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ABSTRACT 
As the number of cores and functionalities integrated in embedded 
devices increases, the amount of memory used on these devices 
also increases, justifying the development of memory 
architectures presenting scalability, low energy consumption and 
low latency. To implement memory solutions, most works 
adopting NoC-based MPSoCs only employ basic communication 
services, such as send/receive, without exploring the services 
NoCs can offer, for instance connection, priorities and multicast 
communication. Multicast can be used to optimize the cache 
coherence protocol, leading to both traffic and energy 
consumption reduction. The goal of this work is to optimize a 
directory-based cache coherence protocol exploiting specific NoC 
services, as multicast and priorities. To demonstrate our proposal, 
an MPSoC described at the RTL level is used, enabling accurate 
performance and energy evaluation. Results show a reduction of 
17% in the number of clock cycles and a reduction up to 86% 
(average reduction: 39%) in energy consumption for some 
memory transactions. 

Categories and Subject Descriptors 
B.3.2 [Hardware]: Design styles – cache memories. 

General Terms 
Algorithms, Performance, Design, Experimentation. 

Keywords 
MPSoC, NoC, memory hierarchy, caches 

1. INTRODUCTION 
The increasing number of functionalities and applications of 
current embedded systems raise the demand for processing, high-
speed communication and memory. According to Wolf et al. [1], 
the most critical component that determines the success of an 
MPSoC (Multiprocessor System-on-Chip) is its memory 
architecture.  

In the general purpose computing field, the use of cache memories 
consists of a simple and efficient way to increase software 
performance [2]. According to [3], caches are and will be one of 
the best solutions to achieve low latency accesses to data and 
instructions. The introduction of cache memories reduces the 
average access latency, since most memory accesses are local. 

Consequently, the amount of memory transactions issued by 
processors to the communication infrastructure is reduced, and the 
performance is increased. One of the disadvantages of using cache 
memories is the unpredictability introduced for memory accesses. 
The amount of cycles that a memory operation takes to complete 
depends on the location of the data being accessed. Thus, designs 
that have to meet hard real-time deadlines should adopt alternative 
solutions such as scratchpad memories, which guarantee one-
cycle latency.  

In addition, cache memories increase the energy overhead. Cache 
misses are the main source of energy consumption, as several 
operations might be necessary to bring a block to the cache 
memory. During this process, cache coherence protocols act to 
enforce system coherence and, therefore, their energy 
consumption must be reduced.  

Cache coherence protocols, such as invalidate-based ones, might 
generate several unicast messages on the NoC in order to keep the 
system coherent. For instance, whenever a line needs to be 
invalidated in several L1 caches, the L2 cache sends several 
invalidation messages. The resulting traffic generated in the NoC 
increases significantly the energy consumption of the MPSoC. An 
approach that helps reducing the energy overhead is to send a 
multicast message, targeting all caches that contain the entry to be 
invalidated. This reduces the traffic and consequently the energy 
consumption. 
The goal of this work is to explore NoC services such as multicast 
and priorities, and some properties of the NoC, such as duplicated 
physical links, to optimize a directory-based cache coherence 
protocol. Exposing the low-level NoC to the protocol allows the 
reduction of energy consumption and latency of the protocol.  

The rest of this paper is organized as follows. Section 2 presents 
related works. Section 3 details the reference MPSoC architecture 
adopted by this work. Section 4 details the cache coherence 
protocol. Section 5 presents the experimental setup and results. 
Section 6 concludes this paper. 

2. RELATED WORK 
MPSoCs are commonly employed as the architecture for 
embedded devices, which require low energy consumption. 
According to [4], the reduction of both miss latency and traffic 
generated by the cache coherence protocol are conflicting factors. 
Protocols designed to decrease miss latency usually generate more 
network traffic than protocols designed to consume low energy. 
The increase in network traffic also increases power consumption 
[5]. This consumption might approach 50% of the overall chip 
power in some cases. Considering that MPSoCs designs mainly 
target low energy consumption, there is a necessity of the study 
and development of energy efficient protocols.  
A few works on the literature explore the physical services, which 
are provided by the NoC to optimize the cache coherence 
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protocol. Examples of NoC-based MPSoCs adopting memory 
hierarchy with caches includes [6][7][8], having as common 
feature the abstraction of the communication infrastructure, 
adopting only send and receive services. 

