
Dynamic Flow Reconfiguration Strategy to Avoid
Communication Hot-Spots

Romain Prolonge, Fabien Clermidy
CEA-LETI-MINATEC

Grenoble, FRANCE
{romain.prolonge, fabien.clermidy}@cea.fr

Leonel Tedesco, Fernando Moraes
FACIN-PUCRS

Porto Alegre, BRAZIL
{leonel.tedesco, fernando.moraes}@pucrs.br

Abstract— Application-specific Network-on-Chip allows
optimization for the interconnection to minimize its cost. When
used with streaming applications, large flows of data can be
predicted. However, these flows can be modified during the
applications providing a dynamic flow graph. In that case,
applying on off-line optimization leads to an over-sizing of the
NoC. On the other hand, dynamic reconfiguration leads to
unordered data deliveries with costly re-ordering units. In this
paper, we propose a coarse grain dynamic reconfiguration which
avoids data re-ordering requirement. We show that the proposed
solution is efficient to deal with communication hot-spots, with a
small area overhead, and can save up to 33% of latency.

Keywords: dynamic routing, hot spots, re-ordering

I. INTRODUCTION
Multimedia and telecom applications are some examples of

systems requiring the most high performance computing part.
For the first one, starting from 3D video to go to augmented
reality leads to exponentially growing need for performance.
Similarly, 3GPP-LTE applications and their successors are
multiplying the complexity in two ways: increased bandwidth
with multiple hundred of Mbits/s targeted; improved quality of
service by using high-level coding schemes in Multiple Input
Multiple Output (MIMO) antennas such as directional beam
forming.

Both multimedia and telecom applications will be mapped
on multi-core architectures consisting on many tens to
hundreds of cores in the most advanced systems. In such a
context, all these applications are sharing a common issue: the
growing bandwidth demand on communication between cores.
As an example, let’s take a high resolution video (1080*1240
pixels image size) at 60 frames per second rate providing a raw
2.6Gbits/s video flow. If we consider 20 to 50 processing steps,
it leads to 52 up to 130 Gbits/s internal bandwidth
requirements. The problem to solve is twofold: providing the
necessary bandwidth and associated quality of service while
limiting the interconnect area and power consumption.

Network-on-Chip (NoC) architectures are an evident part to
solve this problem as bus-based System-on-Chip (SoC) is far
from providing the needed parallelism level. In a general
purpose system with no special information on the traffic, these
high bandwidth requirements will lead to over-designing and

thus will not meet the low area/power consumption objective.
Fortunately, the targeted applications are streamed-based: some
important flows of data will be transferred from a core to
another in a well-known sequencing.

As a result, some previous works [1],[2] have proposed
application specific NoC architectures associated to dedicated
routing algorithms. However, the variety of applications (large
number of modes in telecommunication, many algorithms in
video and image processing) associated to technology masks
costs are leading to more flexible, more generic, more
programmable SoC. Similarly, applications are moving to be
more data-dependent and despite the fact that flows of data are
still predictable, their sizes and their occurrence in time become
difficult to compute off-line. This problem can lead to over-
sizing the NoC, as a same connection used by different paths in
different time slots will be designed in a worst case
configuration. In most of the configurations, this worst case
generating a communication hot-spot will never occur but must
be taken into consideration for safety reasons.

One way to solve this issue is to propose a dynamic flow
management. Such strategies are efficient but lead to two issues
which must be solved: assuring that the new routing is
deadlock-free; re-ordering the data at the arrival. The first
problem has been solved in some cases (especially X-Y
routing) by limiting the flexibility of dynamicity [3]. The
second issue is solved by limiting packets sizes, putting tags on
the packets and providing large registers at the destination for
re-ordering the packets considering their tags. The complexity
of such a mechanism is important, as well as the area overhead.

In this paper we propose a re-ordering free dynamic flow
reconfiguration to avoid communication hot-spots for source-
routing NoC. Section II shows some previous works related to
dynamic reconfiguration. Section III presents the concepts of
our proposal as well as the proof of the re-ordering free
property. Section IV shows the implementation results and the
area overhead of the proposed method while section V proves
the efficiency of the proposed method.

