
Energy-Efficient Cache Coherence Protocol for
NoC-based MPSoCs

ABSTRACT
As the number of cores and functionalities integrated in embedded
devices increases, the amount of memory used on these devices
also increases, justifying the development of memory
architectures presenting scalability, low energy consumption and
low latency. To implement memory solutions, most works
adopting NoC-based MPSoCs only employ basic communication
services, such as send/receive, without exploring the services
NoCs can offer, for instance connection, priorities and multicast
communication. Multicast can be used to optimize the cache
coherence protocol, leading to both traffic and energy
consumption reduction. The goal of this work is to optimize a
directory-based cache coherence protocol exploiting specific NoC
services, as multicast and priorities. To demonstrate our proposal,
an MPSoC described at the RTL level is used, enabling accurate
performance and energy evaluation. Results show a reduction of
17% in the number of clock cycles and a reduction up to 86%
(average reduction: 39%) in energy consumption for some
memory transactions.

Categories and Subject Descriptors
B.3.2 [Hardware]: Design styles – cache memories.

General Terms
Algorithms, Performance, Design, Experimentation.

Keywords
MPSoC, NoC, memory hierarchy, caches

1. INTRODUCTION
The increasing number of functionalities and applications of
current embedded systems raise the demand for processing, high-
speed communication and memory. According to Wolf et al. [1],
the most critical component that determines the success of an
MPSoC (Multiprocessor System-on-Chip) is its memory
architecture.

In the general purpose computing field, the use of cache memories
consists of a simple and efficient way to increase software
performance [2]. According to [3], caches are and will be one of
the best solutions to achieve low latency accesses to data and
instructions. The introduction of cache memories reduces the
average access latency, since most memory accesses are local.

Consequently, the amount of memory transactions issued by
processors to the communication infrastructure is reduced, and the
performance is increased. One of the disadvantages of using cache
memories is the unpredictability introduced for memory accesses.
The amount of cycles that a memory operation takes to complete
depends on the location of the data being accessed. Thus, designs
that have to meet hard real-time deadlines should adopt alternative
solutions such as scratchpad memories, which guarantee one-
cycle latency.

In addition, cache memories increase the energy overhead. Cache
misses are the main source of energy consumption, as several
operations might be necessary to bring a block to the cache
memory. During this process, cache coherence protocols act to
enforce system coherence and, therefore, their energy
consumption must be reduced.

Cache coherence protocols, such as invalidate-based ones, might
generate several unicast messages on the NoC in order to keep the
system coherent. For instance, whenever a line needs to be
invalidated in several L1 caches, the L2 cache sends several
invalidation messages. The resulting traffic generated in the NoC
increases significantly the energy consumption of the MPSoC. An
approach that helps reducing the energy overhead is to send a
multicast message, targeting all caches that contain the entry to be
invalidated. This reduces the traffic and consequently the energy
consumption.
The goal of this work is to explore NoC services such as multicast
and priorities, and some properties of the NoC, such as duplicated
physical links, to optimize a directory-based cache coherence
protocol. Exposing the low-level NoC to the protocol allows the
reduction of energy consumption and latency of the protocol.

The rest of this paper is organized as follows. Section 2 presents
related works. Section 3 details the reference MPSoC architecture
adopted by this work. Section 4 details the cache coherence
protocol. Section 5 presents the experimental setup and results.
Section 6 concludes this paper.

2. RELATED WORK
MPSoCs are commonly employed as the architecture for
embedded devices, which require low energy consumption.
According to [4], the reduction of both miss latency and traffic
generated by the cache coherence protocol are conflicting factors.
Protocols designed to decrease miss latency usually generate more
network traffic than protocols designed to consume low energy.
The increase in network traffic also increases power consumption
[5]. This consumption might approach 50% of the overall chip
power in some cases. Considering that MPSoCs designs mainly
target low energy consumption, there is a necessity of the study
and development of energy efficient protocols.
A few works on the literature explore the physical services, which
are provided by the NoC to optimize the cache coherence

