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Abstract The study and characterization of node mobility
in wireless networks is extremely important to foresee the
node distribution in the network, enabling the creation of
suitable models, and thus a more accurate prediction of per-
formance and dependability levels.

In this paper we adopt a structured Markovian formalism,
namely SAN (Stochastic Automata Networks), to model and
analyze two popular mobility models for wireless networks:
the Random Waypoint and Random Direction.

Our modeling considers mobility over a discrete space,
i.e., over a space divided in a given number of slots, allowing
a suitable analytical representation of structured regions. We
represent several important aspects of mobility models, such
as varying speed and pause times, and several border behav-
iors that may take place. One, two, and three-dimensional
models are presented. For the two-dimensional models, we
show that any regular or irregular convex polygon can be
modeled, and we describe several routing strategies in two
dimensions.

In all cases, the spatial node distribution obtained from
the steady state analysis is presented and whenever analo-
gous results over continuous spaces were available in the lit-
erature, the comparison with the ones obtained in this paper
is shown to be coherent.
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1 Introduction

Mobility keeps gaining in importance, playing a significant
role in the design and implementation of communications
infrastructures and distributed systems. The study of mobil-
ity in a broad spectrum has impacted a wide range of tech-
nical results such as new process calculi [40], new distrib-
uted programming paradigms [23], and a large set of new
and revisited distributed algorithms and protocols, such as
reported in [1, 4, 39, 45] to mention a few.

Methods for the representation and analysis of distributed
systems are important since such systems are often too ex-
pensive to prototype and nontrivial to monitor aspects that
become more challenging when mobility is involved; espe-
cially, the quantitative analysis of mobile systems becomes
of paramount importance. Very often the properties of mo-
bile systems can only be considered in a quantitative way
due to the several aspects involved and wide possibility of
behavior. The study and characterization of mobility models
is very important in order to analyze a given distributed sys-
tem where mobility is present in one of the possible forms.

The analysis of mobility models found in the literature
proposes simulation or analytical solutions. While typical
analytical solutions under use may provide more reliable
indices than simulation, the representation of some aspects
of a given system may become very complex or lead to in-
tractable models.
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One of the cases rarely considered is the spatial distrib-
ution when the nodes move over a discrete space. Such sit-
uation may occur when nodes move on a grid like a net of
corridors in a building or streets in a city. An even clear sit-
uation of discrete space are coarser models, where the exact
position is not needed, but the identification of a room or
access point in use is the relevant information.

It is not a coincidence that such cases of mobility are not
usually modeled, since either their mathematical formula-
tion becomes quite complex or state based models for these
realities easily become intractable due to the huge number
of possible states, i.e., the well-known state space explosion
problem. In fact, other initiatives to model similar realities,
e.g., street movement [14, 48] does not tackle discrete space,
but rather consider a set of continuous lines.

On the other side, structured formalisms such as Sto-
chastic Petri Nets [2], Stochastic Process Algebra [27], and
Stochastic Automata Networks—SAN [44] are inherently
discrete state and provide powerful concepts to stepwise
build detailed mobility models. Probably the greatest ad-
vantage of using structured formalisms is the possibility to
perform numerical solutions rather than simulation experi-
ments. Numerical solutions deliver exact probabilities that
does not suffer from the accuracy and statistical relevance
issues common to simulation approaches [17].

Actually, the numerical analysis literature [12, 18, 19,
33] acknowledges the computational benefits to use struc-
tured representations in analytical modeling and numerical
solution. Therefore, we consider that the discussion of the
suitability of such methods to describe and solve mobility
models is important. Among the options of structured for-
malisms, we have chosen SAN basically due to the authors
previous experience. To our experience, the use of other
above mentioned formalisms would lead to analogous dis-
cussions and results.

In this paper, we focus on the analysis of mobility models
typically employed in wireless network, more specifically
we model and analyze two mobility models: Random Way-
point and Random Direction. The Random Waypoint mobil-
ity model [5] is one of the most used in wireless networks re-
search [7, 8, 11, 28, 32, 38]. The Random Direction [47] was
also chosen since it is considered an approximation of real
movement behavior for several classes of applications and,
therefore, often used [5, 21, 26, 43, 51]. The main objec-
tive of this analysis is to derive the spatial node distribution
which affects directly the performance and dependability of
the used protocols [34, 43]. In this context, our contribution
is the following:

• We introduce the use of SAN formalism and show that
this method lends itself to the formalization of mobility
models, providing explicit and non-ambiguous descrip-
tion of such models. Besides, the structured nature intrin-
sic of the SAN formalism allows to stepwise enrich the

description level of detail when compared to continuous-
state models.

• We formally describe the Random Waypoint mobility
model in SAN and show the compatibility of our results
with existing continuous state space studies for square ar-
eas. Further, we extend the analytical model of the Ran-
dom Waypoint to analyze the impact of representing more
detailed aspects, namely a pause time while the mobile
nodes do not move and the choice of different routing
strategies. Note that such analysis of routing strategies is
only meaningful due to the use of a discrete state space
modeling adopted.

• We show the ability to model any surface in the shape
of regular or irregular convex polygons. The modeling
of such surfaces was carried out considering the Random
Waypoint mobility model. Additionally, the resulting spa-
tial node distributions for surfaces in the shape of some
regular polygons, such as hexagon and triangle, are co-
herent with those found in the literature considering con-
tinuous spatial distribution.

• We formally describe the Random Direction mobility
model using SAN and we show the results achieved with
the spatial node distribution. For instance, we show that
the pause does not affect the spatial node distribution
probability in the one and two dimensional cases. An
analysis of nonsquare surfaces is not represented in this
paper, but it can be developed analogously to the pre-
sented for Random Waypoint models.

It is important to point out that it is not the goal of this
paper to defend the use of Random Waypoint and Random
Direction as valid models for describing human mobility, or
any other particular behavior. For those issues, the interested
reader may find extensive and relevant material in [24, 30,
37]. The choice of modeling RWP and RD is based on the
abundance of discussion and results for these mobility mod-
els in the area.