Bolotin et al. [9] attributes different priorities to packets 
transmitted by the cache coherence protocol. Operations such as 
read and exclusivity request (short data packets) are transmitted 
using high priority. Long packets, such as packets containing data 
to be written in the memory or a block just read from the memory 
are transmitted using low priority. This strategy increases 
performance, but does not addresses energy issues.  

Barroso et al. [10] propose optimizations to an invalidation-based 
directory protocol. One of the proposed optimizations is named 
clean-exclusive, in which an exclusive copy of a block is returned 
to a read if there are no sharers. An important enhancement 
presented by this work is the avoidance of NAK messages 
(negative acknowledgement). This is possible due to the use of 3 
virtual channels (I/O, L, H). L channel is a low priority channel 
and H is a high priority channel. Also, to decrease the traffic in 
the network, a technique called cruise-missile-invalidates is used 
for sending a unique invalidation message to several nodes.  

Jarger et al. [11] implement a cache-coherence protocol, named 
Virtual Tree Coherence (VTC). It is based on a virtual ordered 
interconnection tree, which keeps a history of nodes sharing a 
common region of memory. For each region, a virtual tree is 
created containing the nodes that share that region. Every time 
one of the nodes accesses a given region, a request is sent to the 
root of the tree, which in turn, requests the data to the node 
holding the most updated copy. This request is done through a 
multicast message that traverses the tree. 

This paper explores the optimization of a well-known cache 
coherence protocol, by exploring the physical services offered by 
the NoC. Most works focus on a specific service provided by the 
NoC, such as priority, while we propose to use a combination of 
services and NoC features to optimize the cache coherence 
protocol. Additionally, few works provide RTL implementation of 
the proposed solutions. The present work adopts a RTL model for 
the MPSoC, resulting in accurate performance results. 

3. MPSOC ARCHITECTURE 
This work adopts as reference a homogeneous NoC-based MPSoC 
[13], described in synthesizable VHDL. Each PE contains a 
MIPS-like processor (Plasma), a local memory (RAM), a DMA 
controller, a Network Interface and a L1 data cache. The MPSoC 
can also have L2 data cache banks connected to a given node of 
the NoC. Figure 1 shows an architectural view of a 2x2 instance 
of the HeMPs Platform. 
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Figure 1 - MPSoC with a two level memory hierarchy – 

shared memory and caches (only Slave-PEs have caches). 
Two types of PEs are used: slave and master. Slave-PEs are 
responsible for executing application tasks. The Master-PE is 

responsible for mapping tasks into the Slave-PEs. The Master-PE 
can also receive debug messages from Slave-PEs, transmitting 
them to an external host through an Ethernet interface. 
The external memory, named task repository, contain the object 
code of all application tasks. Tasks are described in C language. 
Each Slave-PE runs a tiny operating system (named microkernel 
whose memory footprint is around 20 KB), responsible for 
managing task execution and task communication. This 
microkernel is a preemptive operating system where each task 
uses the CPU for a pre-defined period.  

The network interface and DMA modules are responsible for 
sending and receiving packets, while the processor performs 
computation tasks and the management of NI and DMA modules. 
The local RAM is a true dual port memory allowing simultaneous 
processor and DMA accesses. This local memory is organized in a 
parameterizable number of pages. The microkernel uses the first 
pages and application tasks use the remaining ones.  

