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Abstract— Application-specific Network-on-Chip allows 
optimization for the interconnection to minimize its cost. When 
used with streaming applications, large flows of data can be 
predicted. However, these flows can be modified during the 
applications providing a dynamic flow graph. In that case, 
applying on off-line optimization leads to an over-sizing of the 
NoC. On the other hand, dynamic reconfiguration leads to 
unordered data deliveries with costly re-ordering units. In this 
paper, we propose a coarse grain dynamic reconfiguration which 
avoids data re-ordering requirement. We show that the proposed 
solution is efficient to deal with communication hot-spots, with a 
small area overhead, and can save up to 33% of latency.  

Keywords: dynamic routing, hot spots, re-ordering 

I.  INTRODUCTION 
Multimedia and telecom applications are some examples of 

systems requiring the most high performance computing part. 
For the first one, starting from 3D video to go to augmented 
reality leads to exponentially growing need for performance. 
Similarly, 3GPP-LTE applications and their successors are 
multiplying the complexity in two ways: increased bandwidth 
with multiple hundred of Mbits/s targeted; improved quality of 
service by using high-level coding schemes in Multiple Input 
Multiple Output (MIMO) antennas such as directional beam 
forming.  

Both multimedia and telecom applications will be mapped 
on multi-core architectures consisting on many tens to 
hundreds of cores in the most advanced systems. In such a 
context, all these applications are sharing a common issue: the 
growing bandwidth demand on communication between cores. 
As an example, let’s take a high resolution video (1080*1240 
pixels image size) at 60 frames per second rate providing a raw 
2.6Gbits/s video flow. If we consider 20 to 50 processing steps, 
it leads to 52 up to 130 Gbits/s internal bandwidth 
requirements. The problem to solve is twofold: providing the 
necessary bandwidth and associated quality of service while 
limiting the interconnect area and power consumption.  

Network-on-Chip (NoC) architectures are an evident part to 
solve this problem as bus-based System-on-Chip (SoC) is far 
from providing the needed parallelism level. In a general 
purpose system with no special information on the traffic, these 
high bandwidth requirements will lead to over-designing and 

thus will not meet the low area/power consumption objective. 
Fortunately, the targeted applications are streamed-based: some 
important flows of data will be transferred from a core to 
another in a well-known sequencing.  

As a result, some previous works [1],[2] have proposed 
application specific NoC architectures associated to dedicated 
routing algorithms. However, the variety of applications (large 
number of modes in telecommunication, many algorithms in 
video and image processing) associated to technology masks 
costs are leading to more flexible, more generic, more 
programmable SoC. Similarly, applications are moving to be 
more data-dependent and despite the fact that flows of data are 
still predictable, their sizes and their occurrence in time become 
difficult to compute off-line. This problem can lead to over-
sizing the NoC, as a same connection used by different paths in 
different time slots will be designed in a worst case 
configuration. In most of the configurations, this worst case 
generating a communication hot-spot will never occur but must 
be taken into consideration for safety reasons.  

One way to solve this issue is to propose a dynamic flow 
management. Such strategies are efficient but lead to two issues 
which must be solved: assuring that the new routing is 
deadlock-free; re-ordering the data at the arrival. The first 
problem has been solved in some cases (especially X-Y 
routing) by limiting the flexibility of dynamicity [3]. The 
second issue is solved by limiting packets sizes, putting tags on 
the packets and providing large registers at the destination for 
re-ordering the packets considering their tags. The complexity 
of such a mechanism is important, as well as the area overhead.  

In this paper we propose a re-ordering free dynamic flow 
reconfiguration to avoid communication hot-spots for source-
routing NoC. Section II shows some previous works related to 
dynamic reconfiguration. Section III presents the concepts of 
our proposal as well as the proof of the re-ordering free 
property. Section IV shows the implementation results and the 
area overhead of the proposed method while section V proves 
the efficiency of the proposed method. 

II. RELATED WORKS 
Routing algorithms have been widely studied in the past for 

different topologies and different purposes, such as average 
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congestion diminution, power reduction or fault-tolerance. In 
this section, we focus on dynamic routing works.  