II. RELATED WORKS
Routing algorithms have been widely studied in the past for

different topologies and different purposes, such as average

2011 14th Euromicro Conference on Digital System Design

978-0-7695-4494-6/11 $26.00 © 2011 IEEE

DOI 10.1109/DSD.2011.72

519

2011 14th Euromicro Conference on Digital System Design

978-0-7695-4494-6/11 $26.00 © 2011 IEEE

DOI 10.1109/DSD.2011.72

519

congestion diminution, power reduction or fault-tolerance. In
this section, we focus on dynamic routing works.

In [3], M. Li et al. present a deadlock-free dynamic routing
algorithm named DyXY. With this algorithm, each packet
follows the shortest path between the source and the target. As
it is influenced by the XY routing algorithm, each router
arbitrates routing decisions between two output ports. If the
current router and the destination are aligned on X or Y axis
then the packet is straightly routed to the destination. In that
case, the congestion information is not taken into account. On
the contrary, if the current router and the destination are not
aligned, the congestion status of the neighboring routers toward
the destination is checked. Then, the packet is sent to the less
jammed router. Buffer occupation statistic is used to spot these
congestions. This solution gives good results in an XY manner
routing but does not consider the re-ordering issue in the target
router and do not consider source routing.

J. Hu et al. propose, in [4], the DyAD routing scheme
which uses the advantages of both deterministic and adaptive
routing strategies. As in [3], routing decisions are taken in each
router considering the close-by congestion environment. But
contrary to this previous method, if no congestion is detected a
deterministic routing strategy is used. As soon as a congestion
is found, the routing switches to an adaptive strategy. As
explained in the paper, the DyAD concept only is presented
and it does not consider the re-ordering issue which can occur.

P. Lotfi-Kamran et al. elaborate in [5] the BARP protocol
which operates on two mechanisms to avoid congestion. In the
first one, it tries to use all the network resources. Each router
uniformly distributes the incoming flow to all its output ports
located on the shortest path to the target. With this distribution
the probability of presences of congestions is decreased but not
suppressed. The second mechanism aims at spotting the near
congestion routers and modifying the associated routing path.
The congestion status of each router is monitored accordingly
to its input buffer occupation. When a router is in a near
congestion state, it asks the upstream routers to change the
routing path. The difference with [3] and [4] is that the
congestion detection and the routing path modification are not
done in the same router.

In [6], P. Gratz et al. present the Regional Congestion
Awareness (RCA) which exploits local and non-local
congestion information in order to provide a global picture of
congestions in the network. RCA uses a monitoring network to
transmit congestion information. The output port choice is
made on a 50-50 weight assignment between local congestion
status and non-local congestion information. As the proposed
work relies on a minimal routing, if too much weight is put on
the non-local information, the routing strategy is influenced by
remote parts of the network which may not be reached. When
compared with local congestion awareness, this approach is
reducing latency and improving throughput.

L. Tedesco et al. propose in [7] an adaptive source routing
mechanism based on a monitoring of congestions on the
routing path. The monitoring phase is done by the header of
each data packet. Once injected into the network, headers
collect the congestion status of a specific router on the path.
Congestion information is then gathered in the target node
which performs a congestion detection based on a threshold

determining the QoS requirement. Once congestion is detected,
the source node receives a special packet containing the
location of the congestion. As this study relies on a source
routing mechanism, the source node computes a new path,
congestion and deadlock-free based on turn-even model.
However, this mechanism requires a re-ordering strategy in
order to reconstruct the original message in the target router.
Moreover, the cost in terms of hardware is not identified,
leading to difficult estimation of the real benefit.

In this paper, we tackle the re-ordering issue due to the
adaptive routing. As this re-ordering requires storing a potential
high number of packets before delivering them to the target, it
is consuming a large area not compatible with embedded
systems constraints. Contrary to previous works, we propose a
solution where, by construction, the re-ordering is not needed.
In other words, we propose a method which performs an
adaptive source routing mechanism and guarantees the right
order in the data deliveries without requiring any re-ordering
unit in the target node. We also propose an implementation of
this mechanism showing its small overhead.

