
 

  

Abstract—Current chip transistor density enables the design of 
multiprocessor systems-on-chip (MPSoCs). MPSoCs are an 
alternative to create complex computational systems because they 
reduce the cost, area, power dissipation and design time per chip. 
Due to their complexity and huge design space to explore for such 
systems, CAD tools and frameworks to customize MPSoCs are 
mandatory. The main goal of this paper is to present an open 
source platform for MPSoC development, named HeMPS Station 
(HeMPS-S). HeMPS-S is derived from the MPSoC HeMPS. 
HeMPS-S, in its present state, includes the platform (NoC, 
processors, DMA, NI), embedded software (microkernel and 
applications) and a dedicated CAD tool to generate the required 
binaries and perform debugging. Experiments show the execution 
of a real application running in HeMPS-S. (Abstract) 

Keywords- NoC-based MPSoC; Rapid Prototyping; MPSoC; 
FPGAs (key words) 

I. INTRODUCTION 

The increase in transistor density enables the design of 
complete systems on a single chip. These systems, named 
system-on-chip (SoCs), can implement most or all of the 
functions of a complete electronic system. Present SoCs may 
contain hundreds of millions of transistors, including 
processing elements (PEs), memory blocks, dedicated IPs, and 
a communication infrastructure. The market needs cheap 
products with good performance, limited power budget and 
short time-to-market. One way to cope with such conflicting 
requirements is to use several programmable processors in the 
same SoC. A system with several processors in the same 
integrated circuit is named MPSoC. 

The power budget is the main reason driving MPSoCs. 
While the transistor number per chip is increasing, the clock 
frequency and the power dissipation does not grown at the 
same pace. If the performance of a given application requires 
one processor running at 10 GHz, the implementation of such 
processor would be unfeasible due to power dissipation. One 
alternative would be to use an MPSoC with ten 1 or 2 GHz 
processors.  

An important gap is observed in the MPSoC literature 
(Section II): a prototyped open-source state-of-the-art MPSoC, 
enabling design space exploration at several levels: 
• NoC: explore different routing algorithms, topologies, 

priorities schemes, etc; 
• NI: explore at the network interface (NI) level different 

service levels to guarantee Quality of Service (QoS), as 
injection and admission control; 

• Operating system (OS): evaluate different scheduling 
polices, Dynamic Voltage and Frequency Scaling (DVFS) 
monitoring parameters, distributed memory architectures, 
task migration, for instance. 

• Power dissipation: evaluate different types of processors 
or NoCs in terms of energy. 

• PEs: evaluate different processor architectures according 
to the applications requirements. 

• Inter-board communication: Hardware modules that 
enable the coordination of the MPSoC from a host 
computer, for example. 

This is the main goal and the contribution of the paper: to 
present the design and the prototyping of an open MPSoC 
framework, enabling to validate applications in a NoC-based 
MPSoC. The hardware part of the framework was prototyped 
in a Xilinx FPGA. Being open-source, it may be used to 
explore different aspects of the MPSoC design. Additionally, 
the hardware designer can modify the framework and 
implement a distributed shared memory system, for example. 
The software developer, on the other hand, can adapt his 
applications with distributed tasks, to run on the MPSoC. 

This work is organized as follows. Section II reviews the 
state of the art of MPSoC organizations. Section III presents 
the HeMPS-S prototype in a FPGA platform. Section IV 
presents the HeMPS-S framework, enabling to validate 
distributed applications. Finally, Section V concludes this 
paper and presents directions for future works. 

II. MPSOC ORGANIZATIONS 

Van Berkel [1] argues that power constraints lead to 
heterogeneous multi-core architectures. RISC processors 
support less than 1 algorithmic operation per clock cycle. 
Thus, to achieve 100 GOPS it would be necessary a single 
core running at 100GHz or 1000 cores running at 100MHz. 
Both approaches are unfeasible with present technologies. A 
possible solution is to employ a heterogeneous architecture, 
based on specialized programmable cores, and (configurable) 
function-specific hardware accelerators. As presented below, 
most MPSoC designs are homogeneous, since the design is 
simpler and they present higher flexibility. 