In [3], M. Li et al. present a deadlock-free dynamic routing 
algorithm named DyXY. With this algorithm, each packet 
follows the shortest path between the source and the target. As 
it is influenced by the XY routing algorithm, each router 
arbitrates routing decisions between two output ports. If the 
current router and the destination are aligned on X or Y axis 
then the packet is straightly routed to the destination. In that 
case, the congestion information is not taken into account. On 
the contrary, if the current router and the destination are not 
aligned, the congestion status of the neighboring routers toward 
the destination is checked. Then, the packet is sent to the less 
jammed router. Buffer occupation statistic is used to spot these 
congestions. This solution gives good results in an XY manner 
routing but does not consider the re-ordering issue in the target 
router and do not consider source routing. 

J. Hu et al. propose, in [4], the DyAD routing scheme 
which uses the advantages of both deterministic and adaptive 
routing strategies. As in [3], routing decisions are taken in each 
router considering the close-by congestion environment. But 
contrary to this previous method, if no congestion is detected a 
deterministic routing strategy is used. As soon as a congestion 
is found, the routing switches to an adaptive strategy. As 
explained in the paper, the DyAD concept only is presented 
and it does not consider the re-ordering issue which can occur. 

P. Lotfi-Kamran et al. elaborate in [5] the BARP protocol 
which operates on two mechanisms to avoid congestion. In the 
first one, it tries to use all the network resources. Each router 
uniformly distributes the incoming flow to all its output ports 
located on the shortest path to the target. With this distribution 
the probability of presences of congestions is decreased but not 
suppressed. The second mechanism aims at spotting the near 
congestion routers and modifying the associated routing path. 
The congestion status of each router is monitored accordingly 
to its input buffer occupation. When a router is in a near 
congestion state, it asks the upstream routers to change the 
routing path. The difference with [3] and [4] is that the 
congestion detection and the routing path modification are not 
done in the same router.  

In [6], P. Gratz et al. present the Regional Congestion 
Awareness (RCA) which exploits local and non-local 
congestion information in order to provide a global picture of 
congestions in the network. RCA uses a monitoring network to 
transmit congestion information. The output port choice is 
made on a 50-50 weight assignment between local congestion 
status and non-local congestion information. As the proposed 
work relies on a minimal routing, if too much weight is put on 
the non-local information, the routing strategy is influenced by 
remote parts of the network which may not be reached. When 
compared with local congestion awareness, this approach is 
reducing latency and improving throughput. 

L. Tedesco et al. propose in [7] an adaptive source routing 
mechanism based on a monitoring of congestions on the 
routing path. The monitoring phase is done by the header of 
each data packet. Once injected into the network, headers 
collect the congestion status of a specific router on the path. 
Congestion information is then gathered in the target node 
which performs a congestion detection based on a threshold 

determining the QoS requirement. Once congestion is detected, 
the source node receives a special packet containing the 
location of the congestion. As this study relies on a source 
routing mechanism, the source node computes a new path, 
congestion and deadlock-free based on turn-even model. 
However, this mechanism requires a re-ordering strategy in 
order to reconstruct the original message in the target router. 
Moreover, the cost in terms of hardware is not identified, 
leading to difficult estimation of the real benefit.  

In this paper, we tackle the re-ordering issue due to the 
adaptive routing. As this re-ordering requires storing a potential 
high number of packets before delivering them to the target, it 
is consuming a large area not compatible with embedded 
systems constraints. Contrary to previous works, we propose a 
solution where, by construction, the re-ordering is not needed. 
In other words, we propose a method which performs an 
adaptive source routing mechanism and guarantees the right 
order in the data deliveries without requiring any re-ordering 
unit in the target node. We also propose an implementation of 
this mechanism showing its small overhead. 

III. DYNAMIC FLOW RECONFIGURATION CONCEPTS 
In the proposed model, we leverage on two concepts: a flow 

control by the mean of a credit/data exchange mechanism 
between the source of data and the corresponding target; the 
source routing which gives the possibility to change the path at 
the source node and avoid complex mechanisms in the routers 
which can decrease their frequency. The routers themselves are 
slightly modified for path monitoring purposes but do not 
tackle with the congestion detection.  