III. DYNAMIC FLOW RECONFIGURATION CONCEPTS
In the proposed model, we leverage on two concepts: a flow

control by the mean of a credit/data exchange mechanism
between the source of data and the corresponding target; the
source routing which gives the possibility to change the path at
the source node and avoid complex mechanisms in the routers
which can decrease their frequency. The routers themselves are
slightly modified for path monitoring purposes but do not
tackle with the congestion detection.

A. Credit/Data exchange mechanism
The exchange of credits and data between the source and

the destination has been introduced in a previous work
presented in [8]. A credit flow is emitted by the receiver and
sent towards the sender. Its purpose is to allow the source to
send a given number of data flits. As a consequence, the source
node cannot send any data into the network unless it is sure that
the receiving node can accept it in its input buffer. In this way,
no data can be blocked inside the NoC. Therefore, the
communication is controlled by the receiving node through this
credit flow. “Credit” packets convey the availability of the
target node’s buffer to receive data. Each “credit” packet
contains N credits. So, when the receiving node sends one
“credit” packet, the source will be able to send N data.
Moreover, this “credits/data” mechanism can be used for every
communication, whatever its length.

Definition 1: a message is a communication of a length M
flits between a dedicated source and its related target resource
corresponding to a functional data exchange.

Definition 2: a “credit” packet is a single flit packet. So it
has only a slim impact on the other existing flows. Each packet
carries N credits. If

N
M is not an integer, the last “credit”

packet to be sent carries
��
�

��
�−

N
M

N
M credits in order to complete

the communication.

520520

An example of the credit transmission is shown in Figure 1.
Here, the length of the communication is 13 packets and a
“credit” packet allows the sender to transmit 4 packets. So 3
“credit” packets will be sent and an extra “credit” packet will
allow the source node to inject one quarter of the usual credit
amount, i.e. one last packet into the network.

P

M=13.P

N=4.P N N

M=(13/4).N
M=3.N+N/4

Figure 1 Credit transmission

B. Dynamic reconfiguration strategy
Due to the dynamic behavior of the communication in the

NoC, hot spots can spontaneously appear decreasing the overall
performance of the network. While the major part of the studies
regarding the use of adaptive routing mechanisms limited the
analysis of congestion on the close-by environment, our
solution proposes similar congestion monitoring and source-
based reconfiguration mechanisms than the work in [7]. It
achieves a monitoring of the traffic on the entire routing path,
detects possible congestions and modifies the path followed by
the data flow in order to be congestion as well as deadlock-free.

As said previously, the monitoring phase is performed by
the header of each data packet. No additional flow is required
for this phase; therefore, the NoC utilization remains the same.
The first data packet allocates a unique identification tag to
each node on the routing path. Then, each packet sent on the
same path collects the congestion status of a particular router
identified by its tag. As a result, the target node gathers the
congestion information of all the routers on the routing path
after receiving N+1 packets. N corresponds to the number of
hops between the source and target nodes. Each time the entire
path is monitored, the target resource checks the presence of
congestion. If detected, a new path is computed. However, [7]
do not tackle the re-ordering issue which appears when
adaptive routing is performed.

C. Re-ordering free methodology
Based on the credit/data system, the next part will show

how to combine it with an adaptive source routing strategy in
order to have a system that can dynamically avoid congestions
and guarantee the order of data deliveries. The following
process describes the mechanism and is illustrated in Figure 2
(the thin arrows symbolize the “credit/alarm” path while the
wide arrows represent the data path):

1) The first step of every communication is to configure the
source and the target. Configuration and communication
protocols are described in [8]. Then, the first packet sent
prepares the path for the reconfiguration by giving each router
a unique identifier in the path.