Tales M. Chaves, Everton A. Carara, Fernando G. Moraes
PUCRS – FACIN – Av. Ipiranga 6681 – Porto Alegre – 90619-900 – Brazil

tales.chaves@acad.pucrs.br, everton.carara@pucrs.br, fernando.moraes@pucrs.br

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SBCCI’11, August 30-September 2, 2011, João Pessoa, Brazil.
Copyright 2011 ACM 978-1-4503-0828-1/11/08 ...$10.00

215

protocol. Examples of NoC-based MPSoCs adopting memory
hierarchy with caches includes [6][7][8], having as common
feature the abstraction of the communication infrastructure,
adopting only send and receive services.

Bolotin et al. [9] attributes different priorities to packets
transmitted by the cache coherence protocol. Operations such as
read and exclusivity request (short data packets) are transmitted
using high priority. Long packets, such as packets containing data
to be written in the memory or a block just read from the memory
are transmitted using low priority. This strategy increases
performance, but does not addresses energy issues.

Barroso et al. [10] propose optimizations to an invalidation-based
directory protocol. One of the proposed optimizations is named
clean-exclusive, in which an exclusive copy of a block is returned
to a read if there are no sharers. An important enhancement
presented by this work is the avoidance of NAK messages
(negative acknowledgement). This is possible due to the use of 3
virtual channels (I/O, L, H). L channel is a low priority channel
and H is a high priority channel. Also, to decrease the traffic in
the network, a technique called cruise-missile-invalidates is used
for sending a unique invalidation message to several nodes.

Jarger et al. [11] implement a cache-coherence protocol, named
Virtual Tree Coherence (VTC). It is based on a virtual ordered
interconnection tree, which keeps a history of nodes sharing a
common region of memory. For each region, a virtual tree is
created containing the nodes that share that region. Every time
one of the nodes accesses a given region, a request is sent to the
root of the tree, which in turn, requests the data to the node
holding the most updated copy. This request is done through a
multicast message that traverses the tree.

This paper explores the optimization of a well-known cache
coherence protocol, by exploring the physical services offered by
the NoC. Most works focus on a specific service provided by the
NoC, such as priority, while we propose to use a combination of
services and NoC features to optimize the cache coherence
protocol. Additionally, few works provide RTL implementation of
the proposed solutions. The present work adopts a RTL model for
the MPSoC, resulting in accurate performance results.

3. MPSOC ARCHITECTURE
This work adopts as reference a homogeneous NoC-based MPSoC
[13], described in synthesizable VHDL. Each PE contains a
MIPS-like processor (Plasma), a local memory (RAM), a DMA
controller, a Network Interface and a L1 data cache. The MPSoC
can also have L2 data cache banks connected to a given node of
the NoC. Figure 1 shows an architectural view of a 2x2 instance
of the HeMPs Platform.

MPSoC

NoC

Router

Router

Router

Router

Slave-PE

Master-PE

N
et

w
or

k
In

te
rfa

ce PLASMA

DMA

Ta
sk

R
ep

os
ito

ry

L2 Data Cache

LO
C

A
L

L1
 D

at
a

C
ac

he

Cache controller
and tag memory

Slave-PE

Figure 1 - MPSoC with a two level memory hierarchy –

shared memory and caches (only Slave-PEs have caches).
Two types of PEs are used: slave and master. Slave-PEs are
responsible for executing application tasks. The Master-PE is

responsible for mapping tasks into the Slave-PEs. The Master-PE
can also receive debug messages from Slave-PEs, transmitting
them to an external host through an Ethernet interface.
The external memory, named task repository, contain the object
code of all application tasks. Tasks are described in C language.
Each Slave-PE runs a tiny operating system (named microkernel
whose memory footprint is around 20 KB), responsible for
managing task execution and task communication. This
microkernel is a preemptive operating system where each task
uses the CPU for a pre-defined period.

