
A study on substrate network synchrony demands to support hybrid synchrony
virtual networks

Rasha Hasan, Odorico Machado Mendizabal, Rômulo Reis De Oliveira, Fernando Luís Dotti
Faculdade de Informática

Pontifícia Universidade Católica do Rio Grande do Sul
Porto Alegre, Brazil

rasha.hasan@acad.pucrs.br, odoricomendizabal@furg.br, romulo.reis@acad.pucrs.br, fernando.dotti@pucrs.br

Abstract—Network virtualization has been proposed in
the last years, and it received special attention from both
networking and distributed systems communities. By offering
a flexible and economic alternative for the deployment of
customized networks, a wide set of applications becomes
eligible to run on top of such infrastructures. However,
specific applications’ requirements, such as topology, secu-
rity, and resilience, pose different challenges to the network
embedding problem. Among these requirements lays the one
of synchrony, that some applications demand time bounds
for processing and communication. In this sense, Hybrid
Synchrony Virtual Networks (HSVN) has been proposed to
fulfil specific synchrony requirements and better support
a considerable class of distributed systems. Considering
HSVNs, one of the main challenges is to minimize the need
for synchronous components in the substrate network, due
to their high cost. In this paper, we propose a mathematical
model that aims at defining an economic synchrony con-
figuration of the substrate network, subject to the virtual
networks demands, and we analyse the physical synchronous
resources regarding their properties and topology.

I. INTRODUCTION

Network virtualization has been proposed as a flexible
and economic approach to build multiple virtual networks
over a shared substrate [1]. As can be seen in the literature,
the diversity of applications pose different challenges for
the VNs embedding process, i.e. how resources of a
physical network (a.k.a. Substrate Network – SN) are used
to support VNs. For example, topology [2], security [3],
resilience [4], and synchrony [5] requirements.

On a recent work [5], we proposed a new architecture
based on VNs for distributed applications that require
hybrid synchrony. Those distributed applications may de-
mand a subset of resources to behave synchronously.
Thus, the SN has to support such subsets of resources
that ensure time bounds on communication and pro-
cessing. The resulting architecture that combines Hybrid
Synchrony (HS) with Virtual Networks (VN) we name
HSVN. The SN is composed by two classes of nodes: (i)
synchronous nodes, which allow timely CPU execution,
achieved through implementing periodical real-time tasks,
and (ii) asynchronous nodes, that have no timely guaran-
tees. Analogously, two classes of the SN physical links
are available: (i) synchronous links, which ensure time-
bounded messages transmission delay, achieved through
implementing QoS communication guarantees, and (ii)
asynchronous links that have no timely guarantees.

From the system developer standpoint, delegating the
resource allocation to the VN mapping process is very
advantageous. As well as CPU capacity or bandwidth, the
synchrony level demanded by applications is also consid-
ered by the mapping process in searching for an economic
sharing of resources. From the network virtualization
standpoint, the main advantage of HSVN, compared to
classical VNs architecture, is the coexistence of syn-
chronous and asynchronous components. By providing this
setup, distributed applications running on top of HSVNs
can rely on the hybrid synchronous assumption [6], [7].
Therefore, stronger properties provided by synchronous
components can be enjoyed by the application as a whole,
even though only some (possibly the majority) of HSVN’s
components are asynchronous. As discussed in Section II,
important classes of applications can benefit from hybrid
architectures.

Although virtualization drops considerably the cost with
synchronous components, the HSVN embedding process
presented in [5] does not take into account the amount of
synchrony demanded by HSVNs. Rather, a fixed number
of synchronous components in the SN need to be booked
in advance. Since the synchronous components building
cost is remarkably higher than the asynchronous ones, a
key challenge is to efficiently handle HSVN’s synchronous
requirements.

In this paper, we consider the synchrony demands on the
HSVNs as an input for the embedding process. With this
information, the embedding process determines a sufficient
number of synchronous components, and their location
on the SN, so that the VNs requirements are satisfied.
The mapping model aims at minimizing the synchronous
resources made available by the SN. With such a model, it
is possible to define exactly which physical resources have
to be synchronous, and then configure them to preserve
timely guarantees (e.g. by scheduling real-time tasks for
nodes, and applying QoS policies for links). Differently
from results presented in [5], the embedding process
proposed in this work avoids reservation of unused syn-
chronous resources at the SN. Moreover, this evaluation
shows levels of synchrony that will be demanded to a SN.

The rest of this paper is organised as follows. Sec-
tion II motivates the use of hybrid synchronous models
and virtual networks, Section III presents our proposed
mathematical model, that aims at configuring the SN in
terms of synchrony, and maps the HSVN on it. Section

2014 Brazilian Symposium on Computer Networks and Distributed Systems

978-1-4799-5612-8/14 $31.00 © 2014 IEEE

DOI 10.1109/SBRC.2014.41

344

IV details about the performance evaluation and gives
important insights about the topology and features of
physical resources chosen to be synchronous on the SN.
Finally, Section V describes related work, and Section VI
concludes this paper.

II. HYBRID SYNCHRONOUS MODELS AND VIRTUAL

NETWORKS

The development of distributed systems is strongly
dependent on the assumptions about the environment. By
understanding how system components and the surrounded
environment behaves, system developers are capable to de-
sign algorithms that are correct under certain assumptions.

