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Abstract—Nowadays there are more than 250 million visually-
impaired people worldwide and mobility autonomy in outdoor
environments is perhaps the greatest challenge they have to face.
More specifically, crossing the street with no human aid is an
open problem, since the majority of the pedestrian traffic lights
in underdeveloped countries do not provide sound aids. There
are very few studies addressing the detection of pedestrian traffic
lights based on images acquired by mobile devices, and to the
best of our knowledge there is a clear gap in the literature
regarding the use of recent state-of-the-art computer vision
approaches such as deep neural networks for addressing such
a problem. In this paper, we investigate the current state-of-
the-art in localization/detection and classification based on deep
neural networks, and we present a solution for the detection
of pedestrian traffic lights together with their current state for
helping visually-impaired people to cross the streets with the aid
of their mobile devices. For such, we provide a novel public
dataset with 4,399 labeled images of pedestrian traffic lights
and we present a detailed comparison among the state-of-the-art
methods for classification and localization/detection. We show
empirical evidence regarding the feasibility of embedding our
approach in mobile devices so it can be used by people with
visual impairment.

I. INTRODUCTION

According to 2017 data from the World Health Organiza-
tion1, there are approximately 253 million visually-impaired
people worldwide. Among them, 36 million are blind and
217 million have moderate to severe vision impairment. Blind
tracks, white canes, and guide dogs are typically used to help
visually-impaired people to walk outdoors [1]. Despite of those
aids, mobility autonomy in outdoor environments still poses a
big problem for visually-impaired people.

In this context, one of the major challenges daily faced
by the visually impaired is to cross the street independently.
A common solution for this problem is to associate a sound
signal with the pedestrian traffic lights, though in several coun-
tries (e.g. third-world countries such as Brazil) the vast major-
ity of the pedestrian traffic lights do not provide an associated
aiding sound signal. Moreover, the American Council of the
Blind2 states that the so-called “cuckoo-chirp type signals” can
lead to incorrect decisions due to the difficulty of identifying,
in corners, which street is allowed for crossing. When multiple
tones are used, there is the difficulty in remembering which
tone is used for each direction.

1http://www.who.int/mediacentre/factsheets/fs282/en
2http://acb.org/

Several solutions for the detection of traffic lights for
autonomous vehicles can be found in the literature [2]–[7],
though very few of them were developed for the detection of
pedestrian traffic lights based on images acquired by mobile
devices [8]–[11]. In addition, to the best of our knowledge,
there is a gap in the pedestrian traffic lights literature regarding
more recent state-of-the-art computer vision techniques such
as deep neural networks.

Hence, our main goal in this work is to present a solution
for the detection of pedestrian traffic lights and their current
state for helping visually-impaired people to cross the streets
with the aid of their mobile devices. For such, we carefully
investigate the current state-of-the-art in localization/detection
and classification based on deep neural networks, and the
feasibility of embedding those models in a mobile device.

Our main contributions include: (1) the availability of a
novel public dataset with 4,399 labeled images of pedestrians
traffic lights; (2) a comparison among the deep learning state-
of-the-art for classification and detection, namely YOLO [12],
Faster R-CNN [13], and SSD [14]; (3) a thorough empirical
analysis that shows the feasibility of our approach to be
embedded in a mobile device and thus be used by people
with any kind of visual impairment.

The remainder of this paper is organized as follows. We
discuss related work on traffic lights and visually-impaired
aid approaches in Section II. We describe our novel dataset
and the object detection methods we make use in Sections III
and IV, respectively. In Section V we discuss our results and
main findings regarding the suitability of employing state-
of-the-art deep neural approaches for pedestrian traffic light
detection and classification. Finally, we end this paper with
our conclusions and future work directions in Section VI.

II. RELATED WORK

In the past couple of years, mostly due to the fast advances
in autonomous vehicles research, several studies have focused
in developing novel methods for detection of traffic lights
specially for cars [2]–[7], [10], [15]. We can broadly classify
the related work into the following categories: i) handcrafted-
features based techniques; and ii) representation-learning
based techniques, a.k.a. deep learning approaches. Whereas
most of those papers rely on detecting traffic lights for
autonomous navigation systems, only a small portion of them
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aim to help visually-impaired people by detecting pedestrian
traffic lights [8], [11], [16], [17].