The network interface and DMA modules are responsible for
sending and receiving packets, while the processor performs
computation tasks and the management of NI and DMA modules.
The local RAM is a true dual port memory allowing simultaneous
processor and DMA accesses. This local memory is organized in a
parameterizable number of pages. The microkernel uses the first
pages and application tasks use the remaining ones.

3.1 NoC
The 2D mesh NoC used in the MPSoC has the following features
to support QoS: (i) Hamiltonian routing, which enables
multicasting; (ii) packet and circuit switching; (iii) priorities; (iv)
duplicated physical channels (two 16-bit bidirectional links).
Each router of the NoC is labeled with a number, from 0 to N-1,
where N is the number of routers. The NoC is logically divided
into two acyclic and disjoint, sub-networks. In one sub-network,
the routers are numbered in decreasing order, whilst in the other;
routers are numbered in increasing order. Each packet is routed
according to the Hamiltonian algorithm, traversing only one sub-
network. For instance, when router 2 sends a packet to router 6,
the increasing sub-network is used. In the other hand, when the
router 6 sends a packet to router 2, the decreasing sub-network is
used.
The dual-path multicast algorithm is used to transmit multicast
messages. In this algorithm, the header of the packet contains all
target routers for that packet. When a multicast message is sent, at
most two packets are transmitted. The first packet is transmitted to
all PEs with addresses higher than the multicast source address.
The second one is transmitted to all PEs with addresses lower than
the source PE. If all targets have either higher addresses or lower
addresses than the multicast source, only one packet is sent.

There are two levels of priorities physically implemented in the
NoC: high and low. High priority packets may be transmitted in
both physical channels, while one of the channels only transmits
low priority packets. The use of priorities allows the distinction of
long and short packets, so that one physical channel might be used
for sending short packets only, whilst the other transmits long
packets only, which increases memory throughput.

3.2 Memory Architecture
The MPSoC has a two-level memory hierarchy, as illustrated in
Figure 1. Only Slave-PEs support L1 data caches. In Slave-PEs,
the address space is divided into two disjoint address spaces: one
address space is used for accessing data from the cache memory
and the other is used for the local memory. The local memory
stores the microkernel, object code of tasks received from the
Master-PE and private variables. It can be seen as a scratchpad
memory because it guarantees one-cycle latency for every access,
which never results in miss. The L1 cache memory stores
temporary copies of blocks from a shared L2 cache memory,
which is used only for storing data.

A cache controller and a tag memory (right upper corner of Figure

216

1) compose the L1 cache. The cache adopts the direct mapping
scheme, due to the minimum hardware support required to
implement it. The tag memory stores for each line: (i) tag, the
most significant bits of the block address stored in that line; (ii)
valid bit, informs if the line is valid; (iii) modified bit, informs
that the line was modified. Each line stores a full block of the L2
cache, which size is 128 32-bit words.

The L2 cache is shared by all PEs. It is composed by: (i) a
memory controller, responsible for executing read/write
operations according to the cache-coherence protocol; (ii) a
directory memory, which stores for each block its status
(modified, shared, invalid or transition) and the addresses of PEs
holding a copy of the block; (iii) a network interface (NI); (iv) the
memory bank, logically divided into blocks of 128 32-bit words.
Note that more than one L2 cache bank can be used in the system,
resulting in a distributed shared memory (DSM) organization. In
the scope of this work, only one bank is used.

All necessary instructions to execute a given task are stored in the
local memory. The L2 cache is exclusively used for storing shared
data. Therefore, there is no traffic in the network due to fetching
instructions from L2 cache to PEs. One of the advantages of this
memory hierarchy is the smaller traffic inside the NoC. In
addition, the native reference MPSoC communication mechanism,
message passing, is extended to shared memory communication.

The priority mechanism included in the NoC enables the
transmission of short memory requests using high priority.
Memory responses, which contain data from a block, are
transmitted using low priority. The NI of the L2 cache interfaces
has two buffered input ports, one for each channel of the NoC
(port 0 and port 1). The output ports of the NI are not buffered.
The advantage of using two physical channels avoids the
contention of the L2 cache for long periods, such as in situations
when the L2 cache is receiving a write-back block. In this
situation, the other channel is free to receive and buffer service
requests that will be handled as soon as the write operation ends.