A. Credit/Data exchange mechanism 
The exchange of credits and data between the source and 

the destination has been introduced in a previous work 
presented in [8]. A credit flow is emitted by the receiver and 
sent towards the sender. Its purpose is to allow the source to 
send a given number of data flits. As a consequence, the source 
node cannot send any data into the network unless it is sure that 
the receiving node can accept it in its input buffer. In this way, 
no data can be blocked inside the NoC. Therefore, the 
communication is controlled by the receiving node through this 
credit flow. “Credit” packets convey the availability of the 
target node’s buffer to receive data. Each “credit” packet 
contains N credits. So, when the receiving node sends one 
“credit” packet, the source will be able to send N data. 
Moreover, this “credits/data” mechanism can be used for every 
communication, whatever its length.  

Definition 1: a message is a communication of a length M 
flits between a dedicated source and its related target resource 
corresponding to a functional data exchange.  

Definition 2: a “credit” packet is a single flit packet. So it 
has only a slim impact on the other existing flows. Each packet 
carries N credits. If 

N
M  is not an integer, the last “credit” 

packet to be sent carries 
��
�

��
�−

N
M

N
M  credits in order to complete 

the communication. 
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An example of the credit transmission is shown in Figure 1. 
Here, the length of the communication is 13 packets and a 
“credit” packet allows the sender to transmit 4 packets. So 3 
“credit” packets will be sent and an extra “credit” packet will 
allow the source node to inject one quarter of the usual credit 
amount, i.e. one last packet into the network. 

P

M=13.P

N=4.P N N

M=(13/4).N
M=3.N+N/4  

Figure 1 Credit transmission 

B. Dynamic reconfiguration strategy 
Due to the dynamic behavior of the communication in the 

NoC, hot spots can spontaneously appear decreasing the overall 
performance of the network. While the major part of the studies 
regarding the use of adaptive routing mechanisms limited the 
analysis of congestion on the close-by environment, our 
solution proposes similar congestion monitoring and source-
based reconfiguration mechanisms than the work in [7]. It 
achieves a monitoring of the traffic on the entire routing path, 
detects possible congestions and modifies the path followed by 
the data flow in order to be congestion as well as deadlock-free.  

As said previously, the monitoring phase is performed by 
the header of each data packet. No additional flow is required 
for this phase; therefore, the NoC utilization remains the same. 
The first data packet allocates a unique identification tag to 
each node on the routing path. Then, each packet sent on the 
same path collects the congestion status of a particular router 
identified by its tag. As a result, the target node gathers the 
congestion information of all the routers on the routing path 
after receiving N+1 packets. N corresponds to the number of 
hops between the source and target nodes. Each time the entire 
path is monitored, the target resource checks the presence of 
congestion. If detected, a new path is computed. However, [7] 
do not tackle the re-ordering issue which appears when 
adaptive routing is performed. 

C. Re-ordering free methodology 
Based on the credit/data system, the next part will show 

how to combine it with an adaptive source routing strategy in 
order to have a system that can dynamically avoid congestions 
and guarantee the order of data deliveries. The following 
process describes the mechanism and is illustrated in Figure 2 
(the thin arrows symbolize the “credit/alarm” path while the 
wide arrows represent the data path): 

1) The first step of every communication is to configure the 
source and the target. Configuration and communication 
protocols are described in [8]. Then, the first packet sent 
prepares the path for the reconfiguration by giving each router 
a unique identifier in the path. 

2) The target transmits its first “credit” packet, which 
contains N credits, to the source node as shown in Figure 2a. 
The data flow resulting from these credits performs the 
monitoring of the path in order to spot congestions. 

source

target

Credits sent: N
Data received: 0

Data sent: 0
Credits received: N

source

target

Credits sent: N’
Data received: D

Data sent: D<N’: amount of credit not used
Credits received: N’

(a) (b) 

source

target

Credits sent: N’
Data received: D

Data sent: D<N’
Credits received: N’

Congestion
detected

 

source

target

ALARM packet transmission

(c) (d) 

source

target

Credits sent: N’
Data received: 0

Data sent: 0
Credits received: N’

New path computation

source

target

Credits sent: N’
Data received: D

Data sent: D<N’
Credits received: N’

(e) (f) 
Figure 2 Non-blocking, re-ordering-free, adaptive source routing example 

3.a) If no congestions are detected, the source node uses its 
credits and the target node sends credits accordingly to its 
buffer’s availability (Figure 2b). The “credit/data” cycle 
continues. 

3.b) A congestion due for example to a local hot spot can be 
detected at the target resource. The detection is made by a 
threshold applied to the information of average time spent in a 
router. The “credit/data” cycle breaks. The target node stops 
sending any credits (Figure 2c). 