A. Traffic Lights Detection for Vehicles

Li et al. [2] developed a system for traffic light detection
for cars that makes use of visual information from an on-
vehicle camera. They collect and leverage prior information
such as aspect ratio, area, location, and context of traffic lights,
along with some methods to improve accuracy – e.g., using an
inter-frame analysis with feature learning algorithms. Authors
claim competitive results on the VIVA dataset [18]. Liu et
al. [3] proposed a method that makes use of Extreme Learning
Machines [19] trained over HOG (Histogram of Oriented
Gradients) [20] and LBP (Local Binary Pattern) [21] features.
The authors were capable of running that approach in real-time
in smartphones by using a CPU-GPU fusion approach. They
report fast running-time while keeping competitive predictive
results. A deep learning approach proposed in [5] uses stereo
video sequences and vehicle odometry to detect traffic lights
in real-time. The authors introduced a labeled dataset with
5,000 images of traffic lights that present controlled variation
of lighting and weather (i.e., sunny to light rain). Probably
the major drawback of their approach is the very use of stereo
images and odometry, which makes it quite difficult to employ
their method in regular smartphones for detecting pedestrian
traffic lights. Jensen et al. [6] proposed the use of the well-
known YOLO (You Only Look Once) [12] approach for real-
time detection of traffic lights. They performed experiments
on the LISA [22] dataset. In addition, Lee and Park [7]
also employed that dataset along with deep neural networks.
Nevertheless, they focus on a pre-processing phase for color
segmentation and further application of SVMs to reduce false
regions from the segmentation step.

We have found two papers [10], [15] that explicitly aim
to help visually-impaired people. Even though [10] focus in
running on mobile devices, both of them are designed to detect
traffic lights for vehicles using traditional handcrafted-features
based techniques to extract shape and color information. In
addition, the work in [9] proposes the use of traffic light
detectors to improve the accessibility of color-blind people.

B. Pedestrian Traffic Lights Detection

Roters et al. [8] proposed a system for mobile devices based
on handcrafted-features based approaches for pedestrian traffic
lights detection. They have introduced a novel dataset with
images of pedestrian traffic lights from Germany. Cheng et
al. [11] improved that dataset, and also presented an approach
that employs SVMs trained with HOG features. Overall, they
demonstrated fair precision-recall values and proper running-
time performance when using a portable computer with an
RGB camera. The work in [16] presents a vision system for
traffic information detection through a smartphone camera
to help the visually impaired. One of its features is the
recognition of traffic lights through a hybrid adaptive boosting
(Adaboost) [23] and template matching algorithm. However,
the authors do not make their dataset publicly-available for

evaluation. A different approach based on integration of mul-
tiple services to build a model was presented by Alghamdi
et al. [17]. One of those services is the pedestrian traffic light
detection that was developed based on SURF (Speeded-Up Ro-
bust Features) [24]. They present a brief evaluation but also do
not make their dataset available for other researchers. Mascetti
et al. [25], [26] were concerned with a different approach: the
development of a robust method for image acquisition. They
used traditional handcrafted-features algorithms focusing on
solving the problem of underexposed traffic lights.

As described herein, there are few studies for traffic light
detection for cars that make use of deep learning [5]–[7].
Nevertheless, despite the existence of papers on real-time
pedestrian traffic light detection [8], [11], [16], [17], none of
them employ state-of-the-art approaches such as deep neural
networks and analyze the feasibility of running the models
within a smartphone. While there are public datasets for car
traffic lights [18], [22] that are widely used, there are very
few datasets [8], [11] with pedestrian traffic lights images.
Moreover, the amount of images available for training in those
datasets are probably insufficient for deep neural networks
to properly learn and generalize . For instance, the dataset
in [8] comprises only 300 images from the German standard
for training. The second dataset [11] includes only 13 video-
sequences from Italian and Chinese pedestrian traffic lights.