Jalier et al. [2] present three MPSoCs implementations: 
heterogeneous MAGALI, homogeneous GENEPY v0 and 
homogeneous GENEPY v1. The heterogeneous MAGALI 
architecture contains two different cores: a DSP unit and an 
MMC (Microprogrammable Memory Controller) unit, for 
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intensive data manipulation involving synchronization, 
buffering, duplication and reordering. The processing element 
of the homoGENEous Processor arraY (GENEPY), named 
SMEP v0, integrates a Smart Memory Engine (SME) and a 
processing cluster with two DSPs. All PEs are interconnected 
through a Network-on-Chip. GENEPY v0 architecture 
contains a host processor and an array of SMEP v0 PEs. The 
global control through a host processor limits the scalability of 
this platform. GENEPY v1 is a distributed architecture with 
SMEP v1 modules, without a host processor. SMEP v1is a 
SMEP v0 PE with a CCC (Configuration Communication 
Controller) unit. All MPSoCs were implemented in a 65 nm 
technology. The homogeneous implementations showed 
superior performance compared to the heterogeneous 
MAGALI platform. The homogeneous GENEPY v1 platform 
is about 14% smaller in terms of silicon area. For a 4G 
standard, the comparison has shown that they achieve a 
performance speed-up around 3% (v0 and v1), with power 
savings of 10% (v1) and 18% (v2). Authors mention that 
heterogeneous architectures are well known solutions for 
wireless standards. However, they argue that these 
architectures have limited flexibility, and highlighted that 
homogeneous MPSoC approaches make sense for future 
Mobile Terminals. 

Zhang et al. [3] present a heterogeneous MPSoC targeting 
Altera FPGAs. The system is composed by: (i) four Nios II 
soft cores; (ii) one ARM hard core, (iii) a memory subsystem, 
(iv) an On-Chip System Bus Network. The ARM core is the 
central controller of the system and the four Nios II cores 
provide an environment for data processing. Both cores share 
access to a common address space, which includes main 
memory (SDRAM) and the communication subsystem. The 
ARM core subsystem is composed of a single ARM core with 
AMBA AHB bus interface to communicate directly with a 
local memory. Each Nios II core has an instruction cache to 
improve performance and a local memory. Each core has full 
access to the shared memory and the System Bus Network. 
The On-chip System Network is designed as a hierarchical bus 
architecture. This architecture allows different subsystems 
associated with their own bus layers, and can operate in 
parallel if there are no resource conflicts. The system was 
implemented in an EP2S180 device. This device has 143,520 
ALUTs and 9 Mbits of embedded RAM. The system running 
at 60 MHz uses 13% of the total area in ALUTs, while 39% of 
the total on-chip memory is required, due to the instruction 
cache of each Nios II core. 

Hammami et al. [4] presents an MPSoC, targeting multi-
FPGA platform prototyping. The target architecture is an 
MPSoC with 672 PEs, connected to 7x8 mesh NoC (Figure 1). 
At each NoC router it is connected a PE cluster. As all 
processor elements are equal, the system is a homogeneous 
MPSoC. Each cluster is in fact a NoC-based MPSoC, 
containing: (i) 12 Xilinx MicroBlaze processors; (ii) 8 Xilinx 
Coregen Memories; (iii) 4 NoC routers; (iv) an Interchip 
Communication Module (ICM). The last two IPs are provided 
by the VHDL Arteris Danube library. The cluster is 
implemented in one board and contains four routers 
interconnected through a mesh topology. Each router connects 
three processors and two SRAM on-chip memories. The 
implementation of the 672-processor MPSoC requires multi-

FPGA implementation. The ICM is responsible to connect the 
multi-FPGA system. Each FPGA contains 2 ICMs that 
connects the FPGAs in a mesh topology. The emulation of the 
whole system is based in a 56 FPGA platform called ZeBu-
XXL. The Authors also presented a Design Flow to map the 
design onto several FPGAs. As the used Microblaze PE is 
OCP compliant, the authors endorse that this processor can be 
replaced by another OCP compliant processor while leaving 
the overall design identical. As a criticism, nowadays there are 
no applications/benchmarks enabling to evaluate the actual 
performance of the proposed architectures. 

             
Figure 1 – Multi-FPGA MPSoC, in the detail one FPGA with 12 PEs. 