Generally, stronger assumptions about system’s com-
ponents and the environment allow the development of
simpler solutions. The downside is that strong assumptions
do not represent with sufficient accuracy a wide set of real
environments. Conversely, weaker assumptions require
complex solutions and, in some cases, some problems
are even impossible to solve under weaker assumptions.
An advantage, though, is that weaker assumptions usually
describe realistic environments and solutions proved to be
correct under weaker assumptions are also correct under
stronger assumptions.

In practical terms, components of a given infrastructure
can have different properties in various aspects such as
synchrony, security, or performance. For instance, while
some infrastructure channels would be secure (i.e., all
information passing through these channels are encrypted),
others would just send a stream of unmodified data to
the destination. Therefore, it is important that a system
architect chooses the most suitable components of the
underlying infrastructure to fulfil system’s requirements,
and then develops applications in accordance with infras-
tructure’s guarantees. If a distributed application requires
confidentiality of the data being transferred, then secure
channels would be preferred. Otherwise, by using inse-
cure channels, the confidentiality of data would have to
explicitly be provided by the application before sending
the data.

In this paper the synchrony aspect is addressed, i.e.,
processes evolve synchronously through rounds of com-
putation delimited by a global clock, or such timely
guarantees are relaxed or even non-existent. In an asyn-
chronous system, no assumption about process execution
speed and/or message delivery delays is made. Conversely,
in a synchronous system, relative processing speed and
the message delays are bounded [8]. Therefore, different
assumptions about process execution speeds and message
delivery delays would require specific design decisions.

Assuming that the underlying infrastructures behaves
asynchronously showed to be realistic to a wide range
of applications. Furthermore, it is the weakest model in
terms of synchrony. That means an algorithm that works
in an asynchronous model also works in other models
with stronger synchrony assumptions. The opposite is not
valid, i.e., an algorithm that works in a synchronous model
is prone to incorrect behaviour if timing constraints are

violated. Although it is very attractive, in the asynchronous
model it is impossible to distinguish a crashed process
from an arbitrarily slow process [9]. As a consequence,
many key problems of fault-tolerant computing are not
solvable under the asynchronous assumption. For example,
the FLP impossibility result proved that consensus can-
not be solved deterministically in asynchronous systems
where, at least, one process may crash [10].

By asserting that a system is synchronous, system devel-
opers can rely on the timely behaviour of the components.
This, in turn, enables one to employ simpler algorithms
than those required to solve the same problem in an asyn-
chronous system [8]. For instance, processes can perfectly
distinguish faulty from slow processes. Then, the FLP
impossibility result is not applicable to the synchronous
model. However, building synchronous systems requires
infrastructures composed exclusively by timely compo-
nents, which could be very expensive or even infeasible.

Hybrid models assume intermediate levels of synchrony.
Cristian and Fetzer proposed the timed-asynchronous
model [6], where the system alternates between syn-
chronous and asynchronous behaviour. In that model the
degree of synchrony varies over time. In [7], Veríssimo
presented the wormhole model, that also exploits the space
dimension to provide hybrid synchrony. This means that
timely guarantees of system components may be different
(i.e., some components are more predictable than others).
For instance, one part of a system would behave syn-
chronously, while other part would be fully asynchronous.
Due to the hybrid behaviour, both models are stronger than
asynchronous model and weaker than synchronous one.

Hybrid models become a good alternative to the de-
velopment of distributed systems with timeliness require-
ments. By enforcing small parts of the system to be-
have synchronously while other parts are asynchronous,
stronger properties provided by synchronous parts can be
enjoyed by the system as a whole. For this reason, hybrid
systems overcome limitations of the homogeneous systems
(fully synchronous/asynchronous).

In [5], we introduced virtualized infrastructure based on
the hybrid synchronous model. The Hybrid Synchrony Vir-
tual Networks (HSVN) combines the advantages of hybrid
synchronous model with the advantages of virtualization.
Sharing of physical resources among VNs becomes an
attractive solution to reduce costs with infrastructure, espe-
cially the synchronous resources which are more expensive
than the asynchronous ones. Therefore, even a small set
of synchronous components could be enough to support
synchrony requirements from different VNs.

In [5], we illustrated a perfect failure detector 𝒫 be-
ing implemented in a HSVN. An interesting aspect of
implementing 𝒫 in a hybrid synchronous system is that,
application workload is totally independent of the failure
detector modules. Thus, application processes can com-
municate through asynchronous channels and still enjoy
stronger properties provided by the failure detector service.
Failure detectors have attracted interest in the development
of reliable distributed systems, since consensus and related

345

problems (e.g. atomic broadcast [9]) can also be solved
with it. Further, the failure detection approach can be
adapted to solve other relevant problems, such as predicate
detection [11] and election [12].

Notice that other classes of applications would also
benefit from HSVN. In [13] Mostefaoui et al. present
an eventual leader election protocol. The proposed pro-
tocol benefits from the best of both worlds (synchronous
and asynchronous), such that it converges as soon as
some synchrony assumption is satisfied. In fact, general
round-based protocols for synchronous systems would be
adapted to execute in hybrid synchronous models. The
design of such hybrid protocols would require a suitable
programming model. In this sense, Gorender et al. [14]
proposed an adaptive programming model for distributed
computing, which provides upper-layer applications with
process state information according to the current system
synchrony. The underlying system model is hybrid, com-
posed by a synchronous part and an asynchronous part.