2) The target transmits its first “credit” packet, which
contains N credits, to the source node as shown in Figure 2a.
The data flow resulting from these credits performs the
monitoring of the path in order to spot congestions.

source

target

Credits sent: N
Data received: 0

Data sent: 0
Credits received: N

source

target

Credits sent: N’
Data received: D

Data sent: D<N’: amount of credit not used
Credits received: N’

(a) (b)

source

target

Credits sent: N’
Data received: D

Data sent: D<N’
Credits received: N’

Congestion
detected

source

target

ALARM packet transmission

(c) (d)

source

target

Credits sent: N’
Data received: 0

Data sent: 0
Credits received: N’

New path computation

source

target

Credits sent: N’
Data received: D

Data sent: D<N’
Credits received: N’

(e) (f)
Figure 2 Non-blocking, re-ordering-free, adaptive source routing example

3.a) If no congestions are detected, the source node uses its
credits and the target node sends credits accordingly to its
buffer’s availability (Figure 2b). The “credit/data” cycle
continues.

3.b) A congestion due for example to a local hot spot can be
detected at the target resource. The detection is made by a
threshold applied to the information of average time spent in a
router. The “credit/data” cycle breaks. The target node stops
sending any credits (Figure 2c).

4) At this point, the sender has no idea that congestion has
been detected and keeps sending data through the current path
and the target node keeps receiving the data, waiting for the
source to stop the transmission when no credit will be
available. The fact that the target resource waits until the
amount of credits it sent equals the amount of data it received
guarantees the right order in the data arrival.

5) Once all data have been sent and received, the target
node transmits a single flit: the “Alarm” packet described in
[7]. This step is illustrated in Figure 2d. Its purpose is to inform
the source node of the presence and location of congestions.

521521

Once the “Alarm” packet has been transmitted, the target node
starts sending credits again.

6) Once the sender receives the Alarm packet, it stops
sending any data packet even if it receives credits. Then, it
computes a new path avoiding the detected congestions, as
shown in Figure 2e. This path will be taken into account for the
next packet emission. When the computation is done, the
“credit/data” cycle resumes.

7) As a result, the data are injected into the network and
reach the target node through the congestion-free path. This
final step is shown in Figure 2f.

This sequencing guarantees the ordering of packets at the
destination resource. However, there is a cost to pay, both in
terms of hardware overhead and latency overhead. Indeed,
when congestion is detected, the target node stops the credit
flow up to completion of the corresponding data flow, which
leads to a certain latency overhead. In order to answer these
overhead issues, an implementation has been made and the
corresponding hardware overhead is discussed in the next
section; correspondingly, section V investigates the gain of the
system depending on the message size

IV. IMPLEMENTATION

A. Architecture presentation
For testing the proposed scheme, we added the dynamic

reconfiguration scheme to the heterogeneous architecture
dedicated to streaming applications presented in [8]. This
architecture uses a 5x5 mesh-based topology. It deals with a
minimal source routing and a wormhole packet policy is used.
The whole architecture is Globally Asynchronous Locally
Synchronous (GALS), i.e. each resource has its own clock
domain and GALS interfaces are connecting the unit to the
NoC, which is implemented in an asynchronous manner.

The Network Interfaces (NI) connects the resources to the
NoC and performs the flow control including the credit
mechanisms previously presented. As shown in Figure 3, this
block also performs the configuration of the communication as
well as the core attached to it. A streaming unit is used for
handling the data flow sequencing, and thus giving a
homogeneous programming model for the heterogeneous units.
Finally, the NI also tackles the interruptions from the core and
communication units through an interruption manager.

B. Monitoring step
The monitoring phase does not use any additional flow but the
encoding of data packet has been slightly modified compared
to [8]. The new packet encoding is illustrated in Figure 4. The
“router id” field holds the identifier of the router this header has
to monitor. When a data packet’s header enters a router, this
field is compared with the router’s tag. If both of them match,
the congestion information is stored in the “congestion” field of
the header flit and transmitted to the target node. The
congestion is evaluated through the flit’s average crossing time
(ACT) in the current router. The “congestion” field refers to a
range of ACT.