III. A NOVEL PEDESTRIAN TRAFFIC LIGHT DATASET
(PTLD)

Our research on traffic light detection led us to papers that
mostly deal with traffic lights for cars, and hence provide
datasets that contain such images. We found only two public
datasets ( [8], [11]) that contain pedestrian traffic lights, both
with insufficient amount of images for deep neural networks
to learn and properly generalize.

Hence, we decided to develop a novel pedestrian traffic light
dataset and make it publicly available. We call it the Pedestrian
Traffic Light Dataset (PTLD), and it can be downloaded at
https://tinyurl.com/y9z7xodw.

PTLD was created following a rigorous protocol. First,
with the collaboration of several people and using multiple
smartphone models, we collected a variety of videos and
images with and without pedestrian traffic lights from different
Brazilian cities, with lights indicating allowance or prohibition
to cross the street. In Brazil, there is a variety of shapes that
pedestrian traffic lights can assume, and sometimes in the
very same city the shapes may vary. Therefore, as shown in
Figure 1, we were capable of collecting images for PTLD that
have distinct image quality, lighting conditions, size, angles,
and shapes.

After the video collection period, we extracted two images
per second from each collected video, and added them to
PTLD. We kept the original size of all images and we did
not apply any kind of filters for image enhancement. We did
use a Haar Cascade-based algorithm [27] to blur the faces of
people that eventually appeared in the images in order to keep
them in anonymity.
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Fig. 1. Examples of images in the PTLD dataset with different resolutions,
lighting conditions, sizes, angles, and shapes.

Finally, we manually annotate all images using a tool devel-
oped by ourselves, which is also publicly-available3, allowing
the identification and classification of pedestrian traffic lights.
Our tool generates a textual annotation file for each image
and also offers the option to export to many well-known
annotations formats such as the XML Pascal-VOC format that
is employed by one of the deep learning methods we evaluated
in this work.

PTLD comprises a total of 4,399 images, 4,286 of them
annotated with the current state of 4,645 traffic lights (al-
lowance or prohibition to cross the street), and 128 images
with no traffic light whatsoever. We divide all images into
three sets: training, validation, and testing. The training set
contains 3,443 images, whereas the validation and test sets
contain 478 images each, as presented in Table I.

TABLE I
IMAGES DISTRIBUTION IN THE PTLD.

Class Training Validation Testing

Go 913 201 240
Stop 2,219 236 249
Off 501 51 35

No traffic lights 113 12 3

PTLD comprises three actual classes: go, stop and off. The
Go class is when the traffic light is open for the pedestrian
to cross the street. It comprises images with white or green
lights in varied shapes. The Stop class is when the traffic light
prohibits the pedestrian to cross the street, usually signaled by
a red light in diverse shapes. The Off class is when the lights
are out, and it usually occurs intermittently between the Go
and Stop classes.

IV. OBJECT DETECTION METHODS

Convolutional Neural Networks (ConvNets) [28] have been
used for image classification and object recognition tasks for
achieving state-of-the-art results [29], [30]. A ConvNet is
a deep learning [31] approach that is capable of learning
representations from raw data, and it has been applied with
success to tasks such as image classification [32]–[35], object
detection [13], [36], video understanding [37], [38], content-
based retrieval [39], and text classification [40], [41].

Since ConvNets learn data-driven models, their performance
largely depends on available labeled datasets. For achieving

3https://github.com/kabrau/PyImageRoi

human-level performance, these datasets should ideally contain
thousands or millions of instances. For instance, Imagenet [42]
is the standard dataset for building image classification mod-
els due the amount of classes and instances available. For
the task of object detection, both PASCAL VOC [43] and
MS COCO [44] are often used. They comprise annotated
objects that belong from 20 to 80 different classes.

In this work, we evaluate state-of-the-art ConvNet-based
methods for object detection and classification in our Pedes-
trian Traffic Light Dataset (PTLD). The following approaches
were used in our experiments: (i) Faster R-CNN; (ii) YOLO
Full; (iii) YOLO Tiny; and (iv) SSD. We describe them next.

