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ABSTRACT 
The analysis of urine sediments (Urinalysis) is a common 
procedure in diagnostic laboratories, and allows the identification 
of important diseases. This procedure is usually done by a 
professional, which performs a visual inspection of microscope 
slides containing urine, aiming to identify crystals, bacteria and 
other relevant elements, resulting in a laborious task. The 
automation of this task is of great value to medicine and related 
areas, raising the quality and reliability of diagnosis and reducing 
the time spent with these tasks. This paper describes a new 
method for automating the analysis of urine sediments in digital 
images that has the main goal of finding cystine crystals. Real 
images obtained from a microscope and from some public image 
databases were used to test the developed algorithm, which 
demonstrated satisfactory results with 73.72% and 93.08% of 
sensitivity and specificity, respectively.   

CCS Concepts 
• Computing methodologies ➝ Computer graphics ➝ Image 
manipulation ➝ Image processing   

• Computing methodologies ➝ Artificial intelligence ➝ 
Computer vision problems ➝ Object recognition   
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1. INTRODUCTION 
Urinalysis has an important role in disease diagnosis, especially 
those related to the urinary tract, since it helps to detect or even 
prevent problems, such as infections and kidney stones. 
Nowadays even with all the technology available in medicine, this 
exam is still performed by a visually trained professional in 
clinical laboratories. In this process, all urine samples are 
cataloged, centrifuged and placed on slides, to be analyzed 
through microscopy.  

 

The automation of this process, or part of it, allows the reduction 
of the analysis time, gives more comfort for the professional, and 
increases the analysis reliability. There are devices that already 
perform this exam independently, but it seems that they are rarely 
used, since none of the seven laboratories consulted in our city, 
during the preparation of this work, have such equipment – it is 
very expensive and requires skilled professionals to operate it. 

The main goal of this paper is to present a method based on image 
processing that automates the identification of cystine crystals in 
digital images of urine sediment. The presence of these crystals, 
which have hexagonal shapes, indicates a kind of congenital 
metabolic error, the cystinuria, whose bearer tends to form kidney 
stones [1]. Besides a strong discomfort, this disease can cause 
infections, fever and renal insufficiency. It occurs on an average 
of 1 to 2% in adults and can get up to 8% in children [2]. To 
achieve the proposed goal we have used some known Image 
Processing and Computer Vision techniques, but we also 
developed specific algorithms for the identification of these 
crystals in digital images obtained from a microscope, which is 
the major contribution of this work. 

The remaining of this paper is organized as follows: some related 
works that somehow contributed to the development of this work 
are presented in Section 2; the steps of the proposed solution are 
described in Section 3; the results of the experiments are 
presented in Section 4; and the conclusions and future works are 
presented in Section 5. 

2. RELATED WORK 
Most of the work on automatic urine analysis focuses on two 
approaches. The first refers to the reduction of the features 
analyzed in the images and the second on improving these images 
for future analysis or to be used as a quick decision tool 
(presumptive diagnosis) before submitting the sample to a longer 
analysis and urine culture [3]. 

The work from Mei-li et al. [4] uses an artificial intelligence (AI) 
approach for classifying and counting elements of urine sediment. 
It is based on Support Vector Machine (SVM) for data 
classification, and on the AdaBoost (Adaptive Boosting) machine 
learning algorithm for a pre-classification of the input set, and 
Harr feature [17] for object recognition. According to the authors,  

 
1 Email: vicenzo.sangalli@acad.pucrs.br 
2 Email: felipelammel@gmail.com 
3 Email: pinho@pucrs.br 
4 Email: isabel.manssour@pucrs.br 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. Copyrights 
for components of this work owned by others than ACM must be 
honored. Abstracting with credit is permitted. To copy otherwise, or 
republish, to post on servers or to redistribute to lists, requires prior 
specific permission and/or a fee. Request permissions from 
Permissions@acm.org.  
SAC 2017, April 03-07, 2017, Marrakech, Morocco  
© 2017 ACM. ISBN 978-1-4503-4486-9/17/04…$15.00  
DOI: http://dx.doi.org/10.1145/3019612.3028253 

170



method is very effective for recognizing red and white blood cells, 
epithelial cells and pus cells, among others. The technique does 
not deal with urine crystals.  

In another work that uses AI, Zhou et al. [5] proposes a method 
based on feature classification, using a neural network to identify 
12 visual elements of the urine sediments: erythrocytes, 
leukocytes, cystine crystals, pus cells, small round cells from the 
epithelium, fungi, trichomoniasis, epithelial cells, hyaline cast, 
cellular cast, granular cast and waxy cast. Despite being able to 
identify various elements from urine sediments, the method does 
not distinguish between different existing types of crystals, like 
triple phosphate, calcium oxalate and cystine.  