4) At this point, the sender has no idea that congestion has 
been detected and keeps sending data through the current path 
and the target node keeps receiving the data, waiting for the 
source to stop the transmission when no credit will be 
available. The fact that the target resource waits until the 
amount of credits it sent equals the amount of data it received 
guarantees the right order in the data arrival.  

5) Once all data have been sent and received, the target 
node transmits a single flit: the “Alarm” packet described in 
[7]. This step is illustrated in Figure 2d. Its purpose is to inform 
the source node of the presence and location of congestions. 
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Once the “Alarm” packet has been transmitted, the target node 
starts sending credits again. 

6) Once the sender receives the Alarm packet, it stops 
sending any data packet even if it receives credits. Then, it 
computes a new path avoiding the detected congestions, as 
shown in Figure 2e. This path will be taken into account for the 
next packet emission. When the computation is done, the 
“credit/data” cycle resumes. 

7) As a result, the data are injected into the network and 
reach the target node through the congestion-free path. This 
final step is shown in Figure 2f. 

This sequencing guarantees the ordering of packets at the 
destination resource. However, there is a cost to pay, both in 
terms of hardware overhead and latency overhead. Indeed, 
when congestion is detected, the target node stops the credit 
flow up to completion of the corresponding data flow, which 
leads to a certain latency overhead. In order to answer these 
overhead issues, an implementation has been made and the 
corresponding hardware overhead is discussed in the next 
section; correspondingly, section V investigates the gain of the 
system depending on the message size 

IV. IMPLEMENTATION 

A. Architecture presentation 
For testing the proposed scheme, we added the dynamic 

reconfiguration scheme to the heterogeneous architecture 
dedicated to streaming applications presented in [8]. This 
architecture uses a 5x5 mesh-based topology. It deals with a 
minimal source routing and a wormhole packet policy is used. 
The whole architecture is Globally Asynchronous Locally 
Synchronous (GALS), i.e. each resource has its own clock 
domain and GALS interfaces are connecting the unit to the 
NoC, which is implemented in an asynchronous manner.  

The Network Interfaces (NI) connects the resources to the 
NoC and performs the flow control including the credit 
mechanisms previously presented. As shown in Figure 3, this 
block also performs the configuration of the communication as 
well as the core attached to it. A streaming unit is used for 
handling the data flow sequencing, and thus giving a 
homogeneous programming model for the heterogeneous units. 
Finally, the NI also tackles the interruptions from the core and 
communication units through an interruption manager. 

B. Monitoring step 
The monitoring phase does not use any additional flow but the 
encoding of data packet has been slightly modified compared 
to [8]. The new packet encoding is illustrated in Figure 4. The 
“router id” field holds the identifier of the router this header has 
to monitor. When a data packet’s header enters a router, this 
field is compared with the router’s tag. If both of them match, 
the congestion information is stored in the “congestion” field of 
the header flit and transmitted to the target node. The 
congestion is evaluated through the flit’s average crossing time 
(ACT) in the current router. The “congestion” field refers to a 
range of ACT. 

Network Interface

CoreCore

to/from
NoC

to/from
NoC

Interrupt

Enable task

Config request

Credit
Data Data

Exec/End

Output 
Control

Output 
Control

Configuration UnitConfiguration Unit

Streaming UnitStreaming Unit

Input 
Control
Input 

Control

Config Exec/End

RWD                RWD                
Read/Write access to all address map

Slots

Slots

Core
Slots

Interrupt Manager Interrupt Manager 

End of task

Config

Credit

Data

Data

Configurations

New Path
Computing Unit

New Path
Computing Unit

Congestion
Detection Unit
Congestion

Detection Unit

Alarm

New Path

Congestion

Alarm

Exec/EndConfig

On/Off

On/Off

 

Figure 3 Network Interface with adaptive routing mechanism 

Moreover, as mentioned in [8], initial and final packets of a 
message are tagged with bit 31, named Begin Of Message 
(BOM), and bit 30, named End Of Message (EOM). However, 
a new feature has been introduced for the adaptive routing 
implementation. When BOM=1 and EOM=1, the current 
packet monitors the last router of the routing path. This event 
will trigger a congestion analysis in the target node. 