This paper is structured as follows: Sect. 2 describes Ran-
dom Waypoint and Random Direction mobility models and
surveys the related works; Sect. 3 describes the Stochastic
Automata Network formalism; Sect. 4 proposes the SAN
models and analyzes the results for the Random Waypoint
model in one and two dimensions, for square and other (reg-
ular and irregular) convex polygonal surfaces; Sect. 5 in-
troduces one- and two-dimensional SAN descriptions for
the Random Direction mobility model, discussing possible
variations of these SAN models and presenting the results
achieved in terms of spatial node distribution. Final remarks
and some more elaborated modeling efforts (3D models)
are presented in the conclusion with some possible future
works.
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2 Mobility models

The literature presents many studies classifying different
mobility models for wireless networks [5, 13, 31]. These
models are used to represent the movement of mobile nodes
in a wireless network, and they can be split in individual and
group models. The individual mobility models represent the
independent movement behavior of one mobile node, while
the group mobility models are used when a group of nodes
have a common behavior in the choice of their movements.
The modeling of individual mobility is simpler to imple-
ment, because the node movement can be done through in-
dependent events. Due to this characteristic, the individual
models are the most used to evaluate wireless networks, as
in [3, 6, 7, 31]. The quantitative analysis of such models di-
rectly influences the estimation of performance and depend-
ability levels of wireless networks.

As mentioned in the previous section, in this work, we
focus on the individual mobility models Random Waypoint
and Random Direction, which are discussed below.

2.1 Random waypoint mobility model

In the Random Waypoint Mobility model [7, 13], the mo-
bile node randomly chooses a destination and moves to this
destination with constant speed. When reaching the desti-
nation, the mobile node remains stopped for some time and
then begins the whole process all over again with the same
rules. This model and its variations are widely used. Some
examples of its use can be found in [7, 8, 11, 28, 29, 32, 38,
42, 46].

Several authors consider the Random Waypoint to ob-
tain the spatial node distribution, allowing one to derive im-
portant performance and dependability parameters. Studies
about node connectivity using Random Waypoint as mobil-
ity model can be found in [15, 29, 36, 49].

Royer et al. [47] carry out an analysis by simulation
on the spatial node distribution for the Random Waypoint.
In [47], it was noticed a higher probability of the node be-
ing in the center of the simulated area. A detailed analyti-
cal study of spatial node distribution generated by the Ran-
dom Waypoint mobility model was presented by Bettstetter
in [7]. The results achieved there were also validated by sim-
ulation studies for one- (line) and two-dimensional (square)
models without pause time.

Resta and Santi in [46] generalize the analysis of [7] al-
lowing pause time and speed to be changed. They derive an
explicit formula of the one-dimensional spatial node distrib-
ution, and an approximated formula for the two-dimensional
case.

Hyytiä et al.in [29] derive an explicit expression for the
spatial node distribution of Random Waypoint in convex
domains and they also demonstrate the use of the result

for various shapes of the domain. They derive an polyno-
mial approximation for density function for regular trian-
gles, squares, and hexagons, comparing some of their results
with [7]. Besides, they analyze Random Waypoint models
and some applications, such as connectivity and traffic load
in ad hoc networks.

The studies have shown that although the initial node po-
sitioning is taken from an uniform random distribution, the
mobility model changes this distribution during the move-
ment. This effect occurs because nodes tend to cross the
center of the modeled region with a relatively high fre-
quency and, without a pause time, the choices are inde-
pendent of the node speed. However, as the pause time in-
creases, the node distribution approximates the uniform dis-
tribution.

The Random Waypoint mobility model is also used in
others contexts. Jayakumar et al. [32] and Kumar et al. [35]
used Random Waypoint to evaluate routing protocols to
MANET (Mobile Ad hoc Network). Besides, a study in the
context of cellular networks is presented by Hyytiä et al.
in [28].

2.2 Random direction mobility model

The Random Direction is another mobility model used to
analyze and simulate the movement of mobile nodes in a
wireless network. Different from the Random Waypoint,
the choice of new destination is done through a new direc-
tion, a speed to travel, and a time duration for this travel
[25, 41].

One important aspect of the Random Direction mobility
model is the possible behavior when reaching the border of
the area considered, i.e., the border behavior. In [5], Bettstet-
ter shows three different border rules: Bounce, Delete and
Replace, and Wrap Around. These border rules guarantee
that the number of nodes remains constant during the analy-
sis. In the Bounce border rule, when the node achieves the
border, it reflects back to the simulation area. The new angle
is chosen according to the previous angle with the reached
border [26, 47]. In the Delete and Replace, according to [5],
the node is deleted and a new node is created on a randomly
chosen point in the simulation area. In the Wrap Around, the
node continues the movement and reenters in the opposite
border with the same speed and direction parameters. This
approach models a torus shape surface [22].

There are some variations of Random Direction mobil-
ity model in the literature. In [26], Haas and Pearlman
present a mobility model considered as a simplified version
of Random Direction Mobility model described in [5]. In
this model, the mobile node selects a speed and a direction,
between 0 and 359 degrees, and moves in this direction until
the border is reached. Once the border is reached, the mobile
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node chooses another direction between 0 and 180 degrees
and continues the process.

In the basic model considered by Royer et al. [47], the
mobile node randomly selects a direction and a destina-
tion along this traveling direction, thus it is not forced to
travel until the border. Besides, a speed is also randomly
chosen. Once it reaches the destination, it remains station-
ary for some predefined pause time. At the end of the pause
time, the process is repeated. If a border of the simulation
area is reached, it reflects back into simulation area, using
the Bounce border rule. Some results with simulations about
traffic load and node density using this model are presented
in [47] and [43].

In [5], with the aim of providing a better of mobility be-
havior to real mobility behavior, Bettstetter employs a com-
bination of principles for direction and speed control that
makes the movement of users smoother. A new destination is
chosen by choosing a new direction. The speed and direction
changes are both probabilistic. Two stochastic processes are
used: one process determines at what time a mobile station
changes its speed, and the other process determines when the
direction is changed. The speed is changed incrementally by
the current acceleration of the mobile node, and also the di-
rection change is smooth: the direction is changed in several
steps until the new target direction is achieved. Besides, the
author analyzes the spatial node distribution using Random
Direction as mobility model and modifying the rate in which
the speed and the direction changes. The border behavior
used was Delete and Replace, since the others presented an
uniform spatial node distribution. Our approach in Sect. 5 is
similar to the principles adopted in [5].

Further work on the Random Direction model is also pre-
sented in Di et al. [21], where a mathematical model of a
3D space is proposed and compared to simulation results.
Analogously to the Random Waypoint, the Random Direc-
tion model is used in he evaluation of MANET routing pro-
tocols such as Ad-hoc On-Demand Distance Vector Routing
(AODV), Destination Sequenced Distance Vector (DSDV),
Dynamic Source Routing (DSR) and Temporally-Ordered
Routing Algorithm (TORA) [35].