Even though synchronous components can be shared
by multiple HSVNs, the synchronous components are
considerably more expensive than the asynchronous ones.
Thus, an efficient mechanism for HSVNs mapping that
prevents allocation of synchronous nodes unnecessarily is
needed.

III. A NEW EMBEDDING MODEL FOR HSVN

In this section we propose an allocation model for
HSVN in the shape of a mixed integer program (MIP)
[15]. Differently from our previous work [5], this model
decides the physical resources that need to be syn-
chronous, in an economic manner, and maps the VNs
nodes and links based on it. The model constraints (eq.
2-9) are the same in [5] because they impose soundness
conditions to the HSVN model that cannot be dropped,
while the objective function and variables are different. For
instance, certain parameters in the previous paper became
open variables in the current work.

Variables definition- The substrate network is repre-
sented by an undirected graph 𝐺(𝑁,𝐿), composed of
a set of physical nodes 𝑁 connected through a set of
physical links 𝐿. Each virtual network 𝑉 𝑁𝑘 belonging
to the set of virtual networks 𝑉 𝑁 will be presented by
an undirected graph 𝐺𝑘(𝑁𝑘, 𝐿𝑘), where 𝑁𝑘 is given
by 𝑁𝑘 = 𝑁𝑘

𝑠 ∪ 𝑁𝑘
𝑎 , where 𝑁𝑘

𝑠 and 𝑁𝑘
𝑎 contain the

synchronous and asynchronous VN nodes respectively.
Similarly, 𝐿𝑘 = 𝐿𝑘

𝑠 ∪ 𝐿𝑘
𝑎. A binary function 𝑠𝑦𝑛𝑐(𝑖𝑘)

expresses the VN nodes synchrony demand: 𝑠𝑦𝑛𝑐(𝑖𝑘) = 1
if 𝑖𝑘 ∈ 𝑁𝑘

𝑠 , otherwise 𝑠𝑦𝑛𝑐(𝑖𝑘) = 0 (i.e., 𝑖𝑘 ∈ 𝑁𝑘
𝑎).

Similarly, 𝑠𝑦𝑛𝑐(𝑖𝑘, 𝑗𝑘) expresses the VN links synchrony
demand. Besides synchrony, two other attributes are con-
sidered for the SN and VNs elements: nodes 𝐶𝑃𝑈 , and
links bandwidth (𝐵𝑊). The syntax for those attributes
on the SN and VN respectively are: 𝑐𝑝𝑢(𝑖), 𝑏𝑤(𝑖, 𝑗),
𝑐𝑝𝑢(𝑖𝑘), and 𝑏𝑤(𝑖𝑘, 𝑗𝑘). Finally, we define the output
variables for our mathematical model, they are four binary
functions: 1) 𝑠𝑦𝑛𝑐(𝑖) indicates the synchrony status of
the SN node, 2) 𝑠𝑦𝑛𝑐(𝑖, 𝑗) indicates the synchrony of the

SN link, 3) 𝜎(𝑖𝑘, 𝑖) expresses whether node 𝑖 ∈ 𝑁 maps
node 𝑖𝑘 ∈ 𝑁𝑘, and 4) 𝜌(𝑖𝑘, 𝑗𝑘, 𝑖, 𝑗) expresses whether the
physical link (𝑖, 𝑗) ∈ 𝐿 is part of the path that maps the
virtual link (𝑖𝑘, 𝑗𝑘) ∈ 𝐿𝑘.

The mathematical model- The objective function
(O.F.) aims at minimizing the synchronous resources
(nodes and links) on the SN, beside minimizing the BW
consumption.

Objective: minimize
∑

∀𝑉 𝑁𝑘∈𝑉 𝑁

∑
∀(𝑖𝑘,𝑗𝑘)∈𝐿𝑘

∑
∀(𝑖,𝑗)∈𝐿(𝜌(𝑖

𝑘, 𝑗𝑘, 𝑖, 𝑗)

⋅𝑏𝑤(𝑖𝑘, 𝑗𝑘)) +∑
∀𝑖∈𝑁 𝑠𝑦𝑛𝑐(𝑖) +

∑
∀(𝑖,𝑗)∈𝐿 𝑠𝑦𝑛𝑐(𝑖, 𝑗)

(1)
Subject to
- Capacity constraints:

for every (𝑖, 𝑗) ∈ 𝐿
∑

∀𝑉 𝑁𝑘∈𝑉 𝑁

∑

∀(𝑖𝑘,𝑗𝑘)∈𝐿𝑘

𝜌(𝑖𝑘, 𝑗𝑘, 𝑖, 𝑗) ⋅ 𝑏𝑤(𝑖𝑘, 𝑗𝑘) ≤ 𝑏𝑤(𝑖, 𝑗)

(2)

for every 𝑖 ∈ 𝑁
∑

∀𝑉 𝑁𝑘∈𝑉 𝑁

∑

∀𝑖𝑘∈𝑁𝑘

𝜎(𝑖𝑘, 𝑖) ⋅ 𝑐𝑝𝑢(𝑖𝑘) ≤ 𝑐𝑝𝑢(𝑖) (3)

