

Abstract—Current chip transistor density enables the design of
multiprocessor systems-on-chip (MPSoCs). MPSoCs are an
alternative to create complex computational systems because they
reduce the cost, area, power dissipation and design time per chip.
Due to their complexity and huge design space to explore for such
systems, CAD tools and frameworks to customize MPSoCs are
mandatory. The main goal of this paper is to present an open
source platform for MPSoC development, named HeMPS Station
(HeMPS-S). HeMPS-S is derived from the MPSoC HeMPS.
HeMPS-S, in its present state, includes the platform (NoC,
processors, DMA, NI), embedded software (microkernel and
applications) and a dedicated CAD tool to generate the required
binaries and perform debugging. Experiments show the execution
of a real application running in HeMPS-S. (Abstract)

Keywords- NoC-based MPSoC; Rapid Prototyping; MPSoC;
FPGAs (key words)

I. INTRODUCTION

The increase in transistor density enables the design of
complete systems on a single chip. These systems, named
system-on-chip (SoCs), can implement most or all of the
functions of a complete electronic system. Present SoCs may
contain hundreds of millions of transistors, including
processing elements (PEs), memory blocks, dedicated IPs, and
a communication infrastructure. The market needs cheap
products with good performance, limited power budget and
short time-to-market. One way to cope with such conflicting
requirements is to use several programmable processors in the
same SoC. A system with several processors in the same
integrated circuit is named MPSoC.

The power budget is the main reason driving MPSoCs.
While the transistor number per chip is increasing, the clock
frequency and the power dissipation does not grown at the
same pace. If the performance of a given application requires
one processor running at 10 GHz, the implementation of such
processor would be unfeasible due to power dissipation. One
alternative would be to use an MPSoC with ten 1 or 2 GHz
processors.

An important gap is observed in the MPSoC literature
(Section II): a prototyped open-source state-of-the-art MPSoC,
enabling design space exploration at several levels:
• NoC: explore different routing algorithms, topologies,

priorities schemes, etc;
• NI: explore at the network interface (NI) level different

service levels to guarantee Quality of Service (QoS), as
injection and admission control;

• Operating system (OS): evaluate different scheduling
polices, Dynamic Voltage and Frequency Scaling (DVFS)
monitoring parameters, distributed memory architectures,
task migration, for instance.

• Power dissipation: evaluate different types of processors
or NoCs in terms of energy.

• PEs: evaluate different processor architectures according
to the applications requirements.

• Inter-board communication: Hardware modules that
enable the coordination of the MPSoC from a host
computer, for example.

This is the main goal and the contribution of the paper: to
present the design and the prototyping of an open MPSoC
framework, enabling to validate applications in a NoC-based
MPSoC. The hardware part of the framework was prototyped
in a Xilinx FPGA. Being open-source, it may be used to
explore different aspects of the MPSoC design. Additionally,
the hardware designer can modify the framework and
implement a distributed shared memory system, for example.
The software developer, on the other hand, can adapt his
applications with distributed tasks, to run on the MPSoC.

This work is organized as follows. Section II reviews the
state of the art of MPSoC organizations. Section III presents
the HeMPS-S prototype in a FPGA platform. Section IV
presents the HeMPS-S framework, enabling to validate
distributed applications. Finally, Section V concludes this
paper and presents directions for future works.

II. MPSOC ORGANIZATIONS

Van Berkel [1] argues that power constraints lead to
heterogeneous multi-core architectures. RISC processors
support less than 1 algorithmic operation per clock cycle.
Thus, to achieve 100 GOPS it would be necessary a single
core running at 100GHz or 1000 cores running at 100MHz.
Both approaches are unfeasible with present technologies. A
possible solution is to employ a heterogeneous architecture,
based on specialized programmable cores, and (configurable)
function-specific hardware accelerators. As presented below,
most MPSoC designs are homogeneous, since the design is
simpler and they present higher flexibility.