A. Faster R-CNN

Faster R-CNN [13] comprises a Region Proposal Network
(RPN), which is a fully-convolutional network that predicts
both the bounding box position and the scores at each position.
RPN is trained in an end-to-end fashion to generate high-
quality region proposals that are used by Fast R-CNN [45]
for detection. RPN and Fast R-CNN are merged into a
single network sharing some convolutional layers, resulting
in Faster R-CNN, which is more efficient and effective than
its precursor.

Figure 2 illustrates the Faster R-CNN overall architecture. It
is comprised of two modules. The first module is the ConvNet
that proposes regions (RPN), and the second is the Fast R-
CNN detector, which learns from the proposed regions. Given
an input image, it outputs a set of region proposals along with a
score. Such a score indicates whether the given region proposal
belongs to a given class or to background.

CNN Feature
Maps

RPN

Proposals

ROI
Vector

Classification

Bounding Box

Input

Output

Fig. 2. Faster R-CNN pipeline.

B. YOLO

You Only Look Once (YOLO) [36] is another ConvNet-
based object detection approach that transforms object detec-
tion into a regression problem. The YOLO pipeline is straight-
forward from the input image to bounding box coordinates
and class probabilities via a ConvNet. Such a pipeline can
detect objects with similar speed of a classification pipeline.
Figure 3 depicts the YOLO pipeline, where convolutional
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output features are used to predict both a set of bounding boxes
and class probabilities distributed within a grid. Each grid
cell predicts a set of bounding boxes and confidence scores.
These scores reflect the model’s confidence that such a cell
contains an object. Also, those confidence scores threshold the
bounding box on whether they are providing a valid detection.
The simple and straightforward pipeline also contributes to an
improved time performance, making the system capable of
detecting objects in 45 FPS when running over an NVIDIA R©

Titan X GPU.

CNN

Fe
at
ur
es

Input Output

Proposals

Classes

Fig. 3. YOLO pipeline.

An improvement of YOLO, namely YOLO V2 [12], ex-
cludes the fully-connected output layer of the original ConvNet
architecture, making YOLO V2 flexible to variable-size image
inputs. It also includes batch normalization to help regularizing
the model, and residual connections in order to better locate
small objects (the so-called “fine-grained features”).

C. SSD
Single Shot MultiBox Detector (SSD) [14] is an object

detection method that shares similarities with YOLO. For
instance, SSD also detects objects with a single ConvNet
forward pass per image. It detaches the resulting bounding
boxes into a set of default boxes with different scales and
ratios. The prediction output generates scores for the presence
of each object class in each default box and also adjustments
to make the box better fit the object. However, differently
from the original YOLO architecture, SSD combines predic-
tions from multiple feature maps with different resolutions,
allegedly better handling objects of various sizes. SSD’s single
pass pipeline provides impressive prediction time that can
reach 59 FPS with a GPU like NVIDIA R© Titan X. Figure 4
illustrates the SSD pipeline and the resulting composition of
different-scale feature maps predictions.

Input

Convolutional Layers

L1 L2 L... Ln

Output

Fig. 4. SSD pipeline.

V. EXPERIMENTAL ANALYSIS

To validate the use of PTLD to train accurate models for
pedestrian traffic lights detection, we execute experiments
with the state-of-the-art deep learning based approaches:
YOLO [36], SSD [14], and Faster R-CNN [13]. Our ex-
perimental environment was provided by a Intel R© Xeon R©

E5-2603 and an NVIDIA R© GTX 1080TI GPU with 11GB
of memory. We trained each method for 4 days. All net-
works were pre-trained on Imagenet [42], which helps for
a better weights’ initialization and improves learning with
the transference of patterns present in a large classification
dataset. In addition to the pre-training, we apply the same data
augmentation strategy for all models. Our data augmentation
comprises random crops of 90% of the image area and
horizontal flips. As described in the PASCAL-VOC Challenge
[43], our evaluation criteria consider correct predictions those
with intersection over union (IOU) regarding the predicted box
and the ground-truth above 0.5. A summary of the experiments
performed over PTLD can be seen in Table II.