3 SAN—stochastic automata networks

The SAN formalism was proposed by Plateau [44] and its
basic idea is to represent a whole system by a collection of
subsystems with an independent behavior (local transitions)
and occasional interdependencies (functional rates and syn-
chronizing events). Each subsystem is described as a sto-
chastic automaton, i.e., an automaton in which the transi-
tions are labeled with probabilistic and timing information.
Hence, one can build a continuous-time stochastic process
related to a SAN model, i.e., a SAN model has an equiva-
lent Markov chain model [9, 50].

Fig. 1 Example of a SAN model

There are two types of events that change the state of a
SAN model: local events and synchronizing events. Local
events change the model state changing the state of only
one automaton. Synchronizing events, in opposition, can
change simultaneously the states of more than one automa-
ton.

The other possibility of interaction among automata is
the use of functional rates. Any event occurrence rate may be
expressed by a constant value in R

+ (a positive real number)
or by a function of the state of other automata into R

+ ∪{0}.
In opposition to synchronizing events, functional rates are
one-way interaction among automata, since it affects only
the automaton where it appears and not the automata from
which it depends. Figure 1 presents a SAN model with two
automata, one synchronizing (e2) and four local events (e1,
e3, e4 and e5).

In this example, the rate of the event e1 is not a constant
rate, but a functional rate f described with the SAN nota-
tion1 employed by the PEPS software tool [10]. The inter-
pretation of f defines the firing of the transition from state
0(1) to 1(1) with rate λ if automaton A(2) is in state 0(2), or
rate γ if automaton A(2) is in state 2(2). If automaton A(2) is
in state 1(2), the transition from state 0(1) to 1(1) does not oc-
cur (rate equal to zero). It is important to observe that the use
of functions allows a compact and flexible way to describe
in one single (local or synchronizing) event alternative be-
haviors [9].

Another important point to observe in this example is the
event e2, where two alternative occurrences exists for au-

1The interpretation of a function can be viewed as the evaluation of
an expression of non-typed programming languages, e.g., C language.
Each comparison is evaluated to value 1 (true) and value 0 (false).
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Fig. 2 Equivalent Markov
chain

tomaton A(2). The occurrence of event e2 could then change
the state of automaton A(1) from 1(1) to 0(1) at the same time
when the automaton A(2) changes from state 0(2) to alterna-
tively 1(2) (with probability π1) or to 2(2) (with probabil-
ity π2). Actually, every time a local or synchronizing event
may change a local state to two or more other states a prob-
ability of choice must be defined.

Figure 2 shows the equivalent Markov chain model to
the presented SAN model. Assuming the state 0(1)0(2) as
an initial state, only five of the six states in this model are
reachable. To deal with such models, it is usual to express
either: an initial state and let the reachable state space be
computed by possible firing sequences; or a function within
the product state space returning a nonzero value for reach-
able global states.

For the model in Fig. 1, the reachability function must
exclude the global state 1(1)1(2), thus:

Reachability =![(st A(1) == 1(1)
)
&&

(
st A(2) == 1(2)

)]

Roughly, we can say that a SAN model complexity to
compute a stationary or transient solution is usually propor-
tional to the size of its product state space, i.e., the number of
possible combinations of local (automata) states. However,
according to the solution method chosen, this can vary con-
siderably. Nevertheless, from an efficiency general perspec-
tive it is almost always interesting to obtain a SAN model
with minimum product state space, i.e., a model with the
smaller number of automata, each one of them with as few
local states as possible.

4 Random waypoint

Within this section, we discuss one and two-dimensional
SAN models for the Random Waypoint mobility. Part of
these results were presented in [20] where only linear (1D)
and square (2D) areas were considered. In this section, we
show these previous results and extend to consider 2D areas
that can be any convex (even irregular) polygons.

4.1 Random waypoint 1D SAN model

In the one-dimensional case, we define a SAN model to rep-
resent a region of M meters modeled as a line with N slots,
where one node can move to the east or to the west. Model
such reality using a discrete space formalism is quite intu-
itive. The observations fulfilled the expectations in the sense
that the greater the N , the more the results are similar to
those found in the literature for continuous space situations.

Figure 3 describes a SAN model composed of two au-
tomata, called Dest and Loc. Automaton Dest represents the
randomly chosen destination. Automaton Loc represents the
node’s actual location. Both automata have N states, and
each state represents a slot with size M/N meters.

There are two basic general situations for such SAN
model. Either the node is moving to a chosen destination
(stDest �= stLoc), or the node is in the chosen destination
(stDest = stLoc) waiting (pause) for the choice of another
direction.

Automaton Dest has only one event called chooseD
(choose a destination) which may only occur when the
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Fig. 3 Random waypoint 1D SAN model

model is in the pause situation. Such situation is represented
by both automata Dest and Loc being in the same state. The
time to stay in this pause situation (Pause) is represented by
the inverse rate of event chooseD (1/Pause), which is con-
ditioned by the function representing both automata in the
same state. The resulting rate of event chooseD is then ex-
pressed by the function fD in Fig. 3 SAN model:

fD = 1

Pause
∗ (

(stDest) == (stLoc)
)

This function returns 1/Pause when the model is in the
pause situation, or zero if the model is the moving situation.
However, to represent the choice of all possible destinations
there must be transitions between every pair of states of au-
tomaton Dest, i.e., from any state in Dest there will be N

possible transitions with event chooseD. To correctly repre-
sent that aspect in the SAN model, each occurrence of event
chooseD must be tempered with a probability π . As men-
tioned in Sect. 3, when a same event has many possible tran-
sitions from a same state, probabilities summing 1 should be
assigned to all possible events. Assuming an equally distrib-
uted choice of direction, probability π should be equal to all
transitions, i.e.: π = 1

N
.

Automaton Loc has two possible events representing the
node’s movement toward West (moveW) or East (moveE) di-
rections. Events moveW and moveE can only occur when the
model is in the moving situation, i.e., when automata Dest
and Loc are not in the same state. Since this model describes
an one-dimensional case, once again there are just two pos-
sibilities: either the destination position is at the west side
on the current node location (stDest < Loc), or it is at the
east side (stDest > Loc). The moving speed itself is mod-
eled by the rate of these events (rtSpeed) as the inverse of
the time the node stays at each slot. This residence time is
simply the reason between the node average speed in meters
per time unit (speed) times the size of the slot region in me-
ters (M/N ). Hence the rate of the events moveW and moveE

are respectively:

fW = rtSpeed ∗ (
(stDest) < (stLoc)

)

and

fE = rtSpeed ∗ (
(stDest) > (stLoc)

)

where rtSpeed = Speed
M
N

.