Jalier et al. [2] present three MPSoCs implementations:
heterogeneous MAGALI, homogeneous GENEPY v0 and
homogeneous GENEPY v1. The heterogeneous MAGALI
architecture contains two different cores: a DSP unit and an
MMC (Microprogrammable Memory Controller) unit, for

 Eduardo Weber Wächter, Adelcio Biazi, Fernando G. Moraes
PUCRS – FACIN – Av. Ipiranga 6681 – Porto Alegre – 90619-900 – Brazil

eduardo.wachter@acad.pucrs.br, adelcio.biazi@acad.pucrs.br, fernando.moraes@pucrs.br

HeMPS-S: A Homogeneous NoC-Based
MPSoCs Framework Prototyped in FPGAs

intensive data manipulation involving synchronization,
buffering, duplication and reordering. The processing element
of the homoGENEous Processor arraY (GENEPY), named
SMEP v0, integrates a Smart Memory Engine (SME) and a
processing cluster with two DSPs. All PEs are interconnected
through a Network-on-Chip. GENEPY v0 architecture
contains a host processor and an array of SMEP v0 PEs. The
global control through a host processor limits the scalability of
this platform. GENEPY v1 is a distributed architecture with
SMEP v1 modules, without a host processor. SMEP v1is a
SMEP v0 PE with a CCC (Configuration Communication
Controller) unit. All MPSoCs were implemented in a 65 nm
technology. The homogeneous implementations showed
superior performance compared to the heterogeneous
MAGALI platform. The homogeneous GENEPY v1 platform
is about 14% smaller in terms of silicon area. For a 4G
standard, the comparison has shown that they achieve a
performance speed-up around 3% (v0 and v1), with power
savings of 10% (v1) and 18% (v2). Authors mention that
heterogeneous architectures are well known solutions for
wireless standards. However, they argue that these
architectures have limited flexibility, and highlighted that
homogeneous MPSoC approaches make sense for future
Mobile Terminals.

Zhang et al. [3] present a heterogeneous MPSoC targeting
Altera FPGAs. The system is composed by: (i) four Nios II
soft cores; (ii) one ARM hard core, (iii) a memory subsystem,
(iv) an On-Chip System Bus Network. The ARM core is the
central controller of the system and the four Nios II cores
provide an environment for data processing. Both cores share
access to a common address space, which includes main
memory (SDRAM) and the communication subsystem. The
ARM core subsystem is composed of a single ARM core with
AMBA AHB bus interface to communicate directly with a
local memory. Each Nios II core has an instruction cache to
improve performance and a local memory. Each core has full
access to the shared memory and the System Bus Network.
The On-chip System Network is designed as a hierarchical bus
architecture. This architecture allows different subsystems
associated with their own bus layers, and can operate in
parallel if there are no resource conflicts. The system was
implemented in an EP2S180 device. This device has 143,520
ALUTs and 9 Mbits of embedded RAM. The system running
at 60 MHz uses 13% of the total area in ALUTs, while 39% of
the total on-chip memory is required, due to the instruction
cache of each Nios II core.

Hammami et al. [4] presents an MPSoC, targeting multi-
FPGA platform prototyping. The target architecture is an
MPSoC with 672 PEs, connected to 7x8 mesh NoC (Figure 1).
At each NoC router it is connected a PE cluster. As all
processor elements are equal, the system is a homogeneous
MPSoC. Each cluster is in fact a NoC-based MPSoC,
containing: (i) 12 Xilinx MicroBlaze processors; (ii) 8 Xilinx
Coregen Memories; (iii) 4 NoC routers; (iv) an Interchip
Communication Module (ICM). The last two IPs are provided
by the VHDL Arteris Danube library. The cluster is
implemented in one board and contains four routers
interconnected through a mesh topology. Each router connects
three processors and two SRAM on-chip memories. The
implementation of the 672-processor MPSoC requires multi-

FPGA implementation. The ICM is responsible to connect the
multi-FPGA system. Each FPGA contains 2 ICMs that
connects the FPGAs in a mesh topology. The emulation of the
whole system is based in a 56 FPGA platform called ZeBu-
XXL. The Authors also presented a Design Flow to map the
design onto several FPGAs. As the used Microblaze PE is
OCP compliant, the authors endorse that this processor can be
replaced by another OCP compliant processor while leaving
the overall design identical. As a criticism, nowadays there are
no applications/benchmarks enabling to evaluate the actual
performance of the proposed architectures.