Garzia et al [5] present the MPSoC design for software 
defined radio applications called Ninesilica. The architecture 
is composed of nine PEs, based on COFFEE RISC cores, 
communicating through a NoC. The multiprocessor system is 
based on Silicon Cafe template. The template provides a 
configurable VHDL model to create an MPSoC based on a 
fixed NoC infrastructure and a variable number of nodes. The 
Authors use a 3 x 3 mixed star-mesh network with the master 
in the center, connected to input/output ports. Additionally, 
each slave is directly connected to the master, creating point-
to-point communications between each slave and the master. 
This MPSoC is targeted to ASIC and FPGA implementations. 
The ASIC implementation, using a 65nm library, used 630 
Kgates, with a maximum frequency of 200 MHz. The FPGA 
implementation, targeting an AlteraStratix II FPGA, used 
76,780 ALUTs and 50,482 Logic Regs (memory resources), 
with a maximum frequency of 75 MHz. 

Limberg et al. [6] present a heterogeneous MPSoC, named 
Tomahawk, targeting signal processing for future mobile 
phone technology, such as 3GPP LTE and WiMAX. This 
platform contains: (i) two Tensilica DC212GP RISC 
processors; (ii) four SIMD processors (fixed-point DSPs) to 
handle parallel and vector processing, such as FFTs and 
DCTs; (iii) two scalar floating-point DSP processors to handle 
streaming data; (iv) hardware modules for specific functions, 
such as parity check code decoder ASIP, deblocking filter 
ASIP and an entropy decoder ASIC. All components on the 
chip are connected by two low latency, high bandwidth, 
crossbar-like master/slave NoC with 32 bit bus-width. The 
NoC performs static priority arbitration per slave and supports 
burst transfers of up to 63 data words. The Tomahawk chip 
was designed using a UMC 130 nm, 8 metal layer CMOS 
standard cell design flow. The 57M transistor chip occupies 
10x10 mm2 and runs at 175 MHz. 

Examples of industrial MPSoCs are TILE-GX, with up 10 
100 processing elements [7], and Intel's Teraflops Research 
Chip with 80 processing elements [8]. In common, they are 



 

  

ASIC implementations, homogeneous architectures, 
interconnecting the PEs through a mesh-NoC. 

Table 1 compares the reviewed works. Some trends in 
MPSoC design are observed:  
(i) small heterogeneity in terms of PEs (RISC+DSP), with a 

trend to homogeneous systems;  
(ii) mesh-NoC as the communication infrastructure, due to its 

scalability and easiest physical implementation;  
(iii) the number of PEs is increasing: 80 [8], 100 [7] and 672 

[4];  
(iv) typical benchmarks include cell phone standards and radio 

applications, due to the high computation rate and 
heterogeneous computing: signal processing (generally 
DSP) and data processing (generally dataflow). 

The proposed MPSoC, HeMPS, follows these trends: 
homogeneous; NoC-based; parameterizable size (simulation 
with up to 64 PEs and FPGA prototype with 12 PEs); support 
to execute distributed applications described in C language. 

III. HEMPS-STATION 

HeMPS Station (HeMPS-S) is an environment for MPSoC 
evaluation of distributed embedded applications. The 
evaluation can by carried out in a FPGA-based platform, as 
well as by RTL simulation. This framework contains tools 
running on a host computer, a communication interface 
between the host and the MPSoC, enabling the evaluation at 
running time, and a monitoring system to capture the 
performance data. 

HeMPS-S is composed by the HeMPS NoC-based MPSoC 
[9], the ConMe unit (a DDR2 memory controller), the ComEt 
unit (MAC Ethernet communication interface), and the Main 
Control Unit. The architecture is present in Figure 2. 

A. HeMPS MPSoC [9] 
The HeMPS MPSoC contains a parameterizable number of 

PEs interconnected by the HERMES NoC [10]. The used NoC 
has the following features: (i) wormhole packet-switched mesh 

topology; (ii) credit-based flow control; (iii) XY routing 
algorithm; (iv) 16-bit flit size; (v) 8-flits buffer depth. The flit 
size is half of the processor word, to reduce the NoC area 
overhead.  

The processing elements are named Plasma-IP. Each 
Plasma-IP is composed by: (i) 32-bit RISC processor - 
PLASMA (MIPS-like); (ii) network interface; (iii) DMA; (iv) 
dual port BRAM memory, which stores the object code of the 
tasks and the kernel; (v) access_repository unit, (not presented 
in Figure 2) only present in the Plasma-IP Master, responsible 
to communicate the MPSoC with the external world. 