4.1.1 Validating the 1D model

To validate the proposed model, we refer to the results ob-
tained by Bettstetter, Resta, and Santi for the Random Way-
point behavior [7]. In this work, a general one-dimensional
case with no pause time (pause = 0) has the spatial node
probability distribution defined by the following probability
density function:

f (x) = − 6

a3
x2 + 6

a2
x (1)

where a > 0 is the size of the observed region and x, such
that 0 < x < a, is the position in this area. The main im-
portant observation for this formula is that it represents the
distribution in the region as a continuous function. In order
to compare our model results with [7], we need to assume a
number of discrete space slots. It is important to notice that
in (1) the node speed is not relevant, which makes sense for
the zero pause case, since with no pause time the speed does
not affect the spatial node distribution. However, our model
does not ignore neither the pause time, nor the node speed.

We also compared our results with the results presented
in the further work of Resta and Santi [46], which defines
the expression in (2) to represent the probability distribution
considering pause time (Pause) and node speed (v).

f (x) = pstat + (1 − pstat)p

+ (1 − pstat)(1 − p)6x(1 − x),



J Braz Comput Soc (2011) 17: 31–52 37

Fig. 4 Difference between
continuous space theoretical
results and SAN model results

if x ∈ [0,1], and f (x) = 0 otherwise,

where p = Pause

Pause + 1
3v

(2)

Additionally, (2) expresses the probability that a node
remains stationary during the whole experiment (pstat),
that was not considered for our comparison (we assume
pstat = 0).

The first validation is a simple comparison with theoret-
ical results expressed by (1) using a = 20, i.e., our model
with twenty 50 m slots (M = 1,000 m and N = 20), a very
small pause time (Pause = 0.001 sec.), and node speed of
20 m/s (rtSpeed = 20/50). With this same number of slots,
we change the pause time to 60 sec. and the speed to 32 m/s
and compared our results with those given by (2). Note that
as the size of area used by (2) is 1, the speed (v) used in this
equation must be brought in proportion, then we divided the
speed in m/s by 1000, which is the size of our area (M).

Numerically speaking, the obtained results have shown
the same slot probabilities with a difference around 10e−4.
We also tested some small changes in the pause time (from
0.1 to 0.00001 sec.) without having significative changes
of probability difference. On the contrary, the choice of the
number of slots (N ) keeping the same area (M) changes the
results considerably. Figure 4 shows that assuming from 4
to 30 slots, the difference between probabilities computed
by our discrete space model and probabilities found by [7]
and [46] theoretical results considering continuous space de-
creases exponentially until near 10e−5.

Figure 5 presents the probability distribution among 20
slots of a 1,000 meters region analyzing the node mobility
with a 32 meters per second speed and pause times of 0.001,
4, 64, and 256 seconds. We can observe that as the pause
time increases the node spatial distribution spreads more
equally in the region, i.e., the result tends to the uniform
distribution. This is expected since when the pause time in-
creases, the time spent on the path becomes less important
than the pause time in the spatial node probability. Since
the destination is chosen equiprobably, as the pause time in-
creases, the spatial node probability tends to be uniformly
distributed.

Another approach analyzed is the node distribution with
different speed values. According to [7] and [46], the speed
does not affect the distribution considering a zero pause
time. Even though we could verify this behavior, we observe
that for a more significant pause time (pause = 60 sec.)
the probability distribution was quite different for dif-
ferent speeds (1 m/s, 4 m/s, 16 m/s, and 64 m/s). In
fact, Fig. 6 shows a similar effect as observed in vary-
ing the pause time, i.e., the more relevant the pause time
is in comparison to the node speed, the more close to
an equiprobable distribution the result will be. Those re-
sults were also consistent with the conclusions presented
in [46].

4.2 Random waypoint 2D SAN model

The second proposed SAN model represents the region
modeled in a two-dimensional space, e.g., a surface where
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Fig. 5 1D random waypoint
spatial node
distribution—varying the pause

Fig. 6 1D random waypoint
spatial node
distribution—varying the speed

one node can move to north, south, east, and west. The
model representing this 2D movement is presented in Fig. 7.
This model is obtained through a natural extension from the
1D model of the previous section. The same structure for 1D
is replicated, obtaining the four automata that compose the
corresponding SAN to the 2D model. In this model, there are
two automata to describe the node destination point (DestX
and DestY) and two automata to describe the current node
location (LocX and LocY). In both pairs of automata, a point

is obtained by a x- and y-coordinate, i.e., the surface is split
in N × N slots.

Even though similar, the behavior of the transitions and
events in the 1D model has few differences in the 2D model.
The first one is that the choice of the next destination (event
chooseD) is now represented by a synchronizing event. The
change of destination can change both x- and y-coordinates
so this may represent the occurrence of transitions in both
DestX and DestY automata. Despite of that distinct repre-
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Fig. 7 Random waypoint 2D SAN model

Fig. 8 Example of routing
strategies

sentation (chooseD was local for the 1D model), the other
characteristics of event chooseD are preserved, namely its
rate expressed by function fD and its probability expressed
by π . Note that, function fD has an analogous way to ex-
press if the node is in a pause situation, since it has now to
consider the same state in both x and y axes, i.e.,

fD = (1/Pause)

∗ ((
(stDestX) == (stLocX)

)

&&
(
(stDestY) == (stLocY)

))

Another difference between 1D and 2D models is the way
to represent the node movement. In the 2D model, the move-
ment is represented by four local events describing move-
ments toward north, south, west, and east directions (respec-
tively, moveN, moveS, moveW , and moveE). The rates for
those events remain computed as in the 1D model, i.e., ac-
cording to the node speed and the slot size. Nevertheless,
the expression of this movement event rates needs a more
elaborated definition to take routing strategies into account.

The major difference between the 1D and 2D models re-
sides in this choice of routing strategy. It is necessary to de-
fine whether a node movement may happen in the x- or in
the y-axis. Note that this need for routing strategy definition
is only an important matter due to our model assumption of a
node moving in a discrete space. It is clear that the probabil-
ity distribution on slots may change according to the chosen
routing strategy. For instance, it is intuitive to expect differ-
ent probability distribution results to a first x then y rout-
ing, a glutton algorithm routing, or even a random routing
(Fig. 8).