Figure 1 – Multi-FPGA MPSoC, in the detail one FPGA with 12 PEs.

Garzia et al [5] present the MPSoC design for software
defined radio applications called Ninesilica. The architecture
is composed of nine PEs, based on COFFEE RISC cores,
communicating through a NoC. The multiprocessor system is
based on Silicon Cafe template. The template provides a
configurable VHDL model to create an MPSoC based on a
fixed NoC infrastructure and a variable number of nodes. The
Authors use a 3 x 3 mixed star-mesh network with the master
in the center, connected to input/output ports. Additionally,
each slave is directly connected to the master, creating point-
to-point communications between each slave and the master.
This MPSoC is targeted to ASIC and FPGA implementations.
The ASIC implementation, using a 65nm library, used 630
Kgates, with a maximum frequency of 200 MHz. The FPGA
implementation, targeting an AlteraStratix II FPGA, used
76,780 ALUTs and 50,482 Logic Regs (memory resources),
with a maximum frequency of 75 MHz.

Limberg et al. [6] present a heterogeneous MPSoC, named
Tomahawk, targeting signal processing for future mobile
phone technology, such as 3GPP LTE and WiMAX. This
platform contains: (i) two Tensilica DC212GP RISC
processors; (ii) four SIMD processors (fixed-point DSPs) to
handle parallel and vector processing, such as FFTs and
DCTs; (iii) two scalar floating-point DSP processors to handle
streaming data; (iv) hardware modules for specific functions,
such as parity check code decoder ASIP, deblocking filter
ASIP and an entropy decoder ASIC. All components on the
chip are connected by two low latency, high bandwidth,
crossbar-like master/slave NoC with 32 bit bus-width. The
NoC performs static priority arbitration per slave and supports
burst transfers of up to 63 data words. The Tomahawk chip
was designed using a UMC 130 nm, 8 metal layer CMOS
standard cell design flow. The 57M transistor chip occupies
10x10 mm2 and runs at 175 MHz.

Examples of industrial MPSoCs are TILE-GX, with up 10
100 processing elements [7], and Intel's Teraflops Research
Chip with 80 processing elements [8]. In common, they are

ASIC implementations, homogeneous architectures,
interconnecting the PEs through a mesh-NoC.

Table 1 compares the reviewed works. Some trends in
MPSoC design are observed:
(i) small heterogeneity in terms of PEs (RISC+DSP), with a

trend to homogeneous systems;
(ii) mesh-NoC as the communication infrastructure, due to its

scalability and easiest physical implementation;
(iii) the number of PEs is increasing: 80 [8], 100 [7] and 672

[4];
(iv) typical benchmarks include cell phone standards and radio

applications, due to the high computation rate and
heterogeneous computing: signal processing (generally
DSP) and data processing (generally dataflow).

The proposed MPSoC, HeMPS, follows these trends:
homogeneous; NoC-based; parameterizable size (simulation
with up to 64 PEs and FPGA prototype with 12 PEs); support
to execute distributed applications described in C language.

III. HEMPS-STATION

HeMPS Station (HeMPS-S) is an environment for MPSoC
evaluation of distributed embedded applications. The
evaluation can by carried out in a FPGA-based platform, as
well as by RTL simulation. This framework contains tools
running on a host computer, a communication interface
between the host and the MPSoC, enabling the evaluation at
running time, and a monitoring system to capture the
performance data.

HeMPS-S is composed by the HeMPS NoC-based MPSoC
[9], the ConMe unit (a DDR2 memory controller), the ComEt
unit (MAC Ethernet communication interface), and the Main
Control Unit. The architecture is present in Figure 2.