Network Interface

CoreCore

to/from
NoC

to/from
NoC

Interrupt

Enable task

Config request

Credit
Data Data

Exec/End

Output
Control

Output
Control

Configuration UnitConfiguration Unit

Streaming UnitStreaming Unit

Input
Control
Input

Control

Config Exec/End

RWD RWD
Read/Write access to all address map

Slots

Slots

Core
Slots

Interrupt Manager Interrupt Manager

End of task

Config

Credit

Data

Data

Configurations

New Path
Computing Unit

New Path
Computing Unit

Congestion
Detection Unit
Congestion

Detection Unit

Alarm

New Path

Congestion

Alarm

Exec/EndConfig

On/Off

On/Off

Figure 3 Network Interface with adaptive routing mechanism

Moreover, as mentioned in [8], initial and final packets of a
message are tagged with bit 31, named Begin Of Message
(BOM), and bit 30, named End Of Message (EOM). However,
a new feature has been introduced for the adaptive routing
implementation. When BOM=1 and EOM=1, the current
packet monitors the last router of the routing path. This event
will trigger a congestion analysis in the target node.

18 bits3 bits

33

B
O

M

E
O

M 29 24 21 20 18 17 0

1 0 X X 0 Router Id Congestion Path to target

0 0 Flit 0

…

0 1 Flit n

33

B
O

M

E
O

M 29 24 21 20 18 17 0

1 0 X X 0 Router Id Congestion Path to target

0 0 Flit 0

…

0 1 Flit n

4 bits

Header

Data
flits

Figure 4 Data packet encoding

The “Alarm” packet is a new packet, designed for the
reconfiguration issue. Its encoding structure is detailed in
Figure 5. The “congestion” field holds a 7-bit vector. Each bit
represents a router on the path and its congestion status. At the
source node, this information will be used for the dynamic re-
routing.

33 27 24 18 17 0
1 1 0 0 1 1 0 Congestion Path to target

33 27 24 18 17 0
1 1 0 0 1 1 0 Congestion Path to target

Figure 5 Alarm packet encoding

The “Alarm” flow is made of a single-flit packet.
Moreover, this flow is emitted only when a congestion is

522522

detected. Therefore, it has an even slimmer impact on the NoC
than the credit flow.

C. RTL design
As stated in the previous section, an evaluation of the

hardware overhead of the proposed scheme is important to
judge its efficiency. To do so, we wrote an RTL (Register
Transfer Level) description of the proposed scheme included in
the NI proposed in [8]. At the end, two units were added. This
NI architecture is illustrated in Figure 3.

The first new unit is the Congestion Detection Unit (CDU).
It stores each congestion status of all routers on the routing
path. When the congestion analysis is triggered, the CDU
identifies jammed routers accordingly to a given threshold. In
our implementation, the ACT in a congestion free context is
2ns and the threshold to detect a congestion is for ACT greater
than 3ns. If at least one congestion is detected, this information
is sent to the Input Control Unit which stops “credit” packets
emission. When all data have been received, it creates and
emits the appropriate “Alarm” packet and resumes “credit”
packets emission. The second unit is the New Path Computing
Unit (NPCU) which receives the alarm packet from the
network and then performs the adaptive routing mechanism.
Starting from an event which is the occurrence of an alarm, the
unit stops data emission and extracts the congested router
identifier before computing the congestion free path. When it is
done, NPCU resumes data emission with the new path.

D. Implementation results
The NI was generated and synthesized with the logic

synthesis tool Design Topologic Compiler from Synopsys in a
CMOS Low-Power 65nm technology. The power consumption
is computed on the back annotated netlist using the Synopsys
Prime Power tool. The results regarding the overhead caused
by the CDU and NPCU are presented in TABLE I. The results
show a total overhead of approximately 11% in terms of area
and 7% in terms of power consumption without impacting the
performance of the initial NI (400 MHz). This small overhead
is clearly compatible with such heterogeneous multi-core.