The simplest routing strategy to represent in our SAN
model is the random decision. In that case, we let the choice
of axis movement be stochastically decided between two
possible events. The model of Fig. 7 represents this option.
Events rates only express if the movement is necessary or
not, e.g., event moveW is conditioned only by the state of
DestX being smaller than the state of LocX.

The representation of a first x then y routing strategy is
a little bit more elaborated, since it represents a restriction
in the y-axis movements. It will correspond to modify the
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functional rates of moveN and moveS (y-axis) events to
include the restriction to move only if a x movement is no
longer needed. The functional rates for events moveN and
moveS respectively should be rewritten as follows:

• fN = rtSpeed ∗ (((stDestY) < (stLocY))&&
((stDestX) == (stLocX)))

• fS = rtSpeed ∗ (((stDestY) > (stLocY))&&
((stDestX) == (stLocX)))

The representation of the glutton algorithm strategy is
even more elaborated. It allows a node to move only if this
movement is in the farthest direction to the destination. The
four functional rates for events moveW , moveE, moveN,

and moveS should be rewritten as follows:

• fW = rtSpeed ∗ (((stDestX) < (stLocX))&&
(((stLocX) − (stDestX)) >=
(max((stDestY) − (stLocY),

(stLocY) − (stDestY)))))

• fE = rtSpeed ∗ (((stDestX) > (stLocX))&&
(((stDestX) − (stLocX)) >=
(max((stDestY) − (stLocY),

(stLocY) − (stDestY)))))

• fN = rtSpeed ∗ (((stDestY) < (stLocY))&&
(((stDestY) − (stLocY)) >=
(max((stDestX) − (stLocX),

(stLocX) − (stDestX)))))

• fS = rtSpeed ∗ (((stDestY) > (stLocY))&&
(((stLocY) − (stDestY)) >=
(max((stDestX) − (stLocX),

(stLocX) − (stDestX)))))

None of the discrete space routing strategies will pre-
cisely describe what happens in a continuous space move-
ment. However, the best approximation of the continuous

movement behavior is achieved by the glutton algorithm
strategy, specially considering a rather large number of slots.

4.2.1 Validating the 2D model

Analogously to the 1D model, the validation of the 2D can
be done by applying it to similar cases presented in [7] and
[46]. For that matter, we also analyze a near zero pause time
(0.001 sec.) model with 10 meters per sec. speed, a surface
of 1000 × 1000 square meters split in 20 × 20 slots, and
the glutton routing strategy. Once again the comparison of
theoretical results presented in [7, 46] with our model’s pre-
sented a difference around 10e−4. Also, using the same pa-
rameters with a different slot granularity (5 × 5 and 10 × 10
slots), we observed the difference decreasing consistently
with the 1D comparison (respectively, 10e−2 and 10e−3).

4.2.2 New results for the 2D model—pause vs. speed

The variations of pause time and speed already made for
the 1D case (Figs. 5 and 6) were reproduced with the
1000 × 1000 surface split in 20 × 20 slots model also us-
ing the glutton algorithm routing strategy. Figure 9 shows
the probability distributions obtained for models with a fixed
speed (32 m/s) and varying the pause time for 0.001, 4, 64
and 256 seconds. Analogously, Fig. 10 shows the results for
fixing the pause time in 60 sec. and varying the speed for
1, 4, 16, and 64 m/s. Once again, these results show a very
similar behavior as the one found for the 1D models, i.e.,
as the relevance of the pause time increases in comparison
with the node speed, the probability distribution tends to be
uniform.

Fig. 9 Random waypoint
spatial node distribution in
20 × 20 area—varying the pause
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Fig. 10 Random waypoint
spatial node distribution in
20 × 20 area—varying the speed

Fig. 11 Random waypoint
spatial node distribution in
20 × 20 area—routing effect

4.2.3 New results for the 2D model—routing strategies

Figure 11 shows the probability distributions found for the
three strategies presented in the previous section (glutton,
random, and x then y) for a model with 1000 × 1000 square
meters surface split in 20 × 20 slots, node speed of 5 m/s
and pause time of 0.001 sec. In opposition to the other ex-
periments when a deformation toward equally distributed
results were achieved without changing the curves shape,
those routing strategies variations do change the distribution
shape. It is natural that the greatest effect was found for the
x then y strategy, since this choice of routing tends to avoid
the central node positions.

4.3 Random waypoint 2D modeling of non-square surfaces

An important feature of SAN is the modular construction
that helps the reuse and the replacement of model parts.
In this section, we present the results of modeling different
convex areas. The proposed SAN model is suitable to de-
scribe also areas such as triangles, hexagons (as in [29]),
and virtually any polygon. The results obtained to all ir-
regular surface models tested have shown consistent be-
havior to those previously obtained for square surfaces
(Sect. 4.2).

In these models, we consider a square envelope surface
and we add obstacles on the borders. In Figs. 12a, 12b,
and 12c, the unreachable spots are represented by filled po-
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Fig. 12 Random Waypoint in a
regular and irregular
surface—spatial node
distribution. (a) Triangular area.
(b) Hexagonal area.
(c) Trapezium area

sitions, while reachable spots are represent by blank posi-
tions. Note that due to the surface discretization, the reach-
able slots do not correspond exactly to the expected poly-
gon, but merely to an approximation as close as possi-
ble.

The unreachable slots modeling is two-fold: functions in
event rates prevent or allow nodes to move depending of x

and y-axis in the automata LocX and LocY ; and synchroniz-
ing events in automata DestX and DestY prevents the choice
of a new destination to an unvalid position (an unreachable
slot).

The routing strategy used for nonsquare models is a vari-
ation of the glutton algorithm, but a slight change was done
to prevent node blocking, which may happen in very partic-
ular cases near an irregular border.

4.3.1 New results for the 2D model—convex polygon
surfaces

The modeled areas are presented in the upper part of Fig. 12
and their corresponding spatial node distributions are pre-
sented in the lower part of the same figure.

To represent a regular triangle we assume 22 slots as base
and hypotenuse, and 19 slots as height. The results of the
spatial node distribution inside this triangular surface were
obtained considering each slot with 50 meters, as in the
square area, with node speed of 32 m/s and pause time of
0.001 sec.