3.1 NoC 
The 2D mesh NoC used in the MPSoC has the following features 
to support QoS: (i) Hamiltonian routing, which enables 
multicasting; (ii) packet and circuit switching; (iii) priorities; (iv) 
duplicated physical channels (two 16-bit bidirectional links).  
Each router of the NoC is labeled with a number, from 0 to N-1, 
where N is the number of routers. The NoC is logically divided 
into two acyclic and disjoint, sub-networks. In one sub-network, 
the routers are numbered in decreasing order, whilst in the other; 
routers are numbered in increasing order. Each packet is routed 
according to the Hamiltonian algorithm, traversing only one sub-
network. For instance, when router 2 sends a packet to router 6, 
the increasing sub-network is used. In the other hand, when the 
router 6 sends a packet to router 2, the decreasing sub-network is 
used.  
The dual-path multicast algorithm is used to transmit multicast 
messages. In this algorithm, the header of the packet contains all 
target routers for that packet. When a multicast message is sent, at 
most two packets are transmitted. The first packet is transmitted to 
all PEs with addresses higher than the multicast source address. 
The second one is transmitted to all PEs with addresses lower than 
the source PE. If all targets have either higher addresses or lower 
addresses than the multicast source, only one packet is sent.  

There are two levels of priorities physically implemented in the 
NoC: high and low. High priority packets may be transmitted in 
both physical channels, while one of the channels only transmits 
low priority packets. The use of priorities allows the distinction of 
long and short packets, so that one physical channel might be used 
for sending short packets only, whilst the other transmits long 
packets only, which increases memory throughput. 

3.2 Memory Architecture 
The MPSoC has a two-level memory hierarchy, as illustrated in 
Figure 1. Only Slave-PEs support L1 data caches. In Slave-PEs, 
the address space is divided into two disjoint address spaces: one 
address space is used for accessing data from the cache memory 
and the other is used for the local memory. The local memory 
stores the microkernel, object code of tasks received from the 
Master-PE and private variables. It can be seen as a scratchpad 
memory because it guarantees one-cycle latency for every access, 
which never results in miss. The L1 cache memory stores 
temporary copies of blocks from a shared L2 cache memory, 
which is used only for storing data.   

A cache controller and a tag memory (right upper corner of Figure 
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1) compose the L1 cache. The cache adopts the direct mapping 
scheme, due to the minimum hardware support required to 
implement it. The tag memory stores for each line: (i) tag, the 
most significant bits of the block address stored in that line; (ii) 
valid bit, informs if the line is valid; (iii) modified bit, informs 
that the line was modified. Each line stores a full block of the L2 
cache, which size is 128 32-bit words. 

The L2 cache is shared by all PEs. It is composed by: (i) a 
memory controller, responsible for executing read/write 
operations according to the cache-coherence protocol; (ii) a 
directory memory, which stores for each block its status 
(modified, shared, invalid or transition) and the addresses of PEs 
holding a copy of the block; (iii) a network interface (NI); (iv) the 
memory bank, logically divided into blocks of 128 32-bit words. 
Note that more than one L2 cache bank can be used in the system, 
resulting in a distributed shared memory (DSM) organization. In 
the scope of this work, only one bank is used. 

All necessary instructions to execute a given task are stored in the 
local memory. The L2 cache is exclusively used for storing shared 
data. Therefore, there is no traffic in the network due to fetching 
instructions from L2 cache to PEs. One of the advantages of this 
memory hierarchy is the smaller traffic inside the NoC. In 
addition, the native reference MPSoC communication mechanism, 
message passing, is extended to shared memory communication. 

The priority mechanism included in the NoC enables the 
transmission of short memory requests using high priority. 
Memory responses, which contain data from a block, are 
transmitted using low priority. The NI of the L2 cache interfaces 
has two buffered input ports, one for each channel of the NoC 
(port 0 and port 1). The output ports of the NI are not buffered. 
The advantage of using two physical channels avoids the 
contention of the L2 cache for long periods, such as in situations 
when the L2 cache is receiving a write-back block. In this 
situation, the other channel is free to receive and buffer service 
requests that will be handled as soon as the write operation ends.  