With the same concern, Cao et al. [6] presents a method for red 
cells detection in urine sediment images that uses just a few 
features to classify them. It uses an improved version of the Sobel 
operator to process the images and to detect cells through the 
Hough Transform. Thereafter, the red cells are recognized by a 
group of standardized characteristics, such as similar sizes, 
concentric circles, among others. The work was based on 
experiments that indicate that the radius of a red blood cell is of 
approximate 15 pixels. The center of the circle is obtained by the 
usage of three non-collinear points detected by the Hough 
Transform. The conclusions obtained were satisfactory, allowing 
the location of red blood cells in a fast and trusty manner. 

The second main problem in urinalysis is to reduce the complexity 
of the images for further processing. Yan Liang [7], for example, 
removes the non-cellular objects of urine through feature analysis, 
in order to avoid false positives in red and white blood cells 
identification. On the other hand, Paranjape et al. [8] uses special 
images obtained from a microscope illuminated by a special 
polarized light source. According to the authors, uric acid and 
triple phosphate crystals generate images with very specific 
characteristics when exposed to polarized light, which can 
facilitate the automatic image processing. 

All the works presented in this section achieved good results on 
the classification of elements found in urine sediments, but none 
of them is focused on cystine crystals. The work with the most 
similar approach is the one from Zhou et al [5], which addressed a 
category-based classification and so was able to recognize crystals 
in general. 

3. MATERIALS AND METHODS 
Our method was developed to automatically detect cystine 
crystals in urine sediment and was implemented using C/C++, 
OpenCV [9] and ImageJ [10]. The way the images used in this 
study were acquired, as well as the methodology, and the 
developed algorithms are described in the following subsections. 

3.1 Image Dataset 
The first step of this work was to obtain images of urine sediments 
containing or not cystine crystals. Initially, we consulted clinical 
laboratories in order to obtain real images, since images from real 
exams provide greater ensuring of the effectiveness of the 
technique. However, it was very difficult to find them in the 
clinical laboratories we got in touch. Then, we decided to build 
our dataset in two ways. First, we searched for images with 
cystine crystals on a public image database named UROSURF 
[16]; we obtained 20 images through this process. Since we only 
had a reduced amount of images, we “contaminated” urine 
samples with cystine crystals and put them in a conical tube to go 
through a process of centrifugation, separating the solid elements 

used to pick the sediment. Then, these sediments were placed on a 
slide, and we took pictures of them using a microscope, in the 
same way as in a laboratory exam. We obtained 28 images in this 
way, resulting in a total of 48 images to test the algorithm. Some 
images from our dataset can be seen on Figure 1. After obtaining 
all images, they were visually inspected in order to label all 
cystine crystals that appeared and generated a ground truth for the 
image dataset. 

3.2 Preprocessing and the Developed 
Algorithm 
The general idea of the cystine-detection method is to locate line 
segments that together form hexagonal structures. Four steps are 
part of the developed algorithm: image segmentation; 
identification of the regions with higher probability to contain a 
cystine; localization of the lines that potentially compose it, 
identifying whether these lines may in fact describe the edges of a 
hexagonal crystal. These steps are described below. 

The image segmentation step is necessary to highlight the objects 
that can represent cystine crystals. For this, several methods have 
been applied: Isodata [11], OTSU [12] and Renyi Entropy [13]. 
IsoData was the segmentation algorithm that performed better for 
our case, therefore, it was chosen. Figure 2 shows images 
resulting from the segmentation with different methods, where 
IsoData performed better than OTSU. 

On the next step, a search for contiguous areas, named BLOBs, is 
performed on the images, as illustrated in Figure 3a. 

 

Figure 1: Image samples from the generated dataset with (a, 
c, e, f) and without (b, d) cystine crystals. Images b and f are 

from UROSURF 

After the BLOBs are detected, they are analyzed to decide 
whether they have cystine crystals or not. It is done by the 
evaluation of their foreground pixel density, which can be 
expressed as: 

, 
(1) 
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where FG represents the quantity of pixels with the same color as 
the border of the crystal, and BG the number of the pixels in the 
BLOB with the same color of the background. 

 

Figure 2: Segmentation of the original image (a) with the 
IsoData (b) and OTSU (c) algorithms 

As cystine crystals have a transparent internal region, those 
BLOBs with a high density cannot represent a crystal of this type 
(Figure 3b). For this method, the density value was empirically 
determined to be 0.4, but it can be adjusted for noisy images, on 
which the urine contains many other suspended particles, apart 
from the crystals. 

Other parameters like the BLOB’s size cannot be used, because 
the crystals and the images have several sizes and resolutions, 
respectively. 