- Nodes mapping constraints:
for every 𝑉 𝑁𝑘 ∈ 𝑉 𝑁 , 𝑖𝑘 ∈ 𝑁𝑘

∑

∀𝑖∈𝑁

𝜎(𝑖𝑘, 𝑖) = 1 (4)

for every 𝑉 𝑁𝑘 ∈ 𝑉 𝑁 , 𝑖 ∈ 𝑁
∑

∀𝑖𝑘∈𝑁𝑘

𝜎(𝑖𝑘, 𝑖) ≤ 1 (5)

- Links mapping constraint:
for every 𝑉 𝑁𝑘 ∈ 𝑉 𝑁 , (𝑖𝑘, 𝑗𝑘) ∈ 𝐿𝑘, 𝑖 ∈ 𝑁
∑

∀𝑗∈𝑁

𝜌(𝑖𝑘, 𝑗𝑘, 𝑖, 𝑗)−
∑

∀𝑗∈𝑁

𝜌(𝑖𝑘, 𝑗𝑘, 𝑗, 𝑖) = 𝜎(𝑖𝑘, 𝑖)−𝜎(𝑗𝑘, 𝑖)
(6)

- Nodes synchrony constraints:
for every 𝑉 𝑁𝑘 ∈ 𝑉 𝑁 , 𝑖𝑘 ∈ 𝑁𝑘, 𝑖 ∈ 𝑁

𝑠𝑦𝑛𝑐(𝑖𝑘) ⋅ 𝜎(𝑖𝑘, 𝑖) ≤ 𝑠𝑦𝑛𝑐(𝑖) (7)

- Links synchrony constraints:
for every 𝑉 𝑁𝑘 ∈ 𝑉 𝑁 , (𝑖𝑘, 𝑗𝑘) ∈ 𝐿𝑘, (𝑖, 𝑗) ∈ 𝐿

𝑠𝑦𝑛𝑐(𝑖𝑘, 𝑗𝑘) ⋅ 𝜌(𝑖𝑘, 𝑗𝑘, 𝑖, 𝑗) ≤ 𝑠𝑦𝑛𝑐(𝑖, 𝑗) (8)

for every 𝑉 𝑁𝑘 ∈ 𝑉 𝑁 , (𝑖𝑘, 𝑗𝑘) ∈ 𝐿𝑘, (𝑖, 𝑗) ∈ 𝐿

𝑠𝑦𝑛𝑐(𝑖𝑘, 𝑗𝑘) ⋅ 𝜌(𝑖𝑘, 𝑗𝑘, 𝑖, 𝑗) ≤ 𝑠𝑦𝑛𝑐(𝑖) ⋅ 𝑠𝑦𝑛𝑐(𝑗) (9)

The capacity constraint (2) assures that the total band-
width of the virtual links, mapped on paths that include
a certain physical link, does not exceed the bandwidth
capacity of this physical link. Similarly, constraint (3) rep-
resents the equivalent restriction regarding nodes 𝐶𝑃𝑈 .
The node mapping constraint (4) assures that each virtual
node is mapped on a physical one. Constraint (5) assures

346

that virtual nodes belonging to the same 𝑉 𝑁 are not
mapped on the same physical node. This is to achieve
load balancing, besides improving the reliability, since the
unavailability of a SN node will impact, at most, one
node on a given VN. For any virtual link (𝑎, 𝑏), the links
mapping constraint (6), adopted by [3] and [16], assures
the creation of a valid physical path. Because the right side
of the equation will be 1 and -1 for 𝑎 and 𝑏 respectively, so,
𝑎 will have an outgoing arc and 𝑏 an ingoing one. For all
other nodes on the SN, the right side of the equation will
be zero, thus the concatenation of arcs will form a valid
path. The nodes synchrony constraint (7) assures that syn-
chronous virtual nodes are mapped only on synchronous
SN nodes, whereas asynchronous virtual nodes are allowed
to be mapped on synchronous or asynchronous SN nodes.
This is acceptable because, the synchronous SN nodes
supply what the asynchronous ones do, but the reverse
is not valid. Similarly, the links synchrony constraint is
presented in Equation 8. Finally, Equation 9 guarantees
that the intermediate physical nodes on the synchronous
physical path should be also synchronous. This is because
these nodes play role in the routing process, thus impacting
the source-destination delay.

After solving the mathematical model, each node and
link on the SN is defined to be synchronous or asyn-
chronous, each virtual node is mapped to one physical
node, and each virtual link is mapped to one physical
path at maximum, where a physical path can be a unique
physical link or a concatenation of physical links.

IV. PERFORMANCE EVALUATION

This section evaluates the performance of our model
for allocation of HSVN. The aspects considered during the
analysis of our model are: i) economy in the configuration
of the SN synchronous resources; ii) privilege of physical
resources chosen to be synchronous, and iii) the topology
of the subnetwork composed of synchronous resources on
the SN.