Analogously to the experiments presented in Sect. 4.3,
variations were performed for the triangular surface, fixing
node speed in 32 m/s and varying the pause time for 0.001,
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Fig. 13 Cross section in middle
y-axis of triangle
surface—varying pause

4, 64, and 256 seconds. Figure 13 shows the probability dis-
tributions in the cross section along the middle y-axis of the
triangle. Similar experiments were performed for a pause
time fixed in 60 seconds and speed varying in 1, 4, 16, and
64 m/s, and the results show the same behavior presented in
Sect. 4.2.1, i.e., as concluded for square models, the propor-
tion between pause and speed values seems to be the major
drive for the spatial distribution.

Additionally, as validation of our modeling choices, we
observe that the curve representing the node distribution for
the middle y-axis section with speed in 32 m/s and pause
time in 0.001 seconds presents a behavior very close to the
results presented by Hyytia et al. in [29].

In the hexagonal area, we consider the dimensions of
a regular triangle to each sixth part that composes the
hexagon. Then the hexagonal area was described inside a
rectangular envelope of 44 × 38 slots. The results presented
in Fig. 12b were obtained with speed in 32 m/s and pause
time in 0.001 seconds.

These same speed and pause values were considered in
the results of the trapezium shaped surface (Fig. 12c), that
lies inside a 19 × 20 slots envelope. This last example in-
tends to stress that unlike the previous results of the litera-
ture [29], also irregular surfaces can be modeled as well.

It is also important to observe that the modeling of other
surfaces became elegant and natural, needing mainly to spe-
cialize the definition of the movement and destination choice
transitions, but keeping the main parts of the generic square
2D model. Thus, it is possible to model more realistic sur-
faces and to perform predictions about their spatial node dis-
tribution. In fact, even non-convex polygons could be mod-
eled, but for these cases a more careful definition of the rout-
ing strategy functions is needed.

5 Random direction

In this section, we assume the Random Direction mobil-
ity model as described by Guerin et al.in [25]. Our analy-
sis of the Random Direction mobility model with Bounce
and Wrap Around, using SAN, resulted in a completely
equiprobable spatial node distribution, which is coherent
with the literature [5]. Therefore, we concentrate on the
Random Direction mobility model with the Delete and Re-
place border behavior, where non-equiprobable results were
found.

Considering that, the behavior of a node is modeled as
follows: the node randomly chooses a direction to move with
a constant speed, and, after moving during an also randomly
chosen duration time, the node makes a Pause, then a new
choice of direction is done starting this process over and
over.

Most of the modeling definitions of the Random Way-
point example were kept for both the one- and two-dimens-
ional versions of the Random Direction models. Namely, we
still divide the surface of interest of size M into N slots,
we split the information of node location and its movement
in different automata, we model the movement speed and
pause duration with rates rtSpeed and Pause from the same
input parameters information.

5.1 Random direction 1D SAN model

The model presented in Fig. 14 is composed of 2 automata,
called Dir and Loc. Automaton Dir represents the randomly
chosen direction. There are three basic situations for a node
in such SAN model:
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Fig. 14 Random direction 1D SAN model

(i) The node is stopped, represented by state P in automa-
ton Dir. In this case, the node does not move, i.e.,
automaton Loc does not change its local state, and a
choice of direction is the next action. This choice of di-
rection is represented by event chooseD, changing the
local state of Dir automaton to states W or E with the
same probability.

(ii) The node is moving and it is not yet on a border slot,
i.e., either automaton Dir is in state W and automaton
Loc is in the range 1..N −1, or automaton Dir is in state
E and automaton Loc is in the range 0..N − 2. In this
situation, if automaton Dir is in state E, then only the
event moveE is enabled, representing the movement to
East and, of course, the movement toward West is anal-
ogous. While moving, the node may stop at any time
and go to the pause situation. Such change of situation
is represented by the event endMove from states E or
W to state P in automaton Dir.

(iii) The node is moving and it is on a border slot, i.e., ei-
ther automaton Dir is in state W and automaton Loc
is in state 0, or automaton Dir is in state E and au-
tomaton Loc is in state N − 1. In this case the node
may either stop moving, represented by the possibility
of endMove as in the previous situation, or the node
may actually cross the border, and then be deleted and
replaced by a new node that can be created in any lo-
cation. This second possibility is represented by events
DelRepE and DelRepW according to the direction the
node was moving toward (respectively, East and West).

The deleted-and-replaced node continues to move (no
pause) and a new choice of direction is made together with
the replace, meaning that after a replace the node may move
to a different direction. In automaton Dir, the choice of the
same or a different direction is represented by the two possi-
ble (and equiprobable) occurrences of events DelRepW from
state W and DelRepE from state E. That being said, we also

analyze a variant of this behavior in which the node keeps its
direction after a delete-and-replace, but the results obtained
for both possibilities were exactly equal. In automaton Loc,
the occurrence of a delete-and-replace is also represented
by either event DelRepW or DelRepE and it always change
from state 0 or N − 1 (respectively) to any state.

As said before, the rate for events in the Random Direc-
tion model were computed almost always like they were
for the Random Waypoint model. This is the case of the
chooseD rate that still is the inverse of the pause time, but,
unlike the Random Waypoint model, here it does not depend
on reach a destination point, i.e., fD = 1

Pause .
Also, the east and west movement rates are calculated

according to the numerical value of rtSpeed tempered by
the necessity of the specific direction movement:

fW = (stDir == W) ∗ rtSpeed

fE = (stDir == E) ∗ rtSpeed

The event endMove rate is computed as the inverse of
the sojourn time of automaton Dir in alternatively state E

or state W , i.e., the expected duration of a movement. This
duration could be directly expressed by an input parame-
ter MoveTime or alternatively by the expected distance of
movement (MoveSize) divided by the node speed, i.e.,

fM = 1

MoveTime
= Speed

MoveSize

The rates for events DelRepW and DelRepE are equal be-
tween themselves, and its numerical value is equal to the rate
of the movement (rtSpeed). But unlike the movement events
(moveW and moveE), there is no need of express a condition,
since the DelRep have their occurrence already restricted by
the synchronization between automata, i.e., events DelRep
will only occur when the automata Dir and Loc are in one
of two precise states (situation (iii) described previously in
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this section):

fDR = rtSpeed

5.1.1 Validating the 1D model

To validate the proposed model we consider a 1000 meters
region (M = 1.000) divided in 20 slots of 50 meters each,
and vary the pause time, the speed, and the size of move-
ment.

In the first experiment, we fix the size of movement in 50
meters and vary the speed for 1, 4, 16, and 64 m/s and pause
times for 0.001, 16, 64, and 256 seconds. Figure 15 presents
the spatial node distribution for the several combinations of
those parameters.