TABLE II
SUMMARY OF PTLD EXPERIMENTS.

Method mAP Val. mAP Test Batch Total iter. Best iter.

Faster R-CNN 74.0 77.8 1 200, 000 200, 000
SSD 73.6 87.9 24 200, 000 72, 325
YOLO Full 74.5 76.2 64 100, 000 30, 000
YOLO Tiny 44.7 35.8 64 100, 000 40, 000

A. Faster R-CNN

For training a Faster R-CNN model, we adopt an Incep-
tion Resnet-v2 [46] architecture, which comprises 59, 419, 965
parameters and 475.1MB of storage space for each model.
The model was fine-tuned from an Imagenet [42] pre-trained
model. We use the validation set to observe the training
evolution. Due to restrictions of the method, the batch size
is set to 1 image. Momentum is set to 0.9, and the learning
rate is kept fixed in 4× 10−4.

According to the validation data, the best Faster R-CNN
model was created at iteration 200, 000, which provides a
mAP=74.0. After evaluating such a model in the test set, the
resulting mAP=77.8, which is the second best mAP of all
experiments. Even though it provides the second best mAP,
Faster R-CNN is the slowest method to train. It reached
200, 000 iterations in the 4 days of training time.

B. SSD

We also train an SSD [14] network using PTLD. We adopt
a Resnet-v2 architecture, which was previously trained on
Imagenet. The model has 54, 361, 668 parameters and requires
217.4MB of storage space. We use a batch size of 24 images,
a momentum of 0.9, and weight decay of 0.9. The learning
rate is set to 4 × 10−3 with no adjustments until the end of
the training.

In the validation set, the best SSD model provides a
mAP=73.6 at iteration 72, 325. Over the test set, that same
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model reaches a mAP=87.9, which is surprisingly the best
mAP value of all experiments.

C. YOLO Full

We train a YOLO network [36] using the Darknet-19 [12]
convolutional architecture that comprises 19 convolutional
layers. Such a model was trained as described in [36] starting
from an Imagenet [42] pre-trained model and fine-tuned over
PTLD. The model comprises a segment with convolutional
layers and residual connections in a total of 50, 552, 672
parameters. Each model requires 202.4MB of storage size.
We use a batch of 64 images, a momentum of 0.9, and weight
decay of 5 × 10−4. The learning rate schedule follows the
original work’s recommendation: it starts with 10−3, and then
goes to 10−4 after 40, 000 iterations, and to 10−5 after 60, 000.
The training stops after 100, 000 iterations. Each model took
10 hours to be trained.

The model that performs best on validation data was ob-
served at iteration 30, 000, resulting in mAP=74.4. In the test
set, this model provides a mAP=76.1.

D. YOLO Tiny

We also trained a faster YOLO alternative, namely YOLO
Tiny. To speedup the process, YOLO Tiny employs a simpli-
fied convolutional architecture that comprises only a portion
of the Darknet-19 [12] resources: 9 convolutional layers,
resulting in 15, 773, 616 parameters. Each model requires only
63.1MB of storage size. The network was trained as described
in [36], fine-tuning an Imagenet [42] pre-trained model over
PTLD. We also use the validation set to observe the training
evolution. We use a batch size of 64 images, a momentum of
0.9, and weight decay of 5×10−4. The learning rate schedule
is the same as YOLO’s training: starts with 10−3, going
to 10−4 after 40, 000 iterations, and to 10−5 after 60, 000
iterations. We stopped training after 100, 000 iterations. Each
model took ≈ 5 hours to be trained.

The best model on the validation set was observed at iter-
ation 40, 000, providing a mAP=44.6. Such a model provides
a mAP=35.8 in PTLD test set.

E. Discussion

By creating PTLD, our main goal is to assist people with
visual impairment crossing streets that have pedestrian traffic
lights (PTL), informing if there is a PTL and whether it is
allowing or prohibiting people to cross the street. Therefore,
a first empirical evaluation with state-of-the-art methods for
object detection over PTLD is essential for reaching that goal.