The PlasmaIP-MS is responsible for managing system 
resources. The PlasmaIP-SLs are responsible for executing the 
application tasks. The PlasmaIP-MS have access to the 
external task repository and to the ComEt unit, through the 
Main Control unit. When HeMPS starts execution, the 
PlasmaIP-MS reads the required tasks from the task 
repository, and allocates all initial tasks to the Plasma-IP SLs. 
During execution, tasks can be dynamically loaded from the 
task repository to slave processors on demand. 

 

HeMPS-S

ConMeComEt Main Control

DDR2 
CTRLEMAC

HOST task 
repository

DDR2 
MEM

HeMPS

N
et

w
or

k 
In

te
rfa

ce

PlasmaIP-SL

PLASMA
(MIPS)

DMA R
A

M

NoC

Router

Router

Router

Router

RouterRouter

PlasmaIP-SL

PlasmaIP-SL

PlasmaIP-SL

PlasmaIP-SL

PlasmaIP-MS

FPGA

 
Figure 2 – The HeMPS-S Architecture – the NoC size as well as the number 

of processors is parameterizable. 

TABLE 1 – COMPARISON BETWEEN THE PRESENTED MPSOC ARCHITECTURES. 

MPSoC PE Number of PEs Architecture Interconnection Technology 
MAGALI [2] DSP and MMC 5 Heterogeneous 

Mesh NoC ASIC GENEPY v0 [2] SME and 2 DSPs 3 Homogeneous with a central 
PE controller 

GENEPY v1 [2] SME, CCC and 2 DSPs 2 Homogeneous 

Zhang [3] ARM or NIOS II 5 (4 NIOS and 1 ARM) Heterogeneous,with a central 
PE controller (ARM) Hierarchical Bus FPGA 

Hammami [4] Microblaze 
672, organized in an 
8x7 clusters (each 
cluster with 12 PEs) 

Homogeneous Hierarchical 
mesh NoCs FPGA 

Garzia [5] COFFEE 9 Homogeneous Mixed Star-
Mesh NoC 

ASIC / 
FPGA 

Limberg [6] 
RISC, fixed-point DSP, 
floating-point DSP and 
HW IPs 

11 (2 RISC, 4 fixed-
point DSP, 2 floating-
point DSP and 3 HW 
IP) 

Heterogeneous 2 crossbar NoCs ASIC 

Tilera [7] 64-bit VLIW processors 16 to 100 Homogeneous 3 Mesh NoCs ASIC 

Vengal [8] 2 FPMAC (floating-point 
multiply ccumulators) 80 Homogeneous Mesh NoC ASIC 

Proposed MPSoC RISC (MIPS) configurable size Homogeneous, with a central 
PE controller Mesh NoC FPGA 

 



 

  

To achieve high performance in the processing elements, 
the Plasma-IP architecture separates communication from 
computation. The network interface and DMA modules are 
responsible for sending and receiving packets, while the 
Plasma processor performs task computation and wrapper 
management. The local RAM is a true dual port memory, 
allowing simultaneous processor and DMA accesses, which 
avoids extra hardware for elements like mutex or cycle stealing 
techniques. 

Each PlasmaIP-SL runs a tiny Operating System (OS), 
called microkernel, which supports multitasking and task 
communication. The PlasmaIP-MS also runs a microkernel, 
but do not execute applications tasks. The microkernel 
segments memory in pages, which it allocates for itself (first 
page) and tasks (subsequent pages). Each Plasma-IP has a task 
table, with the location of local and remote tasks. A simple 
preemptive scheduling, implemented as a round robin, 
provides support to multitasking. 

The microkernel protects memory pages, and all 
communication among tasks occurs through message passing 
only. Message passing is supported through a global message 
pipe located in the microkernel and communication primitives 
(WritePipe() and ReadPipe()), which compose the current 
HeMPS API. The kernel is described mostly in C and some 
special functions in assembly (e.g. interruption treatment and 
context saving). 

The communication model employs non-blocking writings 
and blocking reads. This is an important feature, since a 
message is only sent through the network when it is requested, 
reducing the traffic in the NoC. 

HeMPS API assumes that user applications are modeled by 
task graphs. For example, Figure 3 illustrates the graph which 
edges represent the communication between tasks. In this 
example, the application is composed by four tasks where 
tasks A and B send messages to task C, and this to the task D. 
These tasks are described in C language. 

taskA

taskB

taskC taskD

 
Figure 3 – Task graph modeling a given application. 