A. HeMPS MPSoC [9]
The HeMPS MPSoC contains a parameterizable number of

PEs interconnected by the HERMES NoC [10]. The used NoC
has the following features: (i) wormhole packet-switched mesh

topology; (ii) credit-based flow control; (iii) XY routing
algorithm; (iv) 16-bit flit size; (v) 8-flits buffer depth. The flit
size is half of the processor word, to reduce the NoC area
overhead.

The processing elements are named Plasma-IP. Each
Plasma-IP is composed by: (i) 32-bit RISC processor -
PLASMA (MIPS-like); (ii) network interface; (iii) DMA; (iv)
dual port BRAM memory, which stores the object code of the
tasks and the kernel; (v) access_repository unit, (not presented
in Figure 2) only present in the Plasma-IP Master, responsible
to communicate the MPSoC with the external world.

The PlasmaIP-MS is responsible for managing system
resources. The PlasmaIP-SLs are responsible for executing the
application tasks. The PlasmaIP-MS have access to the
external task repository and to the ComEt unit, through the
Main Control unit. When HeMPS starts execution, the
PlasmaIP-MS reads the required tasks from the task
repository, and allocates all initial tasks to the Plasma-IP SLs.
During execution, tasks can be dynamically loaded from the
task repository to slave processors on demand.

HeMPS-S

ConMeComEt Main Control

DDR2
CTRLEMAC

HOST task
repository

DDR2
MEM

HeMPS

N
et

w
or

k
In

te
rfa

ce

PlasmaIP-SL

PLASMA
(MIPS)

DMA R
A

M

NoC

Router

Router

Router

Router

RouterRouter

PlasmaIP-SL

PlasmaIP-SL

PlasmaIP-SL

PlasmaIP-SL

PlasmaIP-MS

FPGA

Figure 2 – The HeMPS-S Architecture – the NoC size as well as the number

of processors is parameterizable.

TABLE 1 – COMPARISON BETWEEN THE PRESENTED MPSOC ARCHITECTURES.

MPSoC PE Number of PEs Architecture Interconnection Technology
MAGALI [2] DSP and MMC 5 Heterogeneous

Mesh NoC ASIC GENEPY v0 [2] SME and 2 DSPs 3 Homogeneous with a central
PE controller

GENEPY v1 [2] SME, CCC and 2 DSPs 2 Homogeneous

Zhang [3] ARM or NIOS II 5 (4 NIOS and 1 ARM) Heterogeneous,with a central
PE controller (ARM) Hierarchical Bus FPGA

Hammami [4] Microblaze
672, organized in an
8x7 clusters (each
cluster with 12 PEs)

Homogeneous Hierarchical
mesh NoCs FPGA

Garzia [5] COFFEE 9 Homogeneous Mixed Star-
Mesh NoC

ASIC /
FPGA

Limberg [6]
RISC, fixed-point DSP,
floating-point DSP and
HW IPs

11 (2 RISC, 4 fixed-
point DSP, 2 floating-
point DSP and 3 HW
IP)

Heterogeneous 2 crossbar NoCs ASIC

Tilera [7] 64-bit VLIW processors 16 to 100 Homogeneous 3 Mesh NoCs ASIC

Vengal [8] 2 FPMAC (floating-point
multiply ccumulators) 80 Homogeneous Mesh NoC ASIC

Proposed MPSoC RISC (MIPS) configurable size Homogeneous, with a central
PE controller Mesh NoC FPGA

To achieve high performance in the processing elements,
the Plasma-IP architecture separates communication from
computation. The network interface and DMA modules are
responsible for sending and receiving packets, while the
Plasma processor performs task computation and wrapper
management. The local RAM is a true dual port memory,
allowing simultaneous processor and DMA accesses, which
avoids extra hardware for elements like mutex or cycle stealing
techniques.

Each PlasmaIP-SL runs a tiny Operating System (OS),
called microkernel, which supports multitasking and task
communication. The PlasmaIP-MS also runs a microkernel,
but do not execute applications tasks. The microkernel
segments memory in pages, which it allocates for itself (first
page) and tasks (subsequent pages). Each Plasma-IP has a task
table, with the location of local and remote tasks. A simple
preemptive scheduling, implemented as a round robin,
provides support to multitasking.