TABLE I. IMPLEMENTATION RESULTS

 CDU NPCU
Area (65nm)

[% of network interface]
1,827μm²
[1.8%]

9,504μm²
[9.2%]

Max. frequency 400MHz 400MHz
Power @fmax

[% of network interface]
0.11mW
[1.8%]

0.32mW
[5.2%]

E. Comparison with re-ordering
Now, let’s consider the equivalent area of the proposed

method traduced in terms of registers. A Flip-Flop (FF)
“DFPQ” with a driving factor of 9 has an area of 9.88 �m² in
the technology used in this paper (LP 65nm). Considering all
the area occupied by registers, this means 1147 FF. It results in
a total of 36 32-bit words or 18 64-bit words. It results that only
two to four 8-word packets can be re-ordered with the same
area than the proposed method one, without taking into account
logic overhead. This is clearly not enough when considering
even a small-size NoC.

V. LATENCY IMPROVEMENT
Based on the previously presented architecture and its

corresponding implementation, we have performed some
experiments to see the impact, positive or negative, of the
rerouting algorithm on the messages latency. Indeed, as stated
in section III, the re-routing phase without re-ordering implies a
preliminary latency overhead which must be compensated by
the gain obtained thanks to hot spots avoidance. In order to
evaluate the efficiency of the method, the question to answer is
to know the minimum size of the messages from which the
rerouting scheme has a gain compared to the hot spot duration.
In the following of this section, a hot spot scenario is described
and used for this evaluation.

A. Evaluation Scenario
Figure 6 displays the scenario used to evaluate the latency

reduction caused by the adaptive routing strategy. The main
communication occurs between the nodes labeled S and T. The
hotspot communication occurs between H1 and H2. The
platform used allows a SystemC-TLM/HDL co-simulation
mode. In order to simulate the implementation of the adaptive
routing mechanism, the VHDL version is used for the
resources S and T and the rest of the network uses the SystemC
TLM implementation.

The length of the message sent between S and T varies
between 32 and 8192 flits. Each data packet contains 8 flits and
a credit packet contains 8 credits. To avoid slack in the
credit/data mechanism, the FIFOs on each side are fixed to 16
places. Similarly, the hot-spot is generated with 8-flit data
packets. In order to see the effect of the hot-spot size, the total
number of flits transmitted in a hot-spot message may vary
from 32 to 8192. For the simulation, hot-spots and main
communications start simultaneously in order to avoid long
simulation time. However, it does not loose in generality, as it
represents the moment the hot spot appears in a real application
communication.

H1

S H2

T
Figure 6 Scenario used for latency evaluation

The first packet performs the session establishment between
the source and the target and the following packets realize the
network monitoring. Consequently, a 16-flit message, divided
into 2 8-flit packets can only monitor the first router of the path
and will be of poor quality. On the opposite, a 1024-flit
message, divided into 128 8-flit packets can monitor a path
through 127 routers. In our case, the 7-router path will be
monitor several times during long messages transmission. The
results obtained through simulation are shown in Figure 7. As
shown in Figure 6, a congestion is expected to be detected on
the third of the six routers present on the routing path.

523523

-15,00%

-10,00%

-5,00%

0,00%

5,00%

10,00%

15,00%

20,00%

25,00%

30,00%

35,00%

40,00%

32 64 128 256 512 1024 2048 4096 8192

Hot spot length (in flits)

La
te

nc
y

re
du

ct
io

n

Message length : 32 flits Message length : 64 flits
Message length : 128 flits Message length : 256 flits
Message length : 512 flits Message length : 1024 flits
Message length : 2048 flits Message length : 4096 flits
Message length : 8192 flits

Figure 7 Latency reduction according to the message length and the hot spot communication length

For a 32-flit message, no latency reduction is observed.

