routing
algorithm should be taken. In our case, the west-
first routing algorithm is used in channel 0 and the
east-first in the channel 1. For example, if a packet
starts the path in the channel 0 and there is a turn
from south to west, the path should be changed
from the channel 0 to 1 because it is a turn prohi-
bited by west-first, but allowed by east-first. In the
example, the last turn must change the channel.
The path with the right channel, generated by the
IP is: [N0 N0 W0 W0 W0 S0 S0 W1 E1]. From this
moment, the IP connected to RS can send mes-
sages to RT with source routing, using the com-
puted path.

Concluding, if there is a path from a given
source to a given target, the proposed approach
finds a path in a NoC with faulty routers or links. To
transmit packets using this path, deadlock free
routing algorithms should be used, as previously
mentioned. Other adaptive routing algorithms, as
well as other NoC features could be adopted. It is
important to mention that the proposed method can
be applied to other topologies, since the seek
broadcast does not require a regular structure.

IV.RESULTS
Our approach adopts as reference the router

proposed in [15], which has the following features:
(i) Hamiltonian routing algorithm, (ii) 16-bit wide flit,
(iii) duplicated physical channel, with high and low
priorities; (iv) circuit switching over packet switch-
ing. The main reason to adopt this NoC is the repli-
cation of physical channels, feature required to to

avoid deadlock when using adaptive source
routing. Three main modifications were performed
in the reference router: (i) addition of the seek
module; (ii) modification of the router control
(named switch control), allowing to support source
routing and reading the table of the seek module;
(iii) addition of logic to enable the seek module to
inject packets in the NoC.

A. Experimental Setup
This section evaluates the proposed approach

with four routers simultaneously asking a new path.
As experimental scenario, we consider a 10x10 2-
D Mesh, with a set of faulty routers, as presented
in Figure 4. This scenario contains one bottleneck
for the seek request at router 42, and at least 2
channel changes after the seek completion.

Figure 4 – Evaluation scenario of a NoC 10x10.

This algorithm returned the expected paths for
each pair RS→RT. For example, the path returned
for 0 49 was:

[NNNNEEENNNNNEEEEEESSWWSSSEEW]
To avoid deadlock, assuming west-first and

east-first for channel 0 and 1, respectively, the IP
connected to the router must change the channel
in the 20st direction from 0 to 1 and in the 25st from
1 to 0. The following string presents the path with
the channel:

[N0 N0 N0 N0 E0 E0 E0 N0 N0 N0 N0 N0 E0 E0
E0 E0 E0 E0 S0 S0 W1 W1 S1 S1 S1 E0 E0 W0]

B. Evaluation

Our approach was evaluated in terms of clock
cycles for each step of the algorithm. Table 2
shows the number of clock cycles for each step for
the four pairs of RS→RT. The whole process takes
in average 38 clock cycles per hop to find the path
(last column of the Table). We consider this an

368

excellent result, since: (i) as the number of hops
between tasks is frequently small due to the map-
ping process, few tasks will be mapped far from
each other (task migration may mitigate this prob-
lem); (ii) few hundreds of clock cycles represents a
smaller amount of time compared to a dedicated
algorithm executed in a given PEs. For example,
the Vicis NoC [9] takes around 1000 cycles only to
reconfigure the network when a fault happens.

Table 2 – Results in terms of the number of clock cycles for
each step of the approach.

Rt→Rs hops # cycles
step 1

cycles
step 2

cycles
step 3

all
process

Cycles
per hop

99→50 28 390 350 332 1072 38,3
78→48 25 353 308 246 907 36,2
00→49 28 390 350 293 1033 36,9
21→51 24 320 292 285 897 37,3

Table 3 presents the area overhead in terms of
look up tables (LUTs) and flip-flops (FFs) com-
pared to the baseline router. Regarding the LUTs
occupation, the overhead is 42%. The overhead in
terms of FFs is higher, 58%. This is due to the fact
that the VHDL code was not optimized for FPGAs
(LUTRAMs). As a consequence, the operating
frequency was reduced 34%, from 193 MHz to 128
MHz.