3.3 Cache Coherence Protocol 
According to the MSI cache-coherence protocol, any shared block 
can be in 3 states: modified – a copy of the block has been 
modified, therefore the L2 cache does not contain a valid entry of 
that block; shared – zero or several caches might contain an 
identical copy of the block which is stored in the L2 cache; invalid 
– block data is not valid. In addition to the three states of the MSI 
protocol, we propose the creation of the transition state (T). This 
state indicates that a given block is not updated in the L2 cache, 
but a write-back request has been already issued to the L1 cache 
which has modified the block. Requests that arrive at the L2 cache 
when the block is in T state are forwarded to the L1 cache that has 
modified the block. Section IV presents a more detailed 
explanation of the benefits of the transition state. 
Our work adopts a hybrid implementation of the protocol, being 
part of it implemented in hardware (in the cache controller) and 
part in software (in the microkernel). This design choice 
simplifies the hardware implementation because some 
mechanisms, such as DMA programming, are handled in 
software, by the microkernel. 

The cache controller is responsible for: (i) detecting and signaling 
hit/miss when the address accessing the cache changes; (ii) 
updating the tag memory; (iii) executing read and write 
operations. The microkernel is responsible for: (i) exchanging 
messages with the shared memory; (ii) replacing blocks when 
necessary; (iii) handling write-back operations. 

4. CACHE COHERENCE PROTOCOL 
OPTIMIZATIONS 
4.1 Invalidating cache lines 
Whenever a PE needs to modify a given block, the L2 cache must 
invalidate all valid entries of this block to prevent cache 
incoherence. An invalidation message is then sent to every PE 
sharing this block. Finally, the L2 authorizes the modification of 
the block by the requesting PE.  

In unicast-only NoCs, a unicast packet must be sent for each PE. 
Figure 2(a) shows a scenario where PE01 requests exclusivity of a 
block, which is in shared state. Two other PEs are currently 
holding a copy of this block (PE02 and PE03). Therefore, an 
invalidation message is sent to PE 02 and PE 03. Using unicast 
messages, the traffic generated on the NoC in this case increases 
according to the number of PEs sharing the block. Figure 2(b) 
shows a scenario where multicast is exploited. In this case, the L2 
cache issues a multicast message targeting several processors, 
reducing network traffic. The traffic reduction decreases the 
switching activity of the routers, therefore reducing energy 
consumption.  
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Figure 2 - Sequence diagram for a request of exclusivity on a 

shared block. 

4.2 Read request optimization 
The use of multicast messages might optimize a read operation on 
a block that is in modified state. The non-optimized operation 
occurs as shown in Figure 3(a). After receiving the modified 
block from PE02 (event 3), the L2 cache first writes the block into 
the memory bank, and then sends a copy of it to the requesting PE 
(PE01). In the optimized operation, the PE containing the 
modified block (PE02) sends a multicast message to both the 
requesting PE (PE01) and the L2 cache. 
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Figure 3 - Sequence diagram for a read operation of a 

modified block. 

4.3 Write request optimization 
To write on a block, the processor must read it beforehand. If the 
block that a given PE wants to modify is already in modified state, 
the PE holding the modified copy must execute a write-back 
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operation. Suppose PE01 wants to write on a modified block, only 
cached by PE02. PE01 sends a read-with-exclusivity request to 
the L2 cache, which, in the non-optimized implementation (Figure 
4(a)), sends a write-back request to PE02. After receiving the 
write-back response, the L2 cache sends a copy of the block to 
PE01 and updates the directory.  

In the optimized implementation (Figure 4(b)), after receiving the 
read-with-exclusivity request from PE01, the L2 cache updates 
the directory, setting PE01 as the holder of the modified copy of 
the block. Then, it sends a special write-back to PE02, which will 
send a copy of the block to PE01, and invalidate its copy of the 
block. Additional requests for this block may arrive at the L2 
cache before finishing this operation. To ensure sequential 
consistency, these operations must be blocked at PE01 until it 
finishes the operation on this block. 
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Figure 4 - Sequence diagram for a write-back after a write 

request. 