The microkernel protects memory pages, and all
communication among tasks occurs through message passing
only. Message passing is supported through a global message
pipe located in the microkernel and communication primitives
(WritePipe() and ReadPipe()), which compose the current
HeMPS API. The kernel is described mostly in C and some
special functions in assembly (e.g. interruption treatment and
context saving).

The communication model employs non-blocking writings
and blocking reads. This is an important feature, since a
message is only sent through the network when it is requested,
reducing the traffic in the NoC.

HeMPS API assumes that user applications are modeled by
task graphs. For example, Figure 3 illustrates the graph which
edges represent the communication between tasks. In this
example, the application is composed by four tasks where
tasks A and B send messages to task C, and this to the task D.
These tasks are described in C language.

taskA

taskB

taskC taskD

Figure 3 – Task graph modeling a given application.

B. ConMe Unit
The ConMe unit connects the Main Control to the external

DDR2 controller. The ConMe is subdivided in two blocks: (i)
interface, which translates the commands/addresses/data from
the Main Control to the DDR2 controller (it is in fact a
wrapper); (ii) DDR2 controller, generated by the Xilinx
Coregen tool.

It is important to understand that all applications to be
executed by HeMPS are initially stored in the external DDRs
memory (task repository). Initially the host computer write all
tasks in this repository (ComEtàMain ControlàConMe),

keeping the HeMPS in a reset state. After loading all tasks into
the repository, the host sends a command to start HeMPS. At
this moment, the PlasmaIP-MS has full access (read only) to
the task repository.

C. ComEt Unit
This unit is responsible for the communication between the

MPSoC and the host computer. Unlike most projects, the
TCP/IP stack is implemented in hardware, without the need of
using a processor dedicated to process packets received from
the network. This strategy is adopted to improve performance
and to reduce area.

ComEt is composed by a transmission module, a reception
module and a MAC Ethernet core. The modules communicate
with the MAC Ethernet and the Main Control module. These
modules implements three protocols of TCP/IP stack: UDP, IP
and ARP. The reception module removes the IP packet
overhead and transmits payload to Main Control. The
transmission module inserts the header on messages from the
master PE. These messages are mostly debug messages
generated by the executing tasks, enabling system evaluation
and debug online.

D. Main Control Unit
This module is responsible to control the interaction among

HeMPS-S units. It has the following functions: (i) process
commands received from ComEt; (ii) write/read data on
ConMe; (iii) transmit task codes to HeMPS; (iv) transfer
debug messages from HeMPS to ComEt. The Main Control
receives from ComEt the payload of UDP packets generated
by the host computer. This payload contains commands to
manage HeMPS-S, as shown in Table 2.

TABLE 2 – HEMPS-S COMMANDS.
Command Description
Connect Connect the host computer to HeMPS-S

Write Write the binary codes on the repository

Start Reset HeMPS, starting the execution

Disconnect Disconnect the host computer from HeMPS-S

All these hardware modules (ConMe, ComEt, Main

Control) are MPSoC independent. The hardware designer can
easily adapt the commands and the interface to comply with
other MPSoC.

E. HeMPS-S Prototyping
This Section describes the HeMPS-S prototyping process,

and the required design modifications to cope with the timing
constraints. The device is a Xilinx Virtex 5 5vlx330tff1738-2,
chose due to the large amount of available embedded memory
blocks, and a MAC Ethernet hard core, which is required by
the ComEt unit. The main CAD tools employed were Xilinx
PlanAhead 11.1 and ModelSim. PlanAhead enables
floorplaning, constraints insertion, debugging and conducting
timing/area results analyses. Differently from ISE, in
PlanAhead we can synthesize multiples implementation
strategies in the same design. Thus, it becomes possible to
evaluate a larger number of design alternatives, speeding up
the prototyping process. Modelsim, although not used for
prototyping, is used to simulate the entire system.