18 bits3 bits

33

B
O

M

E
O

M 29 24 21 20 18 17 0

1 0 X X 0 Router Id Congestion Path to target

0 0 Flit 0

…

0 1 Flit n

33

B
O

M

E
O

M 29 24 21 20 18 17 0

1 0 X X 0 Router Id Congestion Path to target

0 0 Flit 0

…

0 1 Flit n

4 bits

Header

Data
flits

 
Figure 4 Data packet encoding 

The “Alarm” packet is a new packet, designed for the 
reconfiguration issue. Its encoding structure is detailed in 
Figure 5. The “congestion” field holds a 7-bit vector. Each bit 
represents a router on the path and its congestion status. At the 
source node, this information will be used for the dynamic re-
routing. 

33 27 24 18 17 0
1 1 0 0 1 1 0 Congestion Path to target

33 27 24 18 17 0
1 1 0 0 1 1 0 Congestion Path to target  

Figure 5 Alarm packet encoding 

The “Alarm” flow is made of a single-flit packet. 
Moreover, this flow is emitted only when a congestion is 
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detected. Therefore, it has an even slimmer impact on the NoC 
than the credit flow. 

C. RTL design 
As stated in the previous section, an evaluation of the 

hardware overhead of the proposed scheme is important to 
judge its efficiency. To do so, we wrote an RTL (Register 
Transfer Level) description of the proposed scheme included in 
the NI proposed in [8]. At the end, two units were added. This 
NI architecture is illustrated in Figure 3. 

The first new unit is the Congestion Detection Unit (CDU). 
It stores each congestion status of all routers on the routing 
path. When the congestion analysis is triggered, the CDU 
identifies jammed routers accordingly to a given threshold. In 
our implementation, the ACT in a congestion free context is 
2ns and the threshold to detect a congestion is for ACT greater 
than 3ns. If at least one congestion is detected, this information 
is sent to the Input Control Unit which stops “credit” packets 
emission. When all data have been received, it creates and 
emits the appropriate “Alarm” packet and resumes “credit” 
packets emission. The second unit is the New Path Computing 
Unit (NPCU) which receives the alarm packet from the 
network and then performs the adaptive routing mechanism. 
Starting from an event which is the occurrence of an alarm, the 
unit stops data emission and extracts the congested router 
identifier before computing the congestion free path. When it is 
done, NPCU resumes data emission with the new path. 

D. Implementation results 
The NI was generated and synthesized with the logic 

synthesis tool Design Topologic Compiler from Synopsys in a 
CMOS Low-Power 65nm technology. The power consumption 
is computed on the back annotated netlist using the Synopsys 
Prime Power tool. The results regarding the overhead caused 
by the CDU and NPCU are presented in TABLE I. The results 
show a total overhead of approximately 11% in terms of area 
and 7% in terms of power consumption without impacting the 
performance of the initial NI (400 MHz). This small overhead 
is clearly compatible with such heterogeneous multi-core. 

TABLE I.  IMPLEMENTATION RESULTS 

 CDU NPCU 
Area (65nm) 

[% of network interface] 
1,827μm² 
[ 1.8% ] 

9,504μm² 
[ 9.2% ] 

Max. frequency 400MHz 400MHz 
Power @fmax 

[% of network interface] 
0.11mW 
[ 1.8% ] 

0.32mW 
[ 5.2% ] 

E. Comparison with re-ordering 
Now, let’s consider the equivalent area of the proposed 

method traduced in terms of registers. A Flip-Flop (FF) 
“DFPQ” with a driving factor of 9 has an area of 9.88 �m² in 
the technology used in this paper (LP 65nm). Considering all 
the area occupied by registers, this means 1147 FF. It results in 
a total of 36 32-bit words or 18 64-bit words. It results that only 
two to four 8-word packets can be re-ordered with the same 
area than the proposed method one, without taking into account 
logic overhead. This is clearly not enough when considering 
even a small-size NoC. 

V. LATENCY IMPROVEMENT 
Based on the previously presented architecture and its 

corresponding implementation, we have performed some 
experiments to see the impact, positive or negative, of the 
rerouting algorithm on the messages latency. Indeed, as stated 
in section III, the re-routing phase without re-ordering implies a 
preliminary latency overhead which must be compensated by 
the gain obtained thanks to hot spots avoidance. In order to 
evaluate the efficiency of the method, the question to answer is 
to know the minimum size of the messages from which the 
rerouting scheme has a gain compared to the hot spot duration. 
In the following of this section, a hot spot scenario is described 
and used for this evaluation. 