 

Figure 3: Blob detection: every BLOB has its own bounding 
box, drawn in red (a). In the green box, a BLOB that can 

contain cystines. In the red box, a very dense BLOB, without 
cystines (b). 

The following step consists of determining the actual lines on the 
image, to verify which ones can form the borders of a crystal. For 
this process, the BLOBs are submitted to the Canny edge detector 
[14] and then lines are obtained by applying the Probabilistic 
Hough Transform [15]. Some examples of the resulting images of 
this process are shown in Figure 5. 

 

Figure 5: Blob identified (a), blob processed by the Canny 
algorithm (b), lines detected by the Hough transform (c) 

The final step is the identification of a cystine crystal, which is 
done as follows: considering a line Li, formed by two endpoints 
Pi1 and Pi2, the algorithm arranges all the lines detected in the 
BLOB in a group. In order to exclude some repeated lines that the 
probabilistic Hough transform finds, one endpoint of a line Pi is 
taken as a reference and then it searches for another endpoint, 
from another line Lj (Pj1 – Pj2), that is at a distance d, smaller than 
a Dlim threshold and that the Li and Lj lines form, between them, 

an angle of 120o  15o (Figure 6). The exclusion of the repeated 

lines is done through the calculation of the cross product between 
the edges A(P1,P2) and B(P3,P4) that share a vertex (P1 == P3 or 
P1 == P4 or P2 == P3 or P2 == P4). The cross product is used to 
classify the orientation of the edges that define the polygon of the 
cystine. The possible classes are clockwise (CW) and counter-
clockwise (CCW). As they are considered to have their Z 
coordinates equal to 0 (ZA == ZB == 0), the cross product 
between the points A and B is described as 

 (2) 

 

Figure 6: Description of the lines being processed 

The Dlim threshold was empirically obtained as being 15% of the 
smaller side of the bounding box of the BLOB. If there is more 
than a pair of points matching these criteria, the nearest point is 
chosen. These criteria forms a set of edges that describe 
hexagonal structures. However, it cannot be guaranteed that there 
is only one cystine in this set, as can be seen in Figure 7. 

 

Figure 7: Example of the separation of objects in a single 
structure (a) into two separate cystines (b) 

In order to separate multiple cystines on the same BLOB, two 
edges that share a vertex are chosen by the algorithm. Then, these 
edges are grouped as a cystine, the cross product is calculated and 
the orientation of the cystine is set by it. The process is repeated 
taking a new edge that shares a vertex with one of the edges A or 
B. If its orientation is the same as the other chosen vertex, the 
edge is removed from the initial group, and added to the new 
cystine. The process repeats itself until the original set is empty. 

4. EXPERIMENTAL RESULTS 
As previously described, the cystine crystals have a hexagonal 
structure. However, sometimes, as exemplified in Figure 1e, not 
all its sides are well formed, because of a dirty sample or a broken 
crystal. Thus, in order to achieve a better result, our method 
allows the variation of the number of edges that must be found to 
identify a cystine. In other words, e.g., if it finds four edges with 
an angle between them that indicates that they are part of a 
hexagon, it is assumed that a cystine was found. 

172



Considering this possibility, for the assessment of the developed 
method, we have evaluated the 48 images from the dataset 
(section 3.1), with and without cystine crystals. For this, we 
computed the sensitivity and the specificity of the results, as 
shown in Table 1. The described method shows 73.73% of 
sensitivity and 93.08% of specificity. The specificity is relatively 
high due to large number of true-negatives. 

Table 1. Evaluation of the method on real data 

 Manual Developed Method 

True-positive 137 101 

False-positive - 53 

False-negative - 36 

True-negative - 713 

Sensitivity 100% 73.72% 

Specificity 100% 93.08% 

This result was obtained considering that it is enough to find two 
edges of a hexagon to identify a cystine crystal. If we need to find 
more edges, the sensitivity decreases and the specificity reaches 
100%. This occurs due to cases as exemplified in Figure 1e. 

5. CONCLUSIONS AND FUTURE WORK 
This paper presented a new method for automating the analysis of 
urine sediments in digital images, which aims to find cystine 
crystals. Since there were no studies specifically designed for this 
purpose, this method allows the reduction of the analysis time, 
and improves the reliability of the analysis. 

As described in Section 2, several works in the literature address 
the classification of elements found in urine sediments, but none 
of them is focused on cystine crystals. For a first study with this 
focus, the developed method presented good results. 

Besides cystine crystals, the developed approach can be extended 
for the detection of other elements such as crystals of triple 
phosphate or crystals of calcium oxalate, illustrated in Figure 1b. 
This can be done following the same principles of the presented 
solution with minor modifications of the algorithm that detects 
hexagonal shapes. 
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