Like in related works (e.g., [17], [3]), physical and
virtual networks were randomly generated. For this we
used BRITE [18] tool with Waxman [19] model. We im-
plemented the mathematical model with ZIMPL language
[20] and used CPLEX [21] to solve the MIP, running on a
computer with 6 cores Intel Xeon processor, 2x2.66 GHz,
32GB of RAM memory, and MAC operating system. Most
of the experiments took a considerable time to reach the
optimal solution, the reason is that the MIP we propose
has four output variables, which leads to considerable set
of variables based on the problem size under analysis.
Besides, two of those variables (the mapping variables)
are based on the value of the other two variables (the
synchrony variables) found by the solver, this makes the
optimization process long and consumes exponentially the
machine memory. For the VNs with small size, the solver
reached optimal solution, whereas for bigger size (e.g.
group C), the solver took too long (in the order of 24h), or
the process was stopped due to fully memory allocation.
We decided to stop the solver after finding a solution, even

if the solution is not optimal. This might match realistic
scenarios, in which the client might prefer a semi-optimal
solution in an acceptable computational time, rather than
an optimal solution in too long computational time. Thus,
during the discussion of results the reader should consider
that an optimal solution would perform even better in
terms of synchronous resource sharing.

In all the following experiments, the SN size was fixed
in 25 nodes. Initially all CPUs of SN nodes are free,
and links BW is uniformly distributed between 1-3 Gbps.
We start reporting twelve experiments divided into three
groups, A, B and C, with VNs total size of 10, 20, and 30
nodes respectively. We refer to these scenarios together as
set 𝑋 . The VNs were generated with 3, 4, or 5 nodes each,
and CPU demands 10%, 15%, or 25% of the SN nodes
CPU capacity, and BW demands uniformly distributed
between 100 Mbps and 1 Gbps. In scenarios 1, 2, 3 and 4
of each group, the VNs synchrony demand varies between
0%, 30%, 60%, and 100%. The parameters for each
experiment in the set 𝑋 are described in Table I. These
parameters match the ones in our previous work [5], since
one of the goals in this paper is to compare our current
to the previous mapping model. We will summarize our
previous work before the comparison.

In brief, in our previous work [5], we argued that for
mapping virtual networks with hybrid synchrony demands,
it is a waste of resources to use a fully synchronous SN,
like the SN used in [22], [16]. Rather, using a hybrid
synchronous SN, together with an economic mapping
process, reduces the cost. The mapping model proposed
was aware of sparing the physical synchronous resources,
and using them only when needed. In [5], we used the
same SN of 25 nodes, with the same attributes illustrated
in Table I. Respectively, 33% and 34% of the physical
nodes and links were fixed to be synchronous on the SN,
then we started mapping VNs with increasing size on the
configured SN (scenarios in set 𝑋). We showed that this
approach let the SN, described above, adequate to handle
fully synchronous VNs, with total size up to 30 nodes
(scenario C4).

In the current paper, we have a new approach for
mapping HSVNs, with the goal of minimizing the map-
ping cost even more. We do not reserve, in advance,
the synchronous resources on the SN. Rather, the SN
synchrony is defined as an output of the MIP. Thus, the
physical resources chosen to be synchronous are subject
to the VNs demands, and they change if the VNs demands
change (i.e., physical synchronous resources are different
in each scenario in set 𝑋). The model proposed minimizes
the number of physical synchronous resources to the limit
enough for a given set of VNs. Figure 1 compares SN syn-
chronous resources allocation in our previous and current
work, both for scenarios in set 𝑋 . We notice a clear reduc-
tion in the amount of SN synchronous resources needed
to map the virtual components. For example, in scenario
A4, 16% of synchronous nodes and 6% of synchronous
links were enough to map the demand. In comparison
with our previous work, this means economizing 52%

347

Table I
EXPERIMENTS PARAMETERS IN SET 𝑋

Expe. A1 A2 A3 A4 B1 B2 B3 B4 C1 C2 C3 C4
VN size 10 nodes 20 nodes 30 nodes

VNs sync. 0%. 30% 60% 100% 0% 30% 60% 100% 0% 30% 60% 100%
SN size 25 nodes
SN BW uniformly distributed: 1 Gbps-3 Gbps
SN CPU nodes fully free initially

each VN size 3,4,5 nodes
VNs BW uniformly distributed: 100Mbps-1Gbps
VNs CPU 10,15,25 % of SN nodes CPU

and 83% of SN synchronous nodes and links, respectively.
Obviously, higher gains are observed in scenarios A1, B1,
and C1, where no synchronous resources are required.
Since in the previous approach some SN components
must be synchronous independently of VN demands, the
improvement on synchronous resources reservation is of
100%. The reduction rate in the SN synchronous resources
for the complete set of scenarios can be found in Table II.

Figure 1. Percentage of sync. resources in SN for scenarios in the set
𝑋

Table II
ECONOMY IN SN SYNC RESOURCES BETWEEN CURRENT MODEL AND

OUR PREVIOUS ONE [5]-PERFORMED FOR SCENARIOS SET X

SN sync economy in SN sync nodes (%):
resources economy in SN sync links (%)
Scenario 1 2 3 4
Group A 100 : 100 64 : 88 64 : 88 52 : 83
Group B 100 : 100 27 : 71 27 : 71 27 : 68
Group C 100 : 100 39 : 71 27 : 59 3 : 41

In Figure 1, we note some observations: i) for each
scenario, synchrony demands on links and nodes grow
compatibly (see solid and hashed lines for nodes and links
in the graph). ii) in scenario C4, the synchronous nodes
defined with our new model reached 32%, very near to
the fixed portion in the previous work (33% synchronous
nodes), which attests the correctness of the previous work,
where the fixed synchronous resources could map the VNs
in scenario C4. iii) in some scenarios, even when VNs syn-
chrony demands increases, the number of SN synchronous
resources does not necessarily increases (e.g. scenarios B2,
B3, and B4). This can be explained by resources sharing

provided by VNs mapping. Several virtual components can
be mapped on the same physical resources, as long as this
does not violate the constraints of CPU and BW capacities
for nodes and links, constraints 2 and 3, respectively.