3.3 Cache Coherence Protocol
According to the MSI cache-coherence protocol, any shared block
can be in 3 states: modified – a copy of the block has been
modified, therefore the L2 cache does not contain a valid entry of
that block; shared – zero or several caches might contain an
identical copy of the block which is stored in the L2 cache; invalid
– block data is not valid. In addition to the three states of the MSI
protocol, we propose the creation of the transition state (T). This
state indicates that a given block is not updated in the L2 cache,
but a write-back request has been already issued to the L1 cache
which has modified the block. Requests that arrive at the L2 cache
when the block is in T state are forwarded to the L1 cache that has
modified the block. Section IV presents a more detailed
explanation of the benefits of the transition state.
Our work adopts a hybrid implementation of the protocol, being
part of it implemented in hardware (in the cache controller) and
part in software (in the microkernel). This design choice
simplifies the hardware implementation because some
mechanisms, such as DMA programming, are handled in
software, by the microkernel.

The cache controller is responsible for: (i) detecting and signaling
hit/miss when the address accessing the cache changes; (ii)
updating the tag memory; (iii) executing read and write
operations. The microkernel is responsible for: (i) exchanging
messages with the shared memory; (ii) replacing blocks when
necessary; (iii) handling write-back operations.

4. CACHE COHERENCE PROTOCOL
OPTIMIZATIONS
4.1 Invalidating cache lines
Whenever a PE needs to modify a given block, the L2 cache must
invalidate all valid entries of this block to prevent cache
incoherence. An invalidation message is then sent to every PE
sharing this block. Finally, the L2 authorizes the modification of
the block by the requesting PE.

In unicast-only NoCs, a unicast packet must be sent for each PE.
Figure 2(a) shows a scenario where PE01 requests exclusivity of a
block, which is in shared state. Two other PEs are currently
holding a copy of this block (PE02 and PE03). Therefore, an
invalidation message is sent to PE 02 and PE 03. Using unicast
messages, the traffic generated on the NoC in this case increases
according to the number of PEs sharing the block. Figure 2(b)
shows a scenario where multicast is exploited. In this case, the L2
cache issues a multicast message targeting several processors,
reducing network traffic. The traffic reduction decreases the
switching activity of the routers, therefore reducing energy
consumption.

PE 01
PE 02

shared=1
Request

Exclusivity
(4 flits)

1

Exclusivity
Granted
(4 flits)

Invalidate
message

(4 flits)

2

(b) Multicast(a) Unicast

Shared
Memory

Invalidate
message

(4 flits)

PE 03
shared=1 PE 01

PE 02
shared=1

Request
Exclusivity

(4 flits) 1

Exclusivity
Granted
(4 flits)

Invalidate
message

(multicast - 4 flits)

2

Shared
Memory

PE 03
shared=1

Figure 2 - Sequence diagram for a request of exclusivity on a

shared block.

4.2 Read request optimization
The use of multicast messages might optimize a read operation on
a block that is in modified state. The non-optimized operation
occurs as shown in Figure 3(a). After receiving the modified
block from PE02 (event 3), the L2 cache first writes the block into
the memory bank, and then sends a copy of it to the requesting PE
(PE01). In the optimized operation, the PE containing the
modified block (PE02) sends a multicast message to both the
requesting PE (PE01) and the L2 cache.

PE 01
L2 data
cache

PE 02
modified=1

Read block
(4 flits)

1

2Write-back
(multicast - 260 flits)

PE 01
PE 02

modified=1Read
block
(4 flits)

1

Send
block

(260 flits)

Write-back
request
(4 flits)

2Write-back
(260 flits)

3

(b) Multicast(a) Unicast

L2 data
cache

Write-back
request
(4 flits)

Figure 3 - Sequence diagram for a read operation of a

modified block.