The original HeMPS description uses the Hermes NoC as
an IP. Such approach is not adequate for prototyping purposes,
since the router should be located physically near to the PE
with which it communicates to avoid long wires. Therefore, a
new module was created, called Plasma_Router.
Plasma_Router contains the Plasma-IP and a Hermes NoC
central router. This router contains five ports. As a function of
the placement of the Plasma_Router in the NoC, some ports
are not used (e.g. north port of the top routers). Unused ports
have their control signals connected to ground. The synthesis
tool removes the unused logic, reducing the area, as in the
original description. Figure 4 shows the flip-flops and LUTs
utilization, respectively, of each module of Plasma_Router.
Note that the Router being evaluated has five ports. Thus,
results are upper bounds.

This prototype has three external clock sources: a 50 MHz,
and two 25 MHz clocks. Figure 5 illustrates how clock signals
for the 4 main units are obtained from the 50 MHz external
clock. The two 25 MHz clocks are generated by the external
PHY, which communicates with the MAC Ethernet.

HeMPS-S
HeMPS

ConMeComEt Main Control
25MHz
25MHz

TX
RX

50MHz

DDR2EMAC

DCM
50

DCM
200

200MHz

200MHz (90º)

50MHz
bufg

200MHz

50MHz

100MHz

to HeMPS

Figure 5 – HeMPS-S clock organization – DCM (digital clock manager) is a

FPGA component to generate clock signals.

The number of PEs is limited by the amount of available
memory blocks (BRAMs). Each prototyped Pasma-IP has a 16
kB RAM, which uses 16 BRAMs. The selected device could
hold up to 20 PEs, since it has 324 BRAMs. Figure 6

illustrates the floorplan of a 2x3 HeMPS-S instance. Each PE
requires 16 BRAMs, using two 8-BRAM columns. The
location of ComEt and ConMe units are chosen according to
the proximity of the pins location to these modules in the
device.

The HeMPS MPSoC reset signal is generated by the Main
Control unit, after the complete task repository transmission.
One problem found during prototyping is that the synthesis
tool does not recognize the reset wire to each PE as a special
wire. To avoid timing errors, we used a buffer (BUFG) to
drive the reset signal of the HeMPS MPSoC.

Figure 6 – HeMPS-S floorplan: the columns in red at each PE indicates

BRAMs used as PE memory.

The ComEt unit has two clock domains. From one side the
Main Control reads/writes data at 200 MHz, and from the
other site the PHY reads/writes at 25 MHz. Also, there is no
detectable relationship between these phases, although there is
a relationship in frequency. The adopted solution to
synchronize both clock domains is to uses a synchronous
write/asynchronous read LUTRAM to store data, and a two-
flop synchronizer for the control signals. Figure 7 shows the
architecture to process the UDP packet transmission, which is
sent to the host. The tx_ack signalizes available data to be
consumed in the asynchronous buffer, in the 200 MHz clock
domain. This signal is synchronized in the other clock domain,
and consumption starts. After reading the contents of the

(a) Flip-Flop utilization: router 202, Plasma-IP 706.

(b) LUT utilization: router 685, Plasma-IP 1554.

Figure 4 – Area utilization for the Plasma_Router, targeting the 5vlx330tff1738-2 device.

Figure 9 – HeMPS-S generator framework.

Figure 10 – Hardware debug GUI, displaying the results sent to the host from
the FPGA board.

LUTRAM, the tx_done_in indicates end of consumption in the
25 MHz clock domain, and this control signal is synchronized
to the other clock domain. The same structure is used in the
opposite direction.

LUTRAM
asynchronous
buffer

clk_25clk_200

wr_data_out

wr_en_out

tx_ack_out

tx_done_in

wr_data_in

wr_en_in

tx_ack

tx_done

200 MHz 25 MHz

Figure 7 – Part of the UDP transmission module.