4.4 The Transition State  
The benefit of having a new state in the cache coherence protocol 
is the possibility of decreasing latency in some cases. This gain is 
achieved when forwarding requests that arrive at the L2 cache to 
the L1 cache that has an updated copy of the block being 
requested.  
Figure 5 presents the MPSoC configuration that will be used to 
illustrate a scenario that explains the operation of the transition 
state. Suppose PE03 holds a given block in modified state, and 
PE00 wants to read this block. A read miss occurs, resulting in a 
read request to the L2 cache (event 1 in Figure 6). When the L2 
cache receives the request of PE00, it searches for the address of 
PE whose L1 cache holds the block in modified state. This search 
is performed in the local directory of the L2 cache. A write-back 
request is issued to PE03 (event 2), setting the block from M 
(modified) to T (transition) state. Next, if another request arrives 
at the L2 cache, such as from PE05, for instance (event 3), instead 
of blocking the request until the block is updated, the L2 cache 
issues a read request of this block to PE03 (step 4). PE03 then 
sends a packet containing a copy of the cached block of its local 
cache to PE05 (step 7). This reduces the load of the L2 cache. 

This optimization is possible because, although after writing-back 
the block to the L2 cache and PE00 (events 5 and 6), PE03 still 
has a valid copy of that block. Therefore, it might serve a copy of 
the block to PE05. When the L2 cache receives the write-back 
packet (event 5) it sets the block as shared. 

Without the transition state, the standard coherence protocol 
would have to buffer in the L2 cache the read request from PE05 
and wait for: (i) the arrival of the write-back packet in the L2 
cache; and (ii) the update of the block in the L2 cache. In the 
proposed optimization, the PE holding the modified block (PE03) 

sends the block directly to PE05 just after finishing the write-back 
operation. This optimization tends to reduce the number of cycles 
required to send a copy of the block to the second PE which 
requested the read, as it does not require the read request to be 
block on the L2 cache until the finish of the write-back operation. 

PE00 L2 data
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PE02
(master)

PE05 PE04 PE03

 
Figure 5 - MPSoC configuration: 3x2 NoC, 5 PEs (1 master, 4 

slaves) and 1 L2 cache. 
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Figure 6 - Sequence diagram for the T state. 

5. EXPERIMENTS 
This section presents experiments performed to compare the 
optimized cache-coherence protocol presented in Section 4, 
against a non-optimized MSI directory-based protocol. 

5.1 Experimental Setup 
Two different implementations of an MPSoC platform were 
simulated in RTL-level using the ModelSim simulator. The 
platform used as a case study is configured as: 5x5 NoC mesh 
topology, containing 24 PEs (1 master and 23 slaves) and 1 L2 
cache bank. The first implementation, named OPT, employs the 
four optimizations described in Section 4. The second 
implementation, named NO-OPT, adopts a standard MSI 
directory-based protocol based on unicast messages only. In all 
experiments, the results evaluate the number of clock cycles, and 
the energy spent in communication between the PEs and the L2 
cache.   

The packets containing memory operations are generated by 
application tasks. To prevent the programmer from dealing with 
low-level aspects related to the memory architecture, a cache 
library was developed. Figure 7 shows an example of application, 
which uses two functions of the cache library: 
cache_read_block_word, which reads a word of a block 
(indicated by number 1 in Figure 7); cache_write_block_word, 
which writes to a given word of a shared block (indicated by 
number 2 in Figure 7). In the current example, the value 0x44 is 
written to the first word of block 1. 

To evaluate the consumed energy per memory transaction, the 
present work adopts the volume-based energy model proposed by 
Hu et al. [12]. Equation 1 computes the communication energy 
spent to transit 1 bit through a distance of n hops. 
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In Equation 1: ESbit (20.58 pJ/flit), ELbit (2.84 pJ/flit) and nhops 
correspond to the energy consumption of the router, in the 
interconnection wires and the number of hops to transmit 1 flit, 
respectively (65 nm technology).  