Indeed, this message is split into 4 8-flit packets. The first
packet prepares the path for the monitoring phase and the three
following ones monitor the three first routers. The congestion is
detected by the last packet of the communication. Therefore,
this detection occurs too late. For a 64-flit message, split into 8
8-flit packets, no latency reduction is observed. This message
can monitor 7 routers and this path needs to monitor 6 routers.
So, once the all path has been monitored, only one packet
remains in the source node. However, it still has a few credits
left. As a result, the last packet is sent while the target node
waits for all the credits sent to be used.

A 32-flit hot spot is too short to be detected. Indeed, the
time from the emission of the first packet and the emission of
the fourth one, which will monitor the congested router, is
greater than the hot spot duration. Therefore, no congestion can
be detected and no latency reduction is observed. For a 64-flit
hot spot, the reconfiguration system extends the overall latency.
Indeed, the congestion is detected, the new path computation is
triggered but the hot spot communication ends during this
computation. So at the end, the latency is extended by the path
computation and the “credit”/data flows stopping. In this
scenario, 46 clock cycles are added to the latency. For a 128-
flit hot spot, the reconfiguration system slightly extends the
overall latency. In this case, the hot spot communication ends a
small time after the new path has been used. The gain produces
by the reconfiguration strategy cannot make up for its latency.

For a message length greater or equal than 128 flits and for
a hot spot length greater or equal than 256 flits, latency
reduction is observed. For a given message length, this
reduction increases until the hot spot length becomes greater
than the message one. After this point, the latency reduction
levels off. This value represents the greatest latency reduction
that can obtain a message of this length. Moreover, this value
increases with the message length and tends toward 33%.

VI. CONCLUSION
In this paper, we have presented a coarse grain dynamic

routing reconfiguration for streaming applications. The
proposed scheme applied to a source-routing is based on a
credit mechanism associated to a monitoring process. It avoids
costly data re-ordering and shows an overhead of less than 4
packets re-ordering. Furthermore, we show that the proposed
solution is efficient to deal with communication hot-spots
when messages and hot-spots have sufficient length. As a
result, up to 33% of latency can be saved.

REFERENCES
[1] M. Palesi, R. Holsmark, S. Kumar, et V. Catania, “Application specific

routing algorithms for networks on chip,” Parallel and Distributed
Systems, IEEE Transactions on, vol. 20, 2009, p. 316-330.

[2] K. Srinivasan, K. Chatha, et G. Konjevod, “Application specific
network-on-chip design with guaranteed quality approximation
algorithms,” Design Automation Conference, 2007. ASP-DAC '07. Asia
and South Pacific, 2007, p. 184-190.

[3] Ming Li, Qing-An Zeng, et Wen-Ben Jone, “DyXY - A proximity
congestion-aware deadlock-free dynamic routing method for network on
chip,” Design Automation Conference, 2006 43rd ACM/IEEE, 2006, p.
849-852.

[4] Jingcao Hu et R. Marculescu, “DyAD - Smart routing for networks-on-
chip,” Design Automation Conference, 2004. Proceedings. 41st, 2004,
p. 260-263.

[5] P. Lotfi-Kamran, M. Daneshtalab, C. Lucas, et Z. Navabi, “BARP - A
dynamic routing protocol for balanced distribution of traffic in NoCs,”
Design, Automation and Test in Europe, 2008. DATE '08, 2008, p.
1408-1413.

[6] P. Gratz, B. Grot, et S. Keckler, “Regional congestion awareness for
load balance in networks-on-chip,” High Performance Computer
Architecture, 2008. HPCA 2008. IEEE 14th International Symposium
on, 2008, p. 203-214.

[7] L. Tedesco, F. Clermidy, et F. Moraes, “A monitoring and adaptive
routing mechanism for QoS traffic on mesh NoC architectures,”
Proceedings of the 7th IEEE/ACM international conference on
Hardware/software codesign and system synthesis, 2009, p. 109–118.

[8] F. Clermidy, R. Lemaire, Y. Thonnart, et P. Vivet, “A communication
and configuration controller for NoC based reconfigurable data flow
architecture,” 2009 3rd ACM/IEEE International Symposium on
Networks-on-Chip, La Jolla, CA, USA: 2009, p. 153-162.

524524