Another issue was the interface between the Plasma-IP
Master and the Main Control module. The master requests
data from the repository at 50 MHz, and the Main Control
access the DDR2 memory at 200 MHz, but both clocks have
the same phase (guaranteed by the DCMs). To synchronize
this interface a 4-phase protocol is used - Figure 8, read_req
(50 MHz) and data_valid (200 MHz). The first read is slower
than the subsequent ones, since the DDR2 controller reads 16
words simultaneously, buffering them. To avoid slack errors
during reading, the data_valid signal is asserted one cycle
after the data_read. Figure 8 shows in (1) the Plasma-IP
requesting a read, and one cycle after (2) the data_valid fall
because the word is not available in the bus yet. One cycle
after data is available on data_read, the signal data_valid is
asserted (3). The Plasma-IP signalizes that the read was
executed (4), falling read_req.

Figure 8 – 4-phase protocol at the interface Master PE – Main Control.

IV. HEMPS-S FRAMEWORK

The user on a host computer, using the HeMPS-S
generator framework – Figure 9, controls the HeMPS-S. The
framework is responsible for the generation of the task
repository, and the communication management with the
FPGA board. The HeMPS-S Generator environment enables:
1) Platform Configuration: number of processor connected

to the NoC, through parameters X and Y; the maximum
number of simultaneous running tasks per slave; the page
size (and consequently the RAM size); and the processor
abstraction description level (simulation only). User may
choose among a processor ISS or VHDL description.
Both are functionally equivalent, with ISS being faster
and VHDL giving more detailed debug data.

2) Insertion of Applications into the System: the left panel of
Figure 9 shows applications mpeg and communication
inserted into the system. The communication application
has 4 tasks, and the mpeg application 5 tasks (start, ivlc,
idtc, iquant, print).

3) Define the initial task mapping: note in Figure 9 the start
task (initial task of mpeg) mapped in processor 01, and
tasks taskA and taskB (initial tasks of communication)
allocated to processors 11 and 12 respectively. The
remaining tasks are assigned to the master processor, to be
dynamically mapped during system execution.

4) Generation of the binary codes: through the Generate
button, all binary codes are generated. The Generate
button also parameterizes the VHDL files for the

Figure 11 – Simulation debug GUI, displaying the results obtained after RTL simulation.

hardware synthesis (executed once) and creates the
memory images for the microkernel.

5) Definition of the HEMPS-S network addresses: IP and
MAC addresses. This is still a system limitation, the IP is
not acquired dynamically by the DHCP protocol.

6) Debug button: used to display the RTL simulation results,
in a dedicated simulation debug GUI (Figure 11,
discussed later).

7) Debug the system in the FGPA board: the Send to Board
button execute 4 actions: (i) connect the framework with
the system in the FPGA (see Table 2 commands); (ii) fill
the task repository by sending all binary codes to the
external memory; (iii) release the HeMPS reset through
command start; (iv) receive debug messages.

When the task repository data has been transferred to the
external memory, the host computer starts the execution of the
applications on HeMPS (command start). Then, the Plasma-IP
Master starts reading the repository through the Main Control
and ConMe units and sends tasks to each slave. Once a given
task is received in a Plasma-IP Slave, it is scheduled to be
executed. Tasks can communicate with other tasks, in the
same or in a different processor, and can also send debug data
to the master processor. The master sends debug data to the
host computer through the Main Control and ComEt module.
In the host computer, after pressing the Send to Board button,

a GUI displays this debug data, enabling system performance
evaluation at running time, as illustrated in Figure 10

The debug window (Figure 10) contains one panel for each
processor. In the panel corresponding to the Plasma-IP MS
(processor 00), two kernel messages are displayed. Processor
11 executes communication task A, and then simultaneously it
executes MPEG tasks C (iquant) and E (print). This textual
map enables to verify the correct behavior of the application,
as well as to measure the performance of each task. The
numbers after communication x started and before
communication x finished corresponds to the number of clock
cycles spent since the beginning of the system execution,
obtained through the gettick() system call. The use of this
system call enables to compute the task execution time,
latency, and throughput.