One important feature of the mapping model proposed
in this paper is that it lets observe the physical resources
chosen to be synchronous and the topology of the sub-
networks composed of physical synchronous resources.
Next, we discuss these aspects. To perform this kind
of evaluation accordingly, we increased the problem size
under analysis. We increase: a) the size of each virtual
network, b) the CPU demands, and c) the total size of
VNs (adding Group D’). The new set of scenarios are
named 𝑋 ′ (with prim), and their parameters are shown in
Table III. Figures 2(a) and 2(b) depict a comparison in
the SN synchronous resources needed in the counterparts
scenarios in the 𝑋 and 𝑋 ′ sets, at similar VNs synchrony
demands, i.e. 60% and 100%. The figures illustrate that,
the increment in the problem size has pushed the model to
define larger set of synchronous physical nodes and links.

(a) SN sync nodes %

(b) SN sync links %

Figure 2. Percentage of SN sync. resources: Comparing groups 𝑋 and
𝑋′

The SN described in Table III has nodes that vary in
their connectivity degree between [2-8]. See Figure 3, its
vertical axis indicates the connectivity degree, and its hor-
izontal axis starts with the SN (as base of comparison, as

348

Table III
EXPERIMENTS PARAMETERS IN SET 𝑋′

Expe. A’1 A’2 A’3 A’4 A’5 A’6 B’1 B’2 B’3 B’4 B’5 B’6
VN size 10 nodes 20 nodes
Expe. C’1 C’2 C’3 C’4 C’5 C’6 D’1 D’2 D’3 D’4 D’5 D’6

VN size 30 nodes 40 nodes
VNs sync. 0%. 20% 40% 60% 80% 100% 0%. 20% 40% 60% 80% 100%

SN size 25 nodes
SN BW uniformly distributed: 1 Gbps-3 Gbps
SN CPU nodes fully free initially

each VN size fixed to 5 nodes
VNs BW uniformly distributed: 100Mbps-1Gbps
VNs CPU 10,20,30,40,50% of SN nodes CPU

we will see), and continues with each scenario performed
in set 𝑋 ′. On the leftmost side of Figure 3, we can see the
number of nodes available on the SN at each connectivity
degree in the range [2-8]. For example, on the figure we
can read that the SN has 1 node with connectivity 8,
1 node with connectivity 7, 3 nodes with connectivity
6, and so on. The rest of the figure illustrates the total
number of physical synchronous nodes for each scenario
in set 𝑋 ′, at each connectivity degree [2-8]. For example,
in scenario B6, we note that the model has allocated 19
synchronous nodes, in a way that 1 was with connectivity
8, 1 with connectivity 7, 3 with connectivity 6, and so
on. In general, we notice that the model tends toward
choosing the physical nodes with high connectivity degree
to be synchronous. For example, in scenario C5, the model
chose all the physical nodes with connectivity [6-8] on SN
to be synchronous (compare the numbers at scenario C5
with the base numbers at SN). A possible interpretation for
this behaviour is that, nodes with high connectivity degree
allow multi-use of the same node, since on one hand, it
is connected to a high number of neighbour nodes which
fulfils topology constraints, and on the other hand, nodes
with high connectivity have high bandwidth sum (i.e. the
sum of BW capacity of all the physical links connected
to it) which fulfils BW constraint. Once the model aims
at minimizing the number of the synchronous resources,
then such nodes choice is chased.

Figure 3. Frequency of synchronous nodes vs. nodes connectivity

Next, we evaluate the topology of synchronous re-
sources in each scenario. We noticed that the topology
of the synchronous subnetwork starts by a ring topology
for small problem size, and tends towards becoming

mesh topology with the increment in the problem size.
This observation confirms the previous one regarding the
synchronous nodes chosen, being the ones with high
connectivity degree. Figure 4 depicts the topology of the
synchronous resources in scenario A’3, A’4, A’6, and B’4
as an example. Synchronous nodes are plotted as red
circles, and synchronous links as hashed lines. We notice
that the synchronous resources gather on one subnetwork,
no synchronous islands are observed. Such a gathering
allows multi-use of same synchronous nodes and links
to answer given VNs, which fits with the model goal in
minimizing the number of synchronous resources.

V. RELATED WORK

Revising the literature, we found several works treating
the VNs mapping problem through two main approaches:
optimization models and heuristics. Chawdhury et al.
propose a MIP model, where the objective function is
a weighted sum of node and link mapping, with the
goal of increasing the acceptance ratio and decrease cost.
Bay et al. [3] propose a security-aware mapping model
where three levels of security are discussed. In [4], au-
thors propose an algorithm that combines VN mapping
with substrate link backup to improve VNs resilience.
Unlike the previous works, Hsu et al. [23] map virtual
links through path splitting technique, in addition, path
migration is used to maximize the number of coexisting
VNs. Botero et al. [24] were the first to propose a heuristic
algorithm that considers the CPU of the physical paths
intermediate nodes. For wider collection of VNs mapping,
see [25] for survey.