4.3 Write request optimization
To write on a block, the processor must read it beforehand. If the
block that a given PE wants to modify is already in modified state,
the PE holding the modified copy must execute a write-back

217

operation. Suppose PE01 wants to write on a modified block, only
cached by PE02. PE01 sends a read-with-exclusivity request to
the L2 cache, which, in the non-optimized implementation (Figure
4(a)), sends a write-back request to PE02. After receiving the
write-back response, the L2 cache sends a copy of the block to
PE01 and updates the directory.

In the optimized implementation (Figure 4(b)), after receiving the
read-with-exclusivity request from PE01, the L2 cache updates
the directory, setting PE01 as the holder of the modified copy of
the block. Then, it sends a special write-back to PE02, which will
send a copy of the block to PE01, and invalidate its copy of the
block. Additional requests for this block may arrive at the L2
cache before finishing this operation. To ensure sequential
consistency, these operations must be blocked at PE01 until it
finishes the operation on this block.

PE 01
L2 data
cache

PE 02
modified=1

Read block
with

exclusivity
(4 flits) 1

2

Write-back (260 flits)

PE 01
PE 02

modified=1Read block
with

exclusivity
(4 flits)

1

Send
block

(260 flits)

Write-back
request
(4 flits)

2Write-back
(260 flits)

3

(b) optimized(a) non-optimized

L2 data
cache

Write-back
request
(4 flits)

Figure 4 - Sequence diagram for a write-back after a write

request.

4.4 The Transition State
The benefit of having a new state in the cache coherence protocol
is the possibility of decreasing latency in some cases. This gain is
achieved when forwarding requests that arrive at the L2 cache to
the L1 cache that has an updated copy of the block being
requested.
Figure 5 presents the MPSoC configuration that will be used to
illustrate a scenario that explains the operation of the transition
state. Suppose PE03 holds a given block in modified state, and
PE00 wants to read this block. A read miss occurs, resulting in a
read request to the L2 cache (event 1 in Figure 6). When the L2
cache receives the request of PE00, it searches for the address of
PE whose L1 cache holds the block in modified state. This search
is performed in the local directory of the L2 cache. A write-back
request is issued to PE03 (event 2), setting the block from M
(modified) to T (transition) state. Next, if another request arrives
at the L2 cache, such as from PE05, for instance (event 3), instead
of blocking the request until the block is updated, the L2 cache
issues a read request of this block to PE03 (step 4). PE03 then
sends a packet containing a copy of the cached block of its local
cache to PE05 (step 7). This reduces the load of the L2 cache.

This optimization is possible because, although after writing-back
the block to the L2 cache and PE00 (events 5 and 6), PE03 still
has a valid copy of that block. Therefore, it might serve a copy of
the block to PE05. When the L2 cache receives the write-back
packet (event 5) it sets the block as shared.

Without the transition state, the standard coherence protocol
would have to buffer in the L2 cache the read request from PE05
and wait for: (i) the arrival of the write-back packet in the L2
cache; and (ii) the update of the block in the L2 cache. In the
proposed optimization, the PE holding the modified block (PE03)

sends the block directly to PE05 just after finishing the write-back
operation. This optimization tends to reduce the number of cycles
required to send a copy of the block to the second PE which
requested the read, as it does not require the read request to be
block on the L2 cache until the finish of the write-back operation.

PE00 L2 data
cache

PE02
(master)

PE05 PE04 PE03

Figure 5 - MPSoC configuration: 3x2 NoC, 5 PEs (1 master, 4

slaves) and 1 L2 cache.

PE 05

Read block
(4 flits)

1

L2 data
cache

Write-back
request (4 flits)

PE 03
modified=1PE 00

2

Read block
(4 flits)

Multicast
Write-back (260 flits)

3

4
Copy block

(260 flits)
5

6

7

Figure 6 - Sequence diagram for the T state.

5. EXPERIMENTS
This section presents experiments performed to compare the
optimized cache-coherence protocol presented in Section 4,
against a non-optimized MSI directory-based protocol.