The simulation debug GUI (Figure 11), invoked after RTL
simulation, contains one tab per task executing in each
processor. For example, in Figure 11, a HeMPS instance with
15 PEs is simulated, with 8 processors executing
simultaneously 3 tasks each. In this way, messages are
separated, allowing to the user to visualize the execution
results for each task separately. The hardware debug GUI is
currently being adapted to display tasks separately, as in the
simulation debug GUI. The main difference between
prototyping and simulation is that the former receive data at
runtime, and the later reads a file generated after simulation.

V. CONCLUSION AND FUTURE WORKS

This paper presented the HeMPS-S framework, composed
by software executing in a given host, and an NoC-based
MPSoC executing in FPGA, both interconnect through an
Ethernet connection. The basis for the HeMPS-S framework is
the HeMPS MPSoC, which is open source, available at
www.inf.pucrs.br/~gaph. New hardware or software
techniques can be easily integrated in HeMPS-S, enabling to
construct proof of concept prototypes for these new
techniques. The hardware modules, extern to the MPSoC, can
be ported to comply with other MPSoC. Then the designer can
use these modules to validate his MPSoC platform.

Ongoing work includes a distributed shared memory with
cache coherence [11]. Future works include the addition of: (i)
hardware monitors to collect data related to power, latency and
throughput; (ii) include new processors; (iii) include the
DHCP protocol on the communication infrastructure; (iv) a
decentralized control mechanism, to avoid a communication
bottleneck on the master processor.

VI. ACKNOWLEDGEMENTS

The Authors acknowledge the support of CNPq and
FAPERGS, projects 301599/2009-2 and 10/0814-9,
respectively.

VII. REFERENCES

[1] Van Berkel, C.H. “Multi-core for mobile phones”. In: DATE,
2009, pp. 1260-1265.

[2] Jalier, C.; Lattard, D.; Jerraya, A. A.; Sassatelli, G.; Benoit, P.

and Torres, L. “Heterogeneous vs Homogeneous MPSoC
Approaches for a Mobile LTE Modem”. In: DATE, 2010, pp 184
- 189.

[3] Zhang, W; Geng, L.; Zhang, D.; Du, G.; Gao, M; Zhang W.;
Hou, N.; Tang Y. “Design of heterogeneous MPSoC on FPGA”.
In: ASIC, 2007, pp. 102-105.

[4] Hammami, O.; Li, X.; Larzul, L.; Burgun, L. “Automatic design
methodologies for MPSOC and prototyping on multi-FPGA
Platforms”. In: ISOCC, 2009, pp. 141-146.

[5] Garzia, F.; Airoldi, R.; Ahonen, T.; Nurmi, J.; Milojevic, D.
“Implementation of the W-CDMA cell search on a MPSoC
designed for software defined radios”. In: SiPS, 2009, pp. 30-35.

[6] Limberg T.; et. al. “A Heterogeneous MPSoC with Hardware
Supported Dynamic Task Scheduling for Software Defined
Radio”. In: DAC University Booth, 2009.

[7] Tilera Corp. http://www.tilera.com/products/processors

[8] Vangal, S.R.; et al. “An 80-Tile Sub-100-W TeraFLOPS
Processor in 65-nm CMOS”. IEEE Journal of Solid-State
Circuits, vol.43, no.1, Jan. 2008, pp.29-41.

[9] Carara, E. A.; Oliveira, R. P.; Calazans, N. L. V.; Moraes, F. G.
“HeMPS - a framework for NoC-based MPSoC generation”. In:
ISCAS 2009, pp. 1345-1348.

[10] Moraes, F.; Calazans, N.; Mello, A.; Möller, L.; Ost, L.
“Hermes: an Infrastructure for Low Area Overhead Packet-
switching Networks on Chip”. Integration, the VLSI Journal,
Vol. 38(1), October, 2004, pp.69-93.

[11] Chaves, T.; Carara, E. A.; Moraes, F. G. “Energy-efficient
Cache Coherence Protocol for NoC-based MPSoCs”. In:
SBCCI, 2011.