Our evaluation comprises 3 different methods with state-
of-the-art results in the most well-known datasets for object
detection. We established a time frame of 96 hours (4 days) of
training for all methods, proceeding the training in the same
hardware and software environment.

By looking at the results presented in Table III, SSD
provides the best mAP and AP for all classes. The Faster R-
CNN presents results inferior to SSD and YOLO, which is not
expected given the robustness of this method. Notwithstanding,

we can see in Table II that the best model of Faster R-CNN
was achieved in the last iteration, which indicates that we
would probably achieve better results if it was allowed to train
for a longer period.

When adopting a Darknet-19 architecture, YOLO reaches
results inferior than Faster R-CNN and SSD, but still promis-
ing for being embedded into a smartphone considering its
prediction speed shown in Table IV The simplest model,
YOLO Tiny, produces the worst results of all methods, as
one could have previously expected, though with the fastest
prediction times.

TABLE III
PTLD TEST DETECTION RESULTS. MAP AND AP RESULTS.

Method mAP go stop off

Faster R-CNN 77.8 86.5 83.4 63.7
SSD 87.9 90.4 93.4 79.9
YOLO Full 76.2 74.6 90.4 63.5
YOLO Tiny 35.8 43.2 57.9 64.0

Figure 5 illustrates the performance of all models contrast-
ing precision and recall, while the threshold of confidence
varies from 0 to 1 by increments of 0.01. We assume pre-
dictions as correct when the IOU with the ground truth was
greater than 0.5. The overall performance of each method can
be synthesized by mAP and per-class AP. Note that YOLO
presents dispersal PR points (Figure 5c), especially when
compared to SSD (Figure 5b), which in turn presents a dense
point distribution. This is due to a significant concentration of
the confidence score for the correct predictions of SSD.

With respect to prediction times, Table IV confirms our
intuition that YOLO Tiny reaches the fastest predictions.
YOLO Full also presents impressive results with FPS=100,
which allows its application in video-based applications even
considering per-frame approaches. SSD’s prediction speed is
also quite fast. YOLO Full has a speedup of 2× over SSD,
and YOLO Tiny presents a speedup of 1.5× over YOLO Full.

TABLE IV
PREDICTION TIME PER IMAGE (IN SECONDS).

Method Prediction speed (in seconds) FPS

Faster R-CNN 2.700± 0.330 0.37
SSD 0.020± 0.004 50
YOLO Full 0.010± 0.000 100
YOLO Tiny 0.004 ± 0.000 250

To illustrate qualitative results obtained with the set of
experiments that were performed in this study, Figure 6
presents 3 randomly selected samples disposed in 4 rows,
each corresponding to one of the object detection methods.
The samples are part of our test set and show the contrast
of the ground truth (yellow) and the predictions (red). For
reference, the ground truth boxes were plotted in yellow
and are overlapped by the predictions. Due to the divergent
distribution of confidence scores presented by each method
(see Figure 5), we tune the confidence threshold θ for each
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(c) YOLO
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(d) YOLO Tiny
Fig. 5. PR curves for each object detection method trained on PTLD.

model according to the observations in the validation set. The
values that are used are θ = [0.34, 0.02, 0.17, 0.28] for Faster
R-CNN, SSD, YOLO, and YOLO Tiny, respectively.

Faster R-CNN

SSD

YOLO Full

YOLO Tiny
Fig. 6. Model generalization evaluation.

By looking at the predictions in Figure 6, note that they are
all quite similar. We can see that there are marginal differences
in the positions of the boxes. Regarding the confidence, we can
see that YOLO Tiny is the one with the greatest discrepancy.

F. Tests with other datasets

To evaluate the generalization capability of our approach,
we decided to test it over the German dataset [8], [11]. We can
see in Figure7 that the German standard for pedestrian traffic
lights is substantially different from the Brazilian standard
(Figure 1), mainly regarding the 3-part shape of the lights.

