
Performance of Data Mining, Media, and Financial
Applications under Private Cloud Conditions

Dalvan Griebler∗†, Adriano Vogel†, Carlos A. F. Maron∗†, Anderson M. Maliszewski∗,
Claudio Schepke‡ and Luiz Gustavo Fernandes†

∗Laboratory of Advanced Research on Cloud Computing (LARCC),
Três de Maio Faculty (SETREM), 2405, Santa Rosa Av.– Três de Maio – RS – Brazil

†Pontifical Catholic University of Rio Grande do Sul (PUCRS), 6681, Ipiranga Av. – Porto Alegre – RS – Brazil
‡Laboratory of Advanced Studies (LEA), Federal University of Pampa (UNIPAMPA) – Alegrete – RS – Brazil

Email: {dalvan.griebler,adriano.vogel,carlos.maron}@acad.pucrs.br,
andersonmaliszewski@gmail.com, claudioschepke@unipampa.edu.br, luiz.fernandes@pucrs.br

Abstract—This paper contributes to a performance analysis of
real-world workloads under private cloud conditions. We selected
six benchmarks from PARSEC related to three mainstream ap-
plication domains (financial, data mining, and media processing).
Our goal was to evaluate these application domains in different
cloud instances and deployment environments, concerning con-
tainer or kernel-based instances and using dedicated or shared
machine resources. Experiments have shown that performance
varies according to the application characteristics, virtualization
technology, and cloud environment. Results highlighted that
financial, data mining, and media processing applications running
in the LXC instances tend to outperform KVM when there is
a dedicated machine resource environment. However, when two
instances are sharing the same machine resources, these applica-
tions tend to achieve better performance in the KVM instances.
Finally, financial applications achieved better performance in the
cloud than media and data mining.

Index Terms—Cloud Computing; Performance Benchmark;
Infrastructure as a Service; Virtualization.

I. INTRODUCTION

Cloud computing is a paradigm capable of providing Infras-
tructure as a Service (IaaS), where users/clients may perform
on-demand computational resource provisioning (CPU, mem-
ory, storage), either for public or private cloud [1] deployment
models. IaaS is the base service model for a cloud computing
environment because it supports upper/higher-level service
models such as Platform as a Service (PaaS) and Software
as a Service (SaaS) [2]. In the lowest level of a cloud, there is
the virtualization layer that allows for the necessary dynamism
of the service models. Therefore, cloud users have elastic
resource provisioning and only need to pay-per-use. [3].

Real-world applications are moving to cloud computing
data-centers. Among them are high-performance and enter-
prise applications that can take advantage of the cloud charac-
teristics. However, performance for the majority of the cloud
platforms is difficult to predict, due to performance variations
and load fluctuations caused by their multi-tenant environment
and software stacks (e.g., virtualization and drivers) [4], [5],
[6]. Additionally, the literature lacks more in-depth and em-
pirical investigations of how to better exploit and optimize the
benefits of clouds.

Analyzing and studying applications’ performance for dif-
ferent cloud deployments is fundamental to provide important
insights for cloud providers and potential users. We chose
to study the performance of a set of PARSEC benchmarks
under private cloud conditions because they represent real-
world multi-threading applications. Consequently, many other
applications with similar characteristics may follow the per-
formance trends of our experiments. In addition to cloud
users, cloud providers can also benefit from our results, to
identify the best way to deploy the cloud based on the
chosen application. For instance, the provider could ask users
for their applications’ characteristics and then offer custom
deployments to achieve optimized performance.

Previous works on performance in cloud environments have
analyzed the benefits of moving enterprise applications to
public cloud providers [7], and others have characterized cloud
performance through benchmarking [8], [9]. Furthermore,
studies have evaluated the feasibility of cloud infrastructures
for running scientific applications [10]. For instance, they
traditionally use the NAS benchmarks [11], [12]. These results
are not representative of enterprise applications, although they
are extremely important for the High-performance computing
(HPC) area. We contribute different aspects and analysis to this
research field,including an in-depth evaluation of applications
and cloud environments.

Our goal is to evaluate the performance of PARSEC bench-
marks that represent main stream and real-world enterprise ap-
plications. We focus on a private cloud scenario by deploying
a CloudStack cloud as the infrastructure manager and enabling
two different types of cloud instances (KVM and LXC). Also,
we investigate the differences and benefits by running the
applications in the cloud instances that may have dedicated
or shared machine resources. Our main research contributions
are summarized as follows:

• A performance analysis of PARSEC applications (from
media, financial and data mining domains) running in pri-
vate cloud instances. These empirical results are valuable
for cloud users and providers that are interested in pro-
viding better quality service and/or reducing costs. The

2018 IEEE Symposium on Computers and Communications (ISCC)

978-1-5386-6950-1/18/$31.00 ©2018 IEEE 00450



data and analysis can also help others researchers to im-
prove cloud abstraction layers and minimize performance
degradation when running/moving these applications to
the cloud.