In Fig. 15, we also repeat the same combinations of val-
ues of speed and pause time with size of movement of 200,
800, and 1600 meters. The first important conclusion ob-
tained is that for all combinations of speed and pause time,
fixing the size of movement, we observe precisely the same
numerical results.

In fact, the variation between the amount of time that a
node stays in a slot due to pause and due to movement shows
complementary figures, regardless of how much pause time
or node speed is assumed. Figure 16 demonstrates such be-
havior by drawing the total node location distribution for all
node speeds and pause times combinations (curve T) consid-
ering a Size of Movement of 200 meters. The amount spent
due to pause and movement for Pause = 4 and Speed = 4
(curves P and M) and for Pause = 4 and Speed = 32 (curves
P′ and M′) are also plotted and one can notice that the results

in curve T are equivalent to the sum of curves P and M, as
well as the sum of curves P′ and M′.

Therefore, we conclude that Pause and Speed values do
not influence the spatial node distribution results for this mo-
bility model, using delete-and-replace as border behavior.
In fact, the spatial distribution only depends on the size of
movement. As the size of movement increases, the spatial
node distribution approaches the uniform one.

Using this result we simplify the model presented in
Fig. 14 replacing the Dir automaton (with three states) by a
simpler automaton with only two states depicted in Fig. 17,
where state P is absent. As said (Sect. 3), by reducing the
number of automata, or the number of states inside an au-
tomaton, the model becomes easier to handle.

This new version of automaton Dir has three events
called chooseD, DelRepW, and DelRepE. The events
DelRepW and DelRepE have exactly the same function as
before, i.e., they are used to model the border behavior.

The event chooseD has also the same semantics as be-
fore. However, in this case, as there is no pause, the new
direction choice will be performed as soon as either the size
of movement or the moving time finishes. The numerical
solution for the model without pause, as expected, is consis-
tent with the equivalent continuous space models with pause
described in the literature. Numerically speaking, the differ-
ence found between our model with or without pause is quite
small (around 10e−6 for a 20 slots model).

It is important to notice that the composition of differ-
ent automata used in this 1D model, exemplifies one of the
greatest advantages of using a structured Markovian formal-
ism such as SAN. Namely, the change, replacement, or even

Fig. 15 Varying size of
movement for all combinations
of speed (1, 4, 16, 64 meters per
second), pause time (0.001, 16,
64, 256 seconds) and size of
movement (50, 200, 800, 1600)
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Fig. 16 Pause and movement
components in spatial
distribution probability

Fig. 17 Dir automaton for 1D
model without Pause

removal of an automaton usually do not compromise and al-
most always do not even affect the definition of the other
automata.

5.2 Random direction 2D SAN model

The second proposed SAN model for Random Direction
represents a two-dimensional space (Fig. 18) and as in the
Random Waypoint models, it is a clear extension of the 1D
model presented in the previous section. That is the case of
the location of the node that was represented by automaton
Loc in the 1D model, and now is represented by two au-
tomata (LocX and LocY). The surface is divided in N × N

slots and the current position of a node is a coordinate given
by the local states of automata LocX and LocY .

After building and analyzing several 2D models, with dif-
ferent pause times and without pause, we observed that the
pause time also does not influence the spatial node distrib-
ution in 2D models. This generalizes the results of the 1D
model with respect to pause. In consequence, we replace the

automaton Dir according to Fig. 17. Therefore, in the fol-
lowing, we discuss the 2D model without any consideration
of pause. Analogously to the 1D case, this modification is
modular and does not affect automata corresponding to the
node location.

Although several ways can be employed to describe the
node direction in a 2D model, the proposed model represents
the possible moving directions with one automata (Dir), as
well as in the 1D model. However, for the 2D case, Dir
represents the possible angles that the node can move. The
choice of the angle indicates implicitly the direction chosen
(North, South, East, and West). Figure 19 represents the pos-
sible angles considering automaton Dir with sixteen states,
i.e., sixteen discrete directions will be considered. Obvi-
ously, automaton Dir could have any discrete number of di-
rections, and such number will define the number of states
in automaton Dir. Figure 18 depicts this choice of sixteen
states.

The choice of the next angle is represented by chooseD
event. The rate assigned to this event is the same used in
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Fig. 18 Random direction 2D SAN model

Fig. 19 Axis divided by sixteen directions

endMove event in the 1D model and it represents the time a
node spends moving. Alternatively, and without any loss of
generality, it can represent the distance described by a move
step.

The actual move in a 2D area is decomposed in two com-
ponents representing the move in X- and Y -axis. The rates
of events MoveE (fE) and MoveW (fW ) in automaton LocX
and the rates of events MoveN (fN ) and MoveS (fS ) in au-
tomaton LocY are adjusted to represent these component
speeds, and are represented below:

• fE = SpeedE/SlotSize
• fW = SpeedW/SlotSize
• fN = SpeedN/SlotSize
• fS = SpeedS/SlotSize

These functions depend on the node’s average speed in
meters per time unit and the size of the slot in meters (m/N).
For instance, the east movement speed is given by the reason
between the direction of the node movement (MoveSizeE)
and the average time of it (MoveTime):

SpeedE = MoveSizeE

MoveTime

The movement direction (MoveSizeE) is decomposed ac-
cording to the direction (in degrees). For instance, if a node
is moving with speed Sp, to the northeast (NE), with 45 de-
grees of inclination (counterclockwise), then events MoveE
and MoveN are both enabled and their rates are respectively
calculated according to Sp × cosin(α). Considering all pos-
sible directions that causes the east movement, the rate as-
sociated to MoveSizeE is:

MoveSizeE

= (((stDegree == 0) ∗ (MoveSize))

+ (((stDegree == 1)||(stDegree == 15))

∗ (MoveSize ∗ 0.92387953251))

+ (((stDegree == 2)||(stDegree == 14))

∗(MoveSize ∗ 0.70710678118))

+ (((stDegree == 3)||(stDegree == 13))

∗(MoveSize ∗ 0.38268343236)))

The east movement consider the states 0 to 3 and 13 to 15
in automaton Dir, i.e., from SSE to NNE counterclockwise.
This rate is decomposed according to the angle of move-
ment, and has a weight for each degree, which is calculated
with cosin formula. In this example, the weight increases as
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Fig. 20 Random direction
spatial node distribution in
20 × 20 area and 16
directions—varying the speed
and movement size

the angle approaches 0 degrees. Movement for other direc-
tions are similarly implemented.