In the tropic of VNs mapping, we find that our work
is nearer to those who were concerned with delay con-
straints. For example, Zhang et al. [22] propose a heuristic
algorithm for mapping virtual multicast service-oriented
networks subject to delay and delay variation. They con-
sider SNs composed of links with maximum delay. Their
work benefits real-time and interactive applications, where
packets are supposed to be received at the destination
within specific time bounds, and the delay difference
of packets reception at multiple destinations should be
minimal.

Another work [16] addressed the VNs mapping prob-
lem with delay constraints besides routing and location
constraints. The SN considered is composed of links with
maximum delay, and nodes that have maximum routing

349

(a) scenario A’3 (b) scenario A’4

(c) scenario A’6 (d) scenario B’4

Figure 4. Topology divergence of synchronous resources

capacity and location constraints. Four different categories
were used to represent cases in which VNs have different
sets of requirements regarding BW, delay, and nodes CPU:
(1) web slice for low BW requirements, short delays,
and no specific CPU requirements, (2) stream slice for
medium to high BW requirements, no delay bounds, and
3 processing units per routed bandwidth, (3) P2P slice
for medium BW and CPU requirements and no delay
bounds, and (4) VoIP slice for medium BW and delay
requirements, and high CPU requirements.

In our previous work [5], we proposed the abstraction of
Hybrid Synchrony Virtual Networks (HSVN), i.e., virtual
networks that have a subset of nodes and links that
obey time bounds for processing and communication. We
argued that important classes of distributed systems may
benefit from hybrid synchrony, and presented an example
of perfect failure detector implemented on top of a HSVN.
The embedding of several virtual networks in a substrate
network allows resource sharing, which is important since
synchronous resources are expensive. Economizing the
cost, which we aimed at, was achieved through: 1) the
usage of a hybrid synchronous SN instead of a fully
synchronous one, and 2) sparing the use of synchronous
resources, in other words, mapping asynchronous virtual
demands on top of synchronous physical resources is
considered the last resource invested only before rejecting
the demand. Comparing our previous work with others,

we achieved less mapping cost for VNs type that has
different synchrony demands. For example, some VNs
slices adopted in [16] had no delay requirements, yet the
SN considered had no distinction in kind of resources,
which results in an unneeded cost.

In the current paper, we achieved a better cost economy
for the HSVN mapping, by proposing a model that is able
to define the physical synchronous resources needed to
map given HSVNs. This eliminates the existence of any
unused synchronous resources on the SN. Moreover, we
issued a study on the SN that maps the HSVNs, in the
sense of resources type chosen to be synchronous, and the
topology divergence of the physical subnetwork composed
of synchronous resources, when the HSVN size increases.
To the best of the authors knowledge, this type of study
has not yet been presented in the literature.

VI. CONCLUSION

This paper revisits our former work [5] addressing
Hybrid Synchrony Virtual Networks (HSVN), (i.e., virtual
networks with subsets of nodes and links that require
time bounds for processing and communication). Since the
cost of synchronous resources is higher than asynchronous
ones, in [5] we proposed a mapping model that aims at
carefully using the synchronous resources of a SN that
supports hybrid synchrony. In this paper we proposed
an enhanced version of the HSVN mapping model that

350

allows configuring the substrate network synchrony in an
economic manner.

By considering the HSVN synchrony requirements,
the new mapping approach allows to set certain nodes
and links on a given SN to be synchronous, aware of
minimizing the amount of synchronous physical resources
to map the demands. A performance evaluation of our
approach indicates a substantial economy of synchronous
resources compared to previous results [5]. In addition,
by exploring a set of scenarios with different synchrony
requirements, the analysis conducted in this work gives
some important insights about the privilege of physical
resources chosen to be synchronous and their topology
on the SN. We observed that the model tends towards
choosing the nodes with high connectivity degree to be
synchronous. A possible interpretation for this is that, such
nodes choice allows their multi-use when mapping, since
each node is connected to high number of neighbouring
nodes and is provided with high bandwidth sum. Such a
choice minimizes the number of synchronous resources on
the SN, which is the aim of the mapping model. Moreover,
we noticed that the synchronous resources configured on
the SN tend towards gathering in a mesh topology. Which
agrees with the first observation about the nodes type
chosen.

Our future work goes in the direction of online mapping
for the HSVNs, when the SN resources, or/and the VNs
demands are time variant. The mapping approach proposed
in this paper, allows only static resource allocation, and
thus, does not answer the online mapping. For this reason,
we are developing a heuristic algorithm, which is supposed
to allow resource allocation for the HSVNs in a dynamic
manner.

ACKNOWLEDGEMENT

This work has been supported by FAPERGS-NPRV
(Fundação de Amparo à Pesquisa do Estado do Rio
Grande do Sul - Núcleo de Pesquisa em Redes Virtuais),
project PRONEM 11/2038-1.