5.1 Experimental Setup
Two different implementations of an MPSoC platform were
simulated in RTL-level using the ModelSim simulator. The
platform used as a case study is configured as: 5x5 NoC mesh
topology, containing 24 PEs (1 master and 23 slaves) and 1 L2
cache bank. The first implementation, named OPT, employs the
four optimizations described in Section 4. The second
implementation, named NO-OPT, adopts a standard MSI
directory-based protocol based on unicast messages only. In all
experiments, the results evaluate the number of clock cycles, and
the energy spent in communication between the PEs and the L2
cache.

The packets containing memory operations are generated by
application tasks. To prevent the programmer from dealing with
low-level aspects related to the memory architecture, a cache
library was developed. Figure 7 shows an example of application,
which uses two functions of the cache library:
cache_read_block_word, which reads a word of a block
(indicated by number 1 in Figure 7); cache_write_block_word,
which writes to a given word of a shared block (indicated by
number 2 in Figure 7). In the current example, the value 0x44 is
written to the first word of block 1.

To evaluate the consumed energy per memory transaction, the
present work adopts the volume-based energy model proposed by
Hu et al. [12]. Equation 1 computes the communication energy
spent to transit 1 bit through a distance of n hops.

218

bitbit LhopsShops
hops
bit EnEnE *)1(* −+= 	
 (1)

In Equation 1: ESbit (20.58 pJ/flit), ELbit (2.84 pJ/flit) and nhops
correspond to the energy consumption of the router, in the
interconnection wires and the number of hops to transmit 1 flit,
respectively (65 nm technology).

Figure 7 - Example of an application reading and writing to

the shared memory.
The energy model was calibrated using the ST/IBM CMOS 65 nm
technology at 1.0 V, adopting clock-gating, 100 MHz clock
frequency and injection rate of 10% of the available link
bandwidth. The PrimePower tool generates the power and energy
values used in Equation 1.

5.2 Invalidating cache lines
In situations where more than one cache is sharing the same block
of the L2 cache, the memory controller needs to send invalidation
messages to invalidate these copies before granting exclusivity to
a PE. To evaluate the benefits of using multicast to propagate
these messages, the number of caches sharing a copy of the same
L2 block varies. Table 1 shows the number of clock cycles
required to send invalidation messages to 3, 5 and 8 caches,
respectively. Although with a smaller number of targets to
invalidate, the first scenario (3 caches sharing a block) presents
higher gain compared to the non-optimized implementation. This
is due to the task mapping on the platform, which allowed the
sending of only one multicast message (see Section 3.1), which
significantly reduces the amount of data transmitted on the NoC.
For the other scenarios (5 and 8 caches sharing a block), the use of
multicast messages saves energy and improves performance at
most 17.53%.

Table 1 – Number of clock cycles and energy consumption of
invalidate messages depending on the number of caches

sharing a block.

 Platform 3 caches 5 caches 8 caches

Energy
(pJ)

NO-OPT 1635 2584 3798
OPT 685 2073 2916

 OPT gain vs NO-OPT 58.07% 19.76% 23.20%
Clock
Cycles

NO-OPT 141 154 147
OPT 129 127 129

 OPT Gain vs NO-OPT 8.51% 17.53% 12.24%

5.3 Read request optimization
To evaluate the read optimization, a task after a cache-miss, must
issue a read request to a modified block. Upon receiving the
request, the L2 cache issues a write-back request to the PE, which

holds exclusivity on the block being requested. In the OPT
implementation, after receiving the write-back request, the PE
sends a multicast message containing a copy of the block, both to
the L2 cache and to the requesting PE.

The experiments varied the distance, in hops, between the PE
reading the block and the L2 cache. Figure 8 presents the results.
The average energy reduction offered by the optimization is 12%.
However, the NO-OPT implementation is slightly faster than the
OPT implementation (in average 30 clock cycles), due to the
higher complexity to treat multicast packets at each router, and the
non-minimal path taken by these packets.