When a node moves and reaches the border in one of
the axis, the Delete and Replace behavior takes place. In
both automata LocX and LocY, this behavior is modeled by
events DelRepN, DelRepS, DelRepE, and DelRepW .

The border behavior defines that a new states in LocX and
LocY have to be equiprobably chosen when one of the events
occur. Taking automaton LocX for explanation, in any of its
states it is possible to switch to any of the other states due to
DelRepN and DelRepS since, regardless the horizontal posi-
tion the node may be, these vertical reach border events may
occur. In state 0, DelRepW can occur and, in state N − 1,
DelRepE can take place depending if the node is moving to
west or east respectively. This explains all possible events
for each state. The explanation for automaton LocY is anal-
ogous.

5.2.1 Validating the 2D model

The results for the 2D model are consistent with those ob-
tained for the 1D model and those presented in the liter-
ature [5]. They indicate that a more pronounced distribu-
tion is in the center area as the movement size or duration
are shorter. Analogously, the node distribution tends to be
uniform, as the movement duration or size grow. Figure 20
presents the spatial node distribution for a model of surface
of 1000 × 1000 meters discretized in 20 × 20 slots with the
same parameters of speed and size of movement presented
in [5]. The values of speed considered were 5 and 25 m/s,
and movement size considered was 100, 500, 1,000, and
5,000 meters.

However, the comparison with the results in the litera-
ture [5] demonstrate that our model gives a little flatter spa-
tial node distribution, i.e., our predictions seems to have a
less pronounced probability to find a node in the central area.
We believe that this happen due to the number of directions
considered (sixteen).

5.2.2 New results for the 2D model—varying the number of
directions

It is important to remind that our model assumes a discrete
number of directions. Figure 21 depicts the variations in
the node distribution when smaller or greater (4, 8, 12, and
20) number of directions are considered. The first plot of
Fig. 20 complements Fig. 21 with information for 16 direc-
tions.

A closer look in these results is presented in Figs. 22
and 23. They present middle sections on the surfaces cor-
responding to the results with 4, 8, 12, 16, and 20 directions,
where Fig. 22 shows these sections in the 5 central slots and
Fig. 23 shows these sections for slots in the periphery of
the 20 × 20 area. As can be observed, as the number of
directions increases the impact on the results becomes less
significant.

6 Conclusion

In this paper, we have formally describe the Random Way-
point and Random Direction mobility models using Stochas-
tic Automata Networks (SAN). The results were validated
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Fig. 21 Random direction
spatial node distribution in
20 × 20 area with Speed = 5
and Movement
Size = 100—varying the
number of directions

Fig. 22 Middle sections on the
surfaces corresponding to the
results with 4, 8, 12, 16, and 20
directions—5 central slots

by showing their numerical compatibility with existing an-
alytical or simulation studies to the closest cases, i.e., the
cases where a continuous surface was considered. Besides
showing the suitability of SAN to the modeling of these
mobility models, we have contributed to the better under-
standing of detailed aspects in the Random Waypoint such
as pause time, node speed, and routing strategies in the 2D
node distribution, especially considering a discrete mobility
space.

We would like to stress the fact that all results presented
in this paper were obtained by numerical solution of the
SAN models, and not by any simulation technique. This fact
enhances the contribution of this paper since the SAN mod-

eling delivers more reliable results from a statistical point of
view.

In the Random Direction, we have contributed to show
that spatial node distribution is influenced by movement du-
ration and that the speed and pause time do not influence the
distribution. We also noticed that the (discrete) number of
directions a node can move is relevant to the spatial distrib-
ution.

In our analysis, we obtained the spatial node distribu-
tion of a mobile node in a given area of M meters (1D)
or M2 square meters (2D) formed by a discrete num-
ber of slots. We observe that the granularity of this dis-
cretization has an impact on the spatial distribution re-
sults.
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Fig. 23 Middle sections on the
surfaces corresponding to the
results with 4, 8, 12, 16, and 20
directions—peripheryc slots

Fig. 24 Random waypoint
spatial node distribution in 3D

It is important to observe that we could modularly ex-
tend the SAN models to consider much more detailed ad-
ditional aspects such as varying speed according to accel-
eration, slower/faster areas, or different pause time per po-
sition could be easily modeled. Actually, any other nonuni-
form behavior could be considered. Moreover, since we use
automata networks, we can step-wise include more dimen-
sions adding more automata and also adding some complex-
ity to functions. Experimental three-dimensional space with
Random Waypoint mobility model was described including
two more automata to the 2D model. This last experiment
considers a 8 × 8 × 8 slots describing a space of 1 km3, near

zero pause time (0.001 sec.) and 10 meters per sec. speed.
Figure 24 represents the spatial node distribution for the dis-
crete slices in z axis. As expected, we found a higher proba-
bility of the node to be in the central slots of the solid region,
i.e., in the center of the slices surfaces and in the central
slices (z = 3 and 4).

This paper also contributes illustrating models for more
complex areas than squares. We show that, with a Markov-
ian formalism as SAN, we can model any regular or irregular
polygon surfaces, but even solid structures can be envisaged.
The modeling limits will be established by the state space
explosion problem which is common to any Markovian for-
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malism. In the future, we intend to model more complex
realities, such as buildings with obstacles. In fact, obstacles
can be suitably modeled in SAN through functional rates as-
signed to the transitions and reachability functions that limit
reachable spots.

Natural future works, besides the ones already men-
tioned, are the use of the spatial node distributions achieved
to obtain performance and dependability levels of such net-
works. Moreover, some numerical studies could be carried
out to achieve more efficient spatial distribution predic-
tions. For example, we could study stochastic properties of
nearly independent automata (automata without synchroniz-
ing events) in order to derive product-form solutions, or at
least solutions numerically more efficient. Such improved
solutions could significantly reduce the computational cost
to solve large complex models like the hexagon (Fig. 12c).
This model, the largest solved within this paper, represents a
2.8 million states model, and it takes about a day to be solved
in a small workstation, i.e., Xeon 2.2 GHz with 512 Mbytes
cache and 2 Gbytes of RAM memory. Smaller models, like
the Random Waypoint with 20 × 20 slots (a model with 160
thousand states) are usually solved in less than 30 minutes
in the same machine. Recent improvements in dealing with
structured models [16] could significantly reduce this so-
lution times, but even with current software [10] the SAN
models already offer valid insights with an affordable com-
putational cost for quite large examples.
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