REFERENCES

[1] M. Chowdhury, M. R. Rahman, and R. Boutaba, “Vineyard:
Virtual network embedding algorithms with coordinated
node and link mapping,” IEEE/ACM Trans. on Networking,
vol. 20, no. 1, 2012.

[2] Y. Zhu and M. Ammar, “Algorithms for assigning substrate
network resources to virtual network components,” in IEEE
INFOCOM, Barcelona, Spain, 2006.

[3] L. R. Bays, R. R. Oliveira, L. S. Buriol, M. P. Barcellos, and
L. P. Gaspary, “Security-aware optimal resource allocation
for virtual network embedding,” in Proc. of CNSM, 2012.

[4] Y. Yu, C. S. zhi, L. Xin, and W. Yan, “Rmap: An algorithm
of virtual networks resilience mapping,” in Proc. of the
7th International Conference on Wireless Communications,
Networking and Mobile Computing (WiCOM), 2011.

[5] R. Hasan, O. M. Mendizabal, and F. L. Dotti, “Hybrid
synchrony virtual networks: Definition and embedding,”
in The Thirteenth International Conference on Networks
(ICN), 2013, pp. 104–110.

[6] F. Cristian and C. Fetzer, “The timed asynchronous dis-
tributed system model,” IEEE Trans. on Parallel and Dis-
tributed Systems, vol. 10, no. 6, 1999.

[7] P. E. Veríssimo, “Travelling through wormholes: a new
look at distributed systems models,” ACM SIGACT News,
vol. 37, no. 1, 2006.

[8] F. B. Schneider, “Distributed systems (2nd ed.),” S. Mul-
lender, Ed. ACM Press/Addison-Wesley Publishing Co.,
1993, ch. What good are models and what models are
good?

[9] T. D. Chandra and S. Toueg, “Unreliable failure detectors
for reliable distributed systems,” Journal of the ACM,
vol. 43, no. 2, 1996.

[10] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impos-
sibility of distributed consensus with one faulty process,”
Journal of the ACM, vol. 32, no. 2, 1985.

[11] F. C. Gartner and S. Kloppenburg, “Consistent detection
of global predicates under a weak fault assumption,” in
The 19th IEEE Symposium on Reliable Distributed Systems.
IEEE, 2000.

[12] H. Matsui, M. Inoue, T. Masuzawa, and H. Fujiwara,
“Fault-tolerant and self-stabilizing protocols using an un-
reliable failure detector,” IEICE Trans. on Information and
Systems, vol. 83, no. 10, 2000.

[13] A. Mostéfaoui, E. Mourgaya, M. Raynal, and C. Travers,
“A time-free assumption to implement eventual leadership,”
Parallel Processing Letters, vol. 16, no. 02, pp. 189–207,
2006.

[14] S. Gorender, R. J. de Araujo Macedo, and M. Raynal, “An
adaptive programming model for fault-tolerant distributed
computing,” Dependable and Secure Computing, IEEE
Transactions on, vol. 4, no. 1, pp. 18–31, 2007.

[15] G. Sierksma, Linear and Integer Programming: Theory and
Practice, Second Edition. Marcel Dekker publisher, 2002.

[16] J. Infuhr and G. R. Raidl, “Introducing the virtual net-
work mapping problem with delay, routing and location
constraints,” in Proc. of 5th International Networking Op-
timization Conference (INOC), 2011.

[17] M. Yu, Y. Yi, J. Rexford, and M. Chiang, “Rethinking vir-
tual network embedding: substrate support for path splitting
and migration,” ACM-SIGCOMM, vol. 38, no. 2, pp. 17–29,
2008.

[18] A. M. I. B. J. Medina, A.; Lakhina, “Brite:
Boston university representative internet topology
generator. http://www.cs.bu.edu/brite.” [Online]. Available:
http://www.cs.bu.edu/brite

[19] B. M. Waxman, “Routing of multipoint connections,” Se-
lected Areas in Communications, vol. 6, no. 9, 1988.

[20] T. Koch, “Rapid mathematical programming,” Ph.D. dis-
sertation, Tichnische Universität Berlin, 2004.

[21] IBM, “Cplex. http://www-
01.ibm.com/software/commerce/optimization/cplex-
optimizer.” [Online]. Available: http://www-01.ibm.com/
software/commerce/optimization/cplex-optimizer

351

[22] M. Zhang, C. Wu, M. Jiang, and Q. Yang, “Mapping
multicast service-oriented virtual networks with delay and
delay variation constraints,” in IEEE GLOBECOM. IEEE
Communication Society, 2010.

[23] W. H. Hsu, Y. P. Shieh, C. H. Wang, and S. C. Yeh,
“Virtual network mapping through path splitting and mi-
gration,” in Proc. of The 26th International Conference
on Advanced Information Networking and Applications
Workshops, 2012.

[24] J. F. Botero, X. Hesselbach, A. Fischer, and H. De Meer,
“Optimal mapping of virtual networks with hidden hops,”
Telecommunication System, vol. 52, no. 3, 2013.

[25] A. Belbekkouche, M. M. Hasan, and A. Karmouch, “Re-
source discovery and allocation in network virtualization,”
IEEE Communication Surveys and Tutorials, vol. 14, no. 4,
2012.

352