B. ConMe Unit 
The ConMe unit connects the Main Control to the external 

DDR2 controller. The ConMe is subdivided in two blocks: (i) 
interface, which translates the commands/addresses/data from 
the Main Control to the DDR2 controller (it is in fact a 
wrapper); (ii) DDR2 controller, generated by the Xilinx 
Coregen tool. 

It is important to understand that all applications to be 
executed by HeMPS are initially stored in the external DDRs 
memory (task repository). Initially the host computer write all 
tasks in this repository (ComEtàMain ControlàConMe), 

keeping the HeMPS in a reset state. After loading all tasks into 
the repository, the host sends a command to start HeMPS. At 
this moment, the PlasmaIP-MS has full access (read only) to 
the task repository. 

C. ComEt Unit 
This unit is responsible for the communication between the 

MPSoC and the host computer. Unlike most projects, the 
TCP/IP stack is implemented in hardware, without the need of 
using a processor dedicated to process packets received from 
the network. This strategy is adopted to improve performance 
and to reduce area. 

ComEt is composed by a transmission module, a reception 
module and a MAC Ethernet core. The modules communicate 
with the MAC Ethernet and the Main Control module. These 
modules implements three protocols of TCP/IP stack: UDP, IP 
and ARP. The reception module removes the IP packet 
overhead and transmits payload to Main Control. The 
transmission module inserts the header on messages from the 
master PE. These messages are mostly debug messages 
generated by the executing tasks, enabling system evaluation 
and debug online. 

D. Main Control Unit 
This module is responsible to control the interaction among 

HeMPS-S units. It has the following functions: (i) process 
commands received from ComEt; (ii) write/read data on 
ConMe; (iii) transmit task codes to HeMPS; (iv) transfer 
debug messages from HeMPS to ComEt. The Main Control 
receives from ComEt the payload of UDP packets generated 
by the host computer. This payload contains commands to 
manage HeMPS-S, as shown in Table 2. 

TABLE 2 – HEMPS-S COMMANDS. 
Command Description 
Connect Connect the host computer to HeMPS-S 

Write Write the binary codes on the repository  

Start Reset HeMPS, starting the execution 

Disconnect Disconnect the host computer from HeMPS-S 
 
All these hardware modules (ConMe, ComEt, Main 

Control) are MPSoC independent. The hardware designer can 
easily adapt the commands and the interface to comply with 
other MPSoC. 

E. HeMPS-S Prototyping 
This Section describes the HeMPS-S prototyping process, 

and the required design modifications to cope with the timing 
constraints. The device is a Xilinx Virtex 5 5vlx330tff1738-2, 
chose due to the large amount of available embedded memory 
blocks, and a MAC Ethernet hard core, which is required by 
the ComEt unit. The main CAD tools employed were Xilinx 
PlanAhead 11.1 and ModelSim. PlanAhead enables 
floorplaning, constraints insertion, debugging and conducting 
timing/area results analyses. Differently from ISE, in 
PlanAhead we can synthesize multiples implementation 
strategies in the same design. Thus, it becomes possible to 
evaluate a larger number of design alternatives, speeding up 
the prototyping process. Modelsim, although not used for 
prototyping, is used to simulate the entire system. 



 

  

The original HeMPS description uses the Hermes NoC as 
an IP. Such approach is not adequate for prototyping purposes, 
since the router should be located physically near to the PE 
with which it communicates to avoid long wires. Therefore, a 
new module was created, called Plasma_Router. 
Plasma_Router contains the Plasma-IP and a Hermes NoC 
central router. This router contains five ports. As a function of 
the placement of the Plasma_Router in the NoC, some ports 
are not used (e.g. north port of the top routers). Unused ports 
have their control signals connected to ground. The synthesis 
tool removes the unused logic, reducing the area, as in the 
original description. Figure 4 shows the flip-flops and LUTs 
utilization, respectively, of each module of Plasma_Router. 
Note that the Router being evaluated has five ports. Thus, 
results are upper bounds. 

This prototype has three external clock sources: a 50 MHz, 
and two 25 MHz clocks. Figure 5 illustrates how clock signals 
for the 4 main units are obtained from the 50 MHz external 
clock. The two 25 MHz clocks are generated by the external 
PHY, which communicates with the MAC Ethernet. 