Figure 8 - Energy consumption of the read operation on a

modified block as the number of hops increases.

5.4 Write request optimization
To evaluate the write optimization, a task after a write cache-miss,
must issue a read with exclusivity request to a modified block.
Upon receiving the request, the L2 cache issues a write-back
request to the PE, which holds the modified copy of the block
being requested. In the OPT implementation, after receiving the
write-back request, the PE sends a unicast message containing a
copy of the block, only to the requesting PE, bypassing the L2
cache. To evaluate this optimization, the placement of the L2
cache is defined in Figure 11(a). The PE holding the modified
copy of the block is fixed at PE00. The evaluated scenarios varied
the position of the block writing in the cache.

Figure 9 shows that there is an average reduction of 17% in the
number of cycles required to finish the write operation. Also,
Figure 10 shows that there is a reduction of up to 86.8% on the
energy spent during this operation by the OPT implementation
over the NO-OPT. The reason of this significant reduction is that
long messages, containing data blocks, are transmitted only once,
from PE to PE. The memory can be bypassed because its copy of
the block would be altered right after.

Figure 9 - Number of cycles required to execute a read

operation on a modified block varying the location of the
modified block.

219

Figure 10 - Energy consumed to execute a read operation on a

modified block varying the location of the modified block.

5.5 The Transition state
To evaluate the addition of the transition state, a scenario where 2
PEs issue subsequent reads to a modified block of the L2 cache is
analyzed (this optimization was presented in Section 4.4). The
first PE that issues a read request will benefit from the Read
request optimization, whilst the second PE will benefit from the
addition of the T state. The NoC feature enabling this
optimization is the duplicated physical channels, because while
the L2 cache controller monitors of the channels waiting for a
write-back packet, the other channel can receive requests, such as
a read request.

The results show that the gains against the standard MSI protocol,
in this case, are sensitive to the task and L2 cache mapping. In
scenarios where the PE that issues the second read request is
closer to the PE previously holding the modified copy of the
block, there are gains both in performance of the protocol
(decrease in clock cycles) and also a save on the energy spent
during the operation. Figure 11(a) shows a scenario where PE18
holds the modified copy of the block being accessed, PE10 is the
second reader and the L2 cache is located at the upper left corner
of the platform. In this case, the second read operation consumes,
in the OPT version of the platform 19.035 pJ, against 42.893 for
the NO-OPT version. This represents a 55% decrease in energy
consumption. The number of clock cycles required is decreased
by 7%. In scenarios where the PE that issues the second read
request is closer to the L2 cache, the addition of the T state
increases the number of cycles, and the consumed energy. In
Figure 11(b), the second reader is mapped on PE10, PE01 holds
the modified copy being accessed and the L2 cache is located at
the upper left corner. For this case, the energy consumed during
this operation by the OPT implementation is 37.583 pJ, against
30.621 for the NO-OPT. It represents a 22% increase on the
energy consumed. The number of clock cycles is increased by 5%.

PE13 PE12 PE11 PE10 PE0F

PE0A PE0B PE0C PE0D PE0E

PE09 PE08 PE07 PE06 PE05

PE00 PE01 PE02 PE03 PE04

Cache
L2 PE15 PE16 PE17 PE18

1st Reader

Master

(modified block)

2nd Reader

(a) Optimized task mapping.

PE13 PE12 PE11 PE10 PE0F

PE0A PE0B PE0C PE0D PE0E

PE09 PE08 PE07 PE06 PE05

PE00 PE01 PE02 PE03 PE04

Cache
L2 PE15 PE16 PE17 PE18

1st Reader

2nd Reader

(modified block) Master
(b) Unoptimized task mapping.

Figure 11 –Task mappings for the T state optimization.
To reduce energy consumption for all scenarios, this optimization
must be activated dynamically according to the task mapping.

Upon receiving a read request, a module of the L2 cache
calculates the Manhattan distance between PEs (PE reading and
PE holding the modified block) and L2 cache, and chooses if it is
best to use the T state optimization or block the request until
finishing the write-back operation for this block.