 
Figure 7 - Example of an application reading and writing to 

the shared memory. 
The energy model was calibrated using the ST/IBM CMOS 65 nm 
technology at 1.0 V, adopting clock-gating, 100 MHz clock 
frequency and injection rate of 10% of the available link 
bandwidth. The PrimePower tool generates the power and energy 
values used in Equation 1. 

5.2 Invalidating cache lines 
In situations where more than one cache is sharing the same block 
of the L2 cache, the memory controller needs to send invalidation 
messages to invalidate these copies before granting exclusivity to 
a PE. To evaluate the benefits of using multicast to propagate 
these messages, the number of caches sharing a copy of the same 
L2 block varies. Table 1 shows the number of clock cycles 
required to send invalidation messages to 3, 5 and 8 caches, 
respectively. Although with a smaller number of targets to 
invalidate, the first scenario (3 caches sharing a block) presents 
higher gain compared to the non-optimized implementation. This 
is due to the task mapping on the platform, which allowed the 
sending of only one multicast message (see Section 3.1), which 
significantly reduces the amount of data transmitted on the NoC. 
For the other scenarios (5 and 8 caches sharing a block), the use of 
multicast messages saves energy and improves performance at 
most 17.53%. 

Table 1 – Number of clock cycles and energy consumption of 
invalidate messages depending on the number of caches 

sharing a block. 

 Platform 3 caches 5 caches 8 caches 

Energy 
(pJ) 

NO-OPT 1635 2584 3798 
OPT 685 2073 2916 

 OPT gain vs NO-OPT 58.07% 19.76% 23.20% 
Clock 
Cycles  

NO-OPT 141 154 147 
OPT 129 127 129 

 OPT Gain vs NO-OPT 8.51% 17.53% 12.24% 

5.3 Read request optimization 
To evaluate the read optimization, a task after a cache-miss, must 
issue a read request to a modified block. Upon receiving the 
request, the L2 cache issues a write-back request to the PE, which 

holds exclusivity on the block being requested. In the OPT 
implementation, after receiving the write-back request, the PE 
sends a multicast message containing a copy of the block, both to 
the L2 cache and to the requesting PE.  

The experiments varied the distance, in hops, between the PE 
reading the block and the L2 cache. Figure 8 presents the results. 
The average energy reduction offered by the optimization is 12%. 
However, the NO-OPT implementation is slightly faster than the 
OPT implementation (in average 30 clock cycles), due to the 
higher complexity to treat multicast packets at each router, and the 
non-minimal path taken by these packets. 

 
Figure 8 - Energy consumption of the read operation on a 

modified block as the number of hops increases. 

5.4 Write request optimization 
To evaluate the write optimization, a task after a write cache-miss, 
must issue a read with exclusivity request to a modified block. 
Upon receiving the request, the L2 cache issues a write-back 
request to the PE, which holds the modified copy of the block 
being requested. In the OPT implementation, after receiving the 
write-back request, the PE sends a unicast message containing a 
copy of the block, only to the requesting PE, bypassing the L2 
cache. To evaluate this optimization, the placement of the L2 
cache is defined in Figure 11(a). The PE holding the modified 
copy of the block is fixed at PE00. The evaluated scenarios varied 
the position of the block writing in the cache. 

Figure 9 shows that there is an average reduction of 17% in the 
number of cycles required to finish the write operation. Also, 
Figure 10 shows that there is a reduction of up to 86.8% on the 
energy spent during this operation by the OPT implementation 
over the NO-OPT. The reason of this significant reduction is that 
long messages, containing data blocks, are transmitted only once, 
from PE to PE. The memory can be bypassed because its copy of 
the block would be altered right after.  