HeMPS-S
HeMPS

ConMeComEt Main Control
25MHz
25MHz

TX
RX

50MHz

DDR2EMAC

DCM
50

DCM
200

200MHz

200MHz (90º)

50MHz
bufg

200MHz

50MHz

100MHz

to HeMPS

 
Figure 5 – HeMPS-S clock organization – DCM (digital clock manager) is a 

FPGA component to generate clock signals. 

The number of PEs is limited by the amount of available 
memory blocks (BRAMs). Each prototyped Pasma-IP has a 16 
kB RAM, which uses 16 BRAMs. The selected device could 
hold up to 20 PEs, since it has 324 BRAMs. Figure 6 

illustrates the floorplan of a 2x3 HeMPS-S instance. Each PE 
requires 16 BRAMs, using two 8-BRAM columns. The 
location of ComEt and ConMe units are chosen according to 
the proximity of the pins location to these modules in the 
device. 

The HeMPS MPSoC reset signal is generated by the Main 
Control unit, after the complete task repository transmission. 
One problem found during prototyping is that the synthesis 
tool does not recognize the reset wire to each PE as a special 
wire. To avoid timing errors, we used a buffer (BUFG) to 
drive the reset signal of the HeMPS MPSoC. 

 
Figure 6 – HeMPS-S floorplan: the columns in red at each PE indicates 

BRAMs used as PE memory. 

The ComEt unit has two clock domains. From one side the 
Main Control reads/writes data at 200 MHz, and from the 
other site the PHY reads/writes at 25 MHz. Also, there is no 
detectable relationship between these phases, although there is 
a relationship in frequency. The adopted solution to 
synchronize both clock domains is to uses a synchronous 
write/asynchronous read LUTRAM to store data, and a two-
flop synchronizer for the control signals. Figure 7 shows the 
architecture to process the UDP packet transmission, which is 
sent to the host. The tx_ack signalizes available data to be 
consumed in the asynchronous buffer, in the 200 MHz clock 
domain. This signal is synchronized in the other clock domain, 
and consumption starts. After reading the contents of the 

 
(a) Flip-Flop utilization: router 202, Plasma-IP 706. 

 

(b) LUT utilization: router 685, Plasma-IP 1554. 

Figure 4 – Area utilization for the Plasma_Router, targeting the 5vlx330tff1738-2 device. 

 



 

  

 
 

Figure 9 – HeMPS-S generator framework. 

 

Figure 10 – Hardware debug GUI, displaying the results sent to the host from 
the FPGA board. 

 
 

LUTRAM, the tx_done_in indicates end of consumption in the 
25 MHz clock domain, and this control signal is synchronized 
to the other clock domain. The same structure is used in the 
opposite direction. 

LUTRAM 
asynchronous 
buffer

clk_25clk_200

wr_data_out

wr_en_out

tx_ack_out

tx_done_in

wr_data_in
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tx_ack
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Figure 7 – Part of the UDP transmission module. 

Another issue was the interface between the Plasma-IP 
Master and the Main Control module. The master requests 
data from the repository at 50 MHz, and the Main Control 
access the DDR2 memory at 200 MHz, but both clocks have 
the same phase (guaranteed by the DCMs). To synchronize 
this interface a 4-phase protocol is used - Figure 8, read_req 
(50 MHz) and data_valid (200 MHz). The first read is slower 
than the subsequent ones, since the DDR2 controller reads 16 
words simultaneously, buffering them. To avoid slack errors 
during reading, the data_valid signal is asserted one cycle 
after the data_read. Figure 8 shows in (1) the Plasma-IP 
requesting a read, and one cycle after (2) the data_valid fall 
because the word is not available in the bus yet. One cycle 
after data is available on data_read, the signal data_valid is 
asserted (3). The Plasma-IP signalizes that the read was 
executed (4), falling read_req. 

 
Figure 8 – 4-phase protocol at the interface Master PE – Main Control. 

IV. HEMPS-S FRAMEWORK 

The user on a host computer, using the HeMPS-S 
generator framework – Figure 9, controls the HeMPS-S. The 
framework is responsible for the generation of the task 
repository, and the communication management with the 
FPGA board. The HeMPS-S Generator environment enables: 
1) Platform Configuration: number of processor connected 

to the NoC, through parameters X and Y; the maximum 
number of simultaneous running tasks per slave; the page 
size (and consequently the RAM size); and the processor 
abstraction description level (simulation only). User may 
choose among a processor ISS or VHDL description. 
Both are functionally equivalent, with ISS being faster 
and VHDL giving more detailed debug data. 