6. CONCLUSIONS
This work is one of the first attempts to explore the benefits NoCs
can bring to cache-coherence protocols, evaluating a complete
system at the RTL level (PEs and the NoC), including the
software (microkernel and applications) running on top of it.
By using the proposed protocol optimizations, results show that it
is possible to reduce the energy consumed by the operations up to
86.8% (average reduction: 39%) and to achieve an improvement
of 17.53% in the execution time (clock cycles). All optimizations,
except the Transitions state, always reported energy reduction.
The Transition state optimization is sensible to the task mapping.

Future works include: (i) couple the proposed techniques to
mapping heuristics that consider the memory position; (ii) data
migration policies to optimize the memory performance; (iii) use
of parallel benchmarks to characterize performance; (iv) extend
the number of memory-IPs in the memory hierarchy, resulting in a
DSM architecture; (v) study and implement a way to distribute (or
to hierarchize) the directory used by the cache coherence protocol.

7. ACKNOWLEDGMENTS
The Authors acknowledge the support of CNPq and FAPERGS,
projects 301599/2009-2 and 10/0814-9, respectively.

8. REFERENCES
[1] Wolf, W.; Jerraya, A. A.; Martin, G. “Multiprocessor System-on-

Chip (MPSoC) Technology”. IEEE Transactions on Computer-
Aided Design of ICs and Systems, vol. 27(10), pp.1701-1713, 2008.

[2] Petrot, F., Greiner, A., and Gomez, P. “On Cache Coherency and
Memory Consistency Issues in NoC Based Shared Memory Multi-
processor SoC Architectures”. In: EUROMICRO, pp. 53-60, 2006.

[3] Leverich, J.; Arakida, H.; Solomatnikov, A.; Firoozshahian, A.;
Horowitz, M.; Kozyrakis, C. “Comparing memory systems for chip
multiprocessors”. In: ISCA, pp. 358-368. 2007.

[4] Ros, A.; Acacio, M; Garcia, J. DiCo-CMP: “Efficient Cache
Coherency in Tiled CMP Architectures”. In: IPDPS, pp. 1-11. 2008.

[5] Magen, N.; Kolodny, A.; Weiser, U.; Shamir N. “Interconnect-power
dissipation in microprocessor”. In: SLIP, pp. 7-13. 2004.

[6] Monchiero, M.; Palermo, G.; Silvano, C.; Villa, O. “Exploration of
Distributed Shared Memory Architectures for NoC-based
Multiprocessors”. Journal of Systems Architecture: the
EUROMICRO Journal, vol. 53(10), pp.719-732, 2006.

[7] Silva G. G. B.; Barcelos, D.; Wagner, F. R. “Performance and
Energy Evolution of Memory Hierarchies in NoC-based MPSoCs
under Latency”. In: IFIP VLSI-SoC, 2009.

[8] Tota, S. V; et al. “MEDEA: a hybrid shared-memory/message-pass-
ing multiprocessor NoC-based architecture”. In: DATE, pp. 45-50,
2010

[9] Bolotin, E.; Guz, Z.; Cidon, I.; et al. “The Power of Priority: NoC
Based Distributed Cache Coherency”. In: NOCS, pp.117-126. 2007.

[10] Barroso, L. A.; et al. “Piranha: a scalable architecture based on
single-chip multiprocessing”. In: ISCA, pp 282-29. 2000.

[11] Jerger, E. N. D.; Peh, L.; Lipasti, M. H. “Virtual tree coherence:
Leveraging regions and in-network multicast trees for scalable cache
coherence”. In: MICRO, pp. 35-46, 2008.

[12] Carara, E., Oliveira, R., Calazans, N., Moraes, F. HeMPS - a
Framework for NoC-based MPSoC Generation. In: ISCAS, 2009,
pp.1345-1348.

[13] Hu, J; et al. Energy-aware mapping for tile-based NoC architectures
under performance constraints. In: ASP-DAC, pp. 233-239, 2003.

220