 
Figure 9 - Number of cycles required to execute a read 

operation on a modified block varying the location of the 
modified block. 
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Figure 10 - Energy consumed to execute a read operation on a 

modified block varying the location of the modified block. 

5.5 The Transition state 
To evaluate the addition of the transition state, a scenario where 2 
PEs issue subsequent reads to a modified block of the L2 cache is 
analyzed (this optimization was presented in Section 4.4). The 
first PE that issues a read request will benefit from the Read 
request optimization, whilst the second PE will benefit from the 
addition of the T state. The NoC feature enabling this 
optimization is the duplicated physical channels, because while 
the L2 cache controller monitors of the channels waiting for a 
write-back packet, the other channel can receive requests, such as 
a read request. 

The results show that the gains against the standard MSI protocol, 
in this case, are sensitive to the task and L2 cache mapping. In 
scenarios where the PE that issues the second read request is 
closer to the PE previously holding the modified copy of the 
block, there are gains both in performance of the protocol 
(decrease in clock cycles) and also a save on the energy spent 
during the operation. Figure 11(a) shows a scenario where PE18 
holds the modified copy of the block being accessed, PE10 is the 
second reader and the L2 cache is located at the upper left corner 
of the platform. In this case, the second read operation consumes, 
in the OPT version of the platform 19.035 pJ, against 42.893 for 
the NO-OPT version. This represents a 55% decrease in energy 
consumption. The number of clock cycles required is decreased 
by 7%.  In scenarios where the PE that issues the second read 
request is closer to the L2 cache, the addition of the T state 
increases the number of cycles, and the consumed energy. In 
Figure 11(b), the second reader is mapped on PE10, PE01 holds 
the modified copy being accessed and the L2 cache is located at 
the upper left corner. For this case, the energy consumed during 
this operation by the OPT implementation is 37.583 pJ, against 
30.621 for the NO-OPT. It represents a 22% increase on the 
energy consumed. The number of clock cycles is increased by 5%.  

PE13 PE12 PE11 PE10 PE0F

PE0A PE0B PE0C PE0D PE0E

PE09 PE08 PE07 PE06 PE05

PE00 PE01 PE02 PE03 PE04

Cache 
L2 PE15 PE16 PE17 PE18

1st Reader

Master

(modified block)

2nd Reader

(a) Optimized task mapping. 
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PE0A PE0B PE0C PE0D PE0E

PE09 PE08 PE07 PE06 PE05

PE00 PE01 PE02 PE03 PE04

Cache 
L2 PE15 PE16 PE17 PE18

1st Reader

2nd Reader

(modified block) Master  
(b) Unoptimized task mapping. 

Figure 11 –Task mappings for the T state optimization. 
To reduce energy consumption for all scenarios, this optimization 
must be activated dynamically according to the task mapping. 

Upon receiving a read request, a module of the L2 cache 
calculates the Manhattan distance between PEs (PE reading and 
PE holding the modified block) and L2 cache, and chooses if it is 
best to use the T state optimization or block the request until 
finishing the write-back operation for this block. 

6. CONCLUSIONS 
This work is one of the first attempts to explore the benefits NoCs 
can bring to cache-coherence protocols, evaluating a complete 
system at the RTL level (PEs and the NoC), including the 
software (microkernel and applications) running on top of it. 
By using the proposed protocol optimizations, results show that it 
is possible to reduce the energy consumed by the operations up to 
86.8% (average reduction: 39%) and to achieve an improvement 
of 17.53% in the execution time (clock cycles). All optimizations, 
except the Transitions state, always reported energy reduction. 
The Transition state optimization is sensible to the task mapping.  

Future works include: (i) couple the proposed techniques to 
mapping heuristics that consider the memory position; (ii) data 
migration policies to optimize the memory performance; (iii) use 
of parallel benchmarks to characterize performance; (iv) extend 
the number of memory-IPs in the memory hierarchy, resulting in a 
DSM architecture; (v) study and implement a way to distribute (or 
to hierarchize) the directory used by the cache coherence protocol. 
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