Table 3 – Area overhead for Xilinx xc5vlx330tff1738-2 device.
 Area Occupation

sub module LUTs FFs module
Switch Control 351 97

baseline router
TOTAL 1610 433
Seek module 370 184

baseline router mod-
ified + seek module

Switch Control 339 157
TOTAL 2293 682
overhead 42% 58%

The router was synthesized using Cadence
Encounter RTL Compiler, targeting a 65 nm tech-
nology library from STMicroelectronics. The router
with the seek module required 6,204 cells, occupy-
ing 43,049 um². For comparative purposes, the
uLBDR [4] router, with the same technology, con-
sumed approximately 62,050 um².

V.CONCLUSION
Our main contribution is to present an original

approach for fault-tolerant routing in NoCs. The
approach is generic (can be ported to other topolo-
gies); presents complete reachability; is indepen-
dent of where and when the fault occurs; and sca-
lability is achieved by a constant table size, diffe-
rently from the traditional table-based approaches.

As future work, the implementation should be
optimized to reduce the number of FFs and in-
crease the operating frequency. Also, the proposed
scheme will be integrated in an MPSoC platform,
enabling the evaluation of the approach at the ap-
plication layer. The proposed method can also
consider the NoC congestion if the seek process is
weighted with the NoC traffic status.

ACKNOLEDGEMENTS
Fernando Moraes is supported by CNPq, FAPERGS,
and CAPES, projects 301599/2009-2, 10/0814-9,
708/11, respectively.

REFERENCES
[1] Zhang, M.; Yu Q. and Ampadu, P. “Fine-Grained Splitting

Methods to Address Permanent Errors in Network-on-
Chip Links”. In: ISCAS 2012, pp. 2717-2720.

[2] Zimmer H.; Jantsch A. “A Fault Model Notation and Error-
Control Scheme for Switch-to-Switch Buses in a Network-
on-Chip”. In: CODES+ISSS 2003. pp. 188-193.

[3] Lee, C. Y. “An Algorithm for Path Connections and Its
Applications”. IRE Transactions on Electronic Computers,
Sep. 1961. pp. 346-365.

[4] Rodrigo, S. et. al. “Cost-Efficient On-Chip Routing Imple-
mentations for CMP and MPSoC Systems”. IEEE Trans-
actions on CAD of Integrated Circuits and Systems, April
2011. pp. 534-547.

[5] Sem-Jacobsen, F.; Rodrigo, S. and Skeie, T. “iFDOR:
dynamic rerouting on-chip”. In: International Workshop on
Interconnection Network Architecture: On-Chip, Multi-Chip
2011. pp 11-14.

[6] Schonwald, T. et. al. ”Fully Adaptive Fault-Tolerant
Routing Algorithm for Network-on-Chip Architectures”. In:
Euromicro, 2007. pp. 527-534.

[7] Feng, C. et. al. “A reconfigurable fault-tolerant deflection
routing algorithm based on reinforcement learning for
network-on-chip”. In: NoCArc 2010, pp. 11-16.

[8] Flich, J. et. al. “Region-Based Routing: An Efficient
Routing Mechanism to Tackle Unreliable Hardware in
Network on Chips”. In: NOCS 2007. pp. 183-194.

[9] DeOrio, A. et. al. “A Reliable Routing Architecture and
Algorithm for NoCs”. IEEE Transactions on CAD of Inte-
grated Circuits and Systems, May 2012, pp. 726-739.

[10] Fick, D. et. al. “A highly resilient routing algorithm for fault-
tolerant NoCs” In: DATE 2009. pp. 21-26.

[11] Tsai, W. et. al. ”A Fault-Tolerant NoC Scheme using
bidirectional channel”. In: DAC 2011. pp. 918-923.

[12] Skeie, T. et. al. “Flexible DOR routing for virtualization of
multicore chips”. In: SOC, 2009. pp. 73-76.

[13] Boyan, J. and Littman, M. “Packet routing in dynamically
changing networks: a reinforcement learning approach”.
In: Advances in Neural Information Processing Systems
1993. pp. 671-678.

[14] Carara, E.; Moraes, F. G.; “Flow oriented routing for
NOCS”. In: SOCC 2010. pp. 367-370.

[15] Carara, E. et. al. “Achieving Composability in NoC-Based
MPSoCs through QoS Management at Software Level”.
In: DATE 2011. pp. 407-412.

369