A. Evaluation Scenario 
Figure 6 displays the scenario used to evaluate the latency 

reduction caused by the adaptive routing strategy. The main 
communication occurs between the nodes labeled S and T. The 
hotspot communication occurs between H1 and H2. The 
platform used allows a SystemC-TLM/HDL co-simulation 
mode. In order to simulate the implementation of the adaptive 
routing mechanism, the VHDL version is used for the 
resources S and T and the rest of the network uses the SystemC 
TLM implementation. 

The length of the message sent between S and T varies 
between 32 and 8192 flits. Each data packet contains 8 flits and 
a credit packet contains 8 credits. To avoid slack in the 
credit/data mechanism, the FIFOs on each side are fixed to 16 
places. Similarly, the hot-spot is generated with 8-flit data 
packets. In order to see the effect of the hot-spot size, the total 
number of flits transmitted in a hot-spot message may vary 
from 32 to 8192. For the simulation, hot-spots and main 
communications start simultaneously in order to avoid long 
simulation time. However, it does not loose in generality, as it 
represents the moment the hot spot appears in a real application 
communication. 

H1

S H2

T  
Figure 6 Scenario used for latency evaluation 

The first packet performs the session establishment between 
the source and the target and the following packets realize the 
network monitoring. Consequently, a 16-flit message, divided 
into 2 8-flit packets can only monitor the first router of the path 
and will be of poor quality. On the opposite, a 1024-flit 
message, divided into 128 8-flit packets can monitor a path 
through 127 routers. In our case, the 7-router path will be 
monitor several times during long messages transmission. The 
results obtained through simulation are shown in Figure 7. As 
shown in Figure 6, a congestion is expected to be detected on 
the third of the six routers present on the routing path. 
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Figure 7 Latency reduction according to the message length and the hot spot communication length 

 
For a 32-flit message, no latency reduction is observed. 

Indeed, this message is split into 4 8-flit packets. The first 
packet prepares the path for the monitoring phase and the three 
following ones monitor the three first routers. The congestion is 
detected by the last packet of the communication. Therefore, 
this detection occurs too late. For a 64-flit message, split into 8 
8-flit packets, no latency reduction is observed. This message 
can monitor 7 routers and this path needs to monitor 6 routers. 
So, once the all path has been monitored, only one packet 
remains in the source node. However, it still has a few credits 
left. As a result, the last packet is sent while the target node 
waits for all the credits sent to be used. 

A 32-flit hot spot is too short to be detected. Indeed, the 
time from the emission of the first packet and the emission of 
the fourth one, which will monitor the congested router, is 
greater than the hot spot duration. Therefore, no congestion can 
be detected and no latency reduction is observed. For a 64-flit 
hot spot, the reconfiguration system extends the overall latency. 
Indeed, the congestion is detected, the new path computation is 
triggered but the hot spot communication ends during this 
computation. So at the end, the latency is extended by the path 
computation and the “credit”/data flows stopping. In this 
scenario, 46 clock cycles are added to the latency. For a 128-
flit hot spot, the reconfiguration system slightly extends the 
overall latency. In this case, the hot spot communication ends a 
small time after the new path has been used. The gain produces 
by the reconfiguration strategy cannot make up for its latency. 

For a message length greater or equal than 128 flits and for 
a hot spot length greater or equal than 256 flits, latency 
reduction is observed. For a given message length, this 
reduction increases until the hot spot length becomes greater 
than the message one. After this point, the latency reduction 
levels off. This value represents the greatest latency reduction 
that can obtain a message of this length. Moreover, this value 
increases with the message length and tends toward 33%. 

VI. CONCLUSION 
In this paper, we have presented a coarse grain dynamic 

routing reconfiguration for streaming applications. The 
proposed scheme applied to a source-routing is based on a 
credit mechanism associated to a monitoring process. It avoids 
costly data re-ordering and shows an overhead of less than 4 
packets re-ordering. Furthermore, we show that the proposed 
solution is efficient to deal with communication hot-spots 
when messages and hot-spots have sufficient length. As a 
result, up to 33% of latency can be saved. 
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