The German dataset was used in two studies [8], [11],
and it was analyzed using the following measures: Recall,
R = TP/(TP +FN); and Precision, P = TP/(TP +FP ).
Note that, in those papers, there is no analysis regarding
intersection over union (IOU). Predictions are correct simply
if the predicted box lies anywhere over the ground-truth box.
For that reason, in this comparison we use the same approach
for computing true (false) positives (negatives).
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Fig. 7. German standard pedestrian traffic lights samples.

Instead of re-training all methods, we decided to test all
models previously trained on the PTLD dataset over the
German data, and then choose only the model with the best
result to perform fine-tuning that dataset. It is important to
mention that the images of that dataset were not included in
our own dataset and, therefore, they were not used at all when
training our original models.

Table V shows a comparison of all our methods when
trained in PTLD and tested over the German data. For this
dataset, Faster R-CNN presented the best results for both
classes Go and Stop. The other methods presented quite low
recall values, and for this reason they were not fine-tuned over
the German data.

TABLE V
GENERALIZATION ABILITY OF OUR MODELS IN THE GERMAN DATASET.

Class Measure Faster SSD YOLO Full YOLO Tiny

Go Recall (%) 50.0 21.3 39.8 29.1
Precision (%) 98.4 100 100 98.6

Stop Recall (%) 85.4 60.6 65.8 24.8
Precision (%) 98.6 99.2 98.9 100

Now that we have selected the best model (Faster R-CNN),
we fine-tuned it over the German training data. This dataset
has only two classes, Go and Stop, so the number of classes
has changed to 2 and the batch size is set to 1 image.
Momentum is set to 0.9 and the learning rate is kept fixed
in 2× 10−4. According to the validation data, the best model
was created at iteration 200, 000, which provides a mAP=90.3.
After evaluating such a model in the test set, the resulting mAP
was 75.2. It reached 200, 000 iterations in 1 day of training
time.

Comparing the results of our model with the results pre-
sented in the work by Roters et al. [8] and Cheng et al. [11],
note that our approach presents a substantially superior recall
score for both classes, which shows the high detection rate
of our model. The precision score is smaller but competitive,
probably due to the fact that our model performs much more
detections than the previous state-of-the-art, and hence it ends
up detecting false positives.

Therefore, even though SSD seemed to be a better choice in
the tests with our dataset (Table III), Faster R-CNN seems to
be more promising, especially considering it was still learning
when we stopped training. The generalization of the models in
the German dataset clearly indicate that Faster R-CNN seems

TABLE VI
COMPARISON OF OUR BEST MODEL WITH THE WORK BY ROTERS ET

AL. [8] AND CHENG ET AL. [11] IN THE GERMAN DATASET.

Class Measure Faster R-CNN Roters [8] Cheng [11]

Go Recall (%) 97.7 55.3 57.3
Precision (%) 93.5 100 97.6

Stop Recall (%) 98.9 52.4 90.3
Precision (%) 90.2 100 98.3

to be a better choice. The obvious limitation is that Faster R-
CNN is much more time-consuming during prediction time,
so a sampling strategy needs to be employed in order to make
it run in real-time for helping visually-impaired people.

VI. CONCLUSIONS

Crossing streets autonomously is still a challenge for
visually-impaired people. Hence, we propose an approach
capable of detecting pedestrian traffic lights and their cur-
rent state based on images acquired by mobile devices via
state-of-the-art computer vision techniques that rely on deep
neural networks. We show that deep learning approaches can
achieve good results considering all challenges involved in the
recognition of a pedestrian traffic light across the street in an
uncontrolled environment.

Our contributions are mainly regarding the novel public
dataset with 4,399 labeled images of pedestrian traffic lights
and the controlled comparison among the deep learning state-
of-the-art methods for classification and detection. Another
contribution is that our approach, using our pre-trained models,
can easily be used in other datasets and obtain state-of-the-
art results. We also show the feasibility of our approach to
be embedded in a mobile device. We are now working to
embed our models in a mobile device and develop the app
for helping the visually impaired. Thus, for future work we
intend to perform tests of the app with users that present visual
impairment, and make it available for all interested audiences.
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