2) Insertion of Applications into the System: the left panel of 
Figure 9 shows applications mpeg and communication 
inserted into the system. The communication application 
has 4 tasks, and the mpeg application 5 tasks (start, ivlc, 
idtc, iquant, print). 

3) Define the initial task mapping: note in Figure 9 the start 
task (initial task of mpeg) mapped in processor 01, and 
tasks taskA and taskB (initial tasks of communication) 
allocated to processors 11 and 12 respectively. The 
remaining tasks are assigned to the master processor, to be 
dynamically mapped during system execution.  

4) Generation of the binary codes: through the Generate 
button, all binary codes are generated. The Generate 
button also parameterizes the VHDL files for the 



 

  

 
Figure 11 – Simulation debug GUI, displaying the results obtained after RTL simulation. 

hardware synthesis (executed once) and creates the 
memory images for the microkernel. 

5) Definition of the HEMPS-S network addresses: IP and 
MAC addresses. This is still a system limitation, the IP is 
not acquired dynamically by the DHCP protocol. 

6) Debug button: used to display the RTL simulation results, 
in a dedicated simulation debug GUI (Figure 11, 
discussed later). 

7) Debug the system in the FGPA board: the Send to Board 
button execute 4 actions: (i) connect the framework with 
the system in the FPGA (see Table 2 commands); (ii) fill 
the task repository by sending all binary codes to the 
external memory; (iii) release the HeMPS reset through 
command start; (iv) receive debug messages.  

When the task repository data has been transferred to the 
external memory, the host computer starts the execution of the 
applications on HeMPS (command start). Then, the Plasma-IP 
Master starts reading the repository through the Main Control 
and ConMe units and sends tasks to each slave. Once a given 
task is received in a Plasma-IP Slave, it is scheduled to be 
executed. Tasks can communicate with other tasks, in the 
same or in a different processor, and can also send debug data 
to the master processor. The master sends debug data to the 
host computer through the Main Control and ComEt module. 
In the host computer, after pressing the Send to Board button, 

a GUI displays this debug data, enabling system performance 
evaluation at running time, as illustrated in Figure 10 

The debug window (Figure 10) contains one panel for each 
processor. In the panel corresponding to the Plasma-IP MS 
(processor 00), two kernel messages are displayed. Processor 
11 executes communication task A, and then simultaneously it 
executes MPEG tasks C (iquant) and E (print). This textual 
map enables to verify the correct behavior of the application, 
as well as to measure the performance of each task. The 
numbers after communication x started and before 
communication x finished corresponds to the number of clock 
cycles spent since the beginning of the system execution, 
obtained through the gettick() system call. The use of this 
system call enables to compute the task execution time, 
latency, and throughput. 

The simulation debug GUI (Figure 11), invoked after RTL 
simulation, contains one tab per task executing in each 
processor. For example, in Figure 11, a HeMPS instance with 
15 PEs is simulated, with 8 processors executing 
simultaneously 3 tasks each. In this way, messages are 
separated, allowing to the user to visualize the execution 
results for each task separately. The hardware debug GUI is 
currently being adapted to display tasks separately, as in the 
simulation debug GUI. The main difference between 
prototyping and simulation is that the former receive data at 
runtime, and the later reads a file generated after simulation. 



 

  

V. CONCLUSION AND FUTURE WORKS 

This paper presented the HeMPS-S framework, composed 
by software executing in a given host, and an NoC-based 
MPSoC executing in FPGA, both interconnect through an 
Ethernet connection. The basis for the HeMPS-S framework is 
the HeMPS MPSoC, which is open source, available at 
www.inf.pucrs.br/~gaph. New hardware or software 
techniques can be easily integrated in HeMPS-S, enabling to 
construct proof of concept prototypes for these new 
techniques. The hardware modules, extern to the MPSoC, can 
be ported to comply with other MPSoC. Then the designer can 
use these modules to validate his MPSoC platform. 

Ongoing work includes a distributed shared memory with 
cache coherence [11]. Future works include the addition of: (i) 
hardware monitors to collect data related to power, latency and 
throughput; (ii) include new processors; (iii) include the 
DHCP protocol on the communication infrastructure; (iv) a 
decentralized control mechanism, to avoid a communication 
bottleneck on the master processor. 
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