• A performance comparison of different types of cloud
instances (container and hypervisor). This comparison
contributes by identifying the best combination of ap-
plication and virtualization technology in the cloud.

• An analysis of different cloud instances using dedicated
and shared machine resources. Sharing the same machine
resources among cloud instances is a recurring situation
in the cloud. Thus, our analysis highlights the perfor-
mance impacts for these applications and the efficiency
of resource isolation in LXC and KVM.

We have organized our paper as follows. Section II provides
the background for the paper. Methodology and cloud deploy-
ments of our experimental setup are presented in Section III.
Section IV shows performance results. Section V highlights
our findings in different scenarios and environments. Related
works are presented in Section VI. In Section VII we provide
the conclusion and future work.

II. BACKGROUND

A. Private Cloud and Virtualization Technologies

We address performance aspects on private cloud with open
sources solutions [1]. We used Apache CloudStack [13] to
manage the cloud infrastructure. This cloud platform offers
management of computational resources through an environ-
ment capable of offering access in the form of services.

The cloud instances were deployed with hypervisor-based
virtualization (KVM) and OS-level virtualization (LXC). The
main difference between KVM and containers is that LXC
provides resources and the user processes run directly on the
host operating system, while the KVM provides virtualized
hardware where the guest OS is installed.

In KVM, hardware devices can be virtualized with QEMU
device emulator. KVM uses a kernel module to intercept I/O
requests from Linux and transfers to QEMU, which translates
these requests into system calls. KVM also supports para-
virtualization drivers, which often achieve better performance.
The guests receive a virtual and isolated environment.

In LXC, user processes are executed directly on the Linux
Kernel without a virtualization layer. Seeking performance
improvements, LXC offers less isolation between containers.
Containers share caches and other data structures at OS-level
as well as activities inside a container that may impact on the
performance of other containers through shared data structures.
Finally, the resources are controlled by a mechanism called
cgroup, which determines the resource limits of each container.

B. The PARSEC Application Set

In order to assess the performance and feasibility when
running real-world applications on cloud environments, we
chose the PARSEC benchmark. The Princeton Application

Repository for Shared-Memory Computers (PARSEC1) is a
benchmark suite composed of a variety of multithreaded
applications [14]. This suite includes 13 different benchmarks
(10 applications and 3 kernels) [15], which cover different
application domains and parallel programming models. Each
benchmark aims to simulate the behavior of real-world ap-
plications, such as computer vision, video encoding, financial
analytic, physics animation, and image processing.

Although the PARSEC suite has been used to evaluate
the performance of modern processors, we used it as a
representative workload of real-world applications on cloud
environments. The benchmark we chose included the Financial
domain because of its relevance for enterprise systems, which
demand computational capabilities and availability. We also
considered the Data Mining domain because of the current
high demand for this class of applications both in research
and industry. Moreover, we included the Media Processing
domain, because this area is increasing its usage and demand-
ing specialized computational resources for image and video
processing. For instance, in pattern recognition, rendering, and
filtering. Our benchmarks are described below.

Blackscholes is a Financial Analysis application from the
Intel RMS benchmark that represents the field of analytic
Partial Differential Equation (PDE) solvers. This application
is used in financial computations, calculating the amount of
floating-point that a processor can perform. We used native
input in our tests, which has 10,000,000 reference values [15].

Swaptions is another application from the Financial Analy-
sis domain. It utilizes the Heath-Jarrow-Morton (HJM) frame-
work to compute the evolving interest rate of risk management
and equity liability for a predefined class of models. Swaptions
utilizes the Monte Carlo (MC) method, which is used to
calculate numerical probability based on taking a massive
number of random samples several times.

Freqmine is used to simulate the data mining task for
Frequent Item set Mining (FIMI), which is very common in
applications that perform protein sequences, market data, and
log analysis. Its main feature is to find a frequent pattern
in a large database by mining a set of frequent patterns
using fragmented growth. We used the native input that is
composed by a collection of 250,000 HTML web documents.
The parallel implementation was done with OpenMP, which
has three parallel kernels. Freqmine uses a method called FP-
growth that identifies frequently occurring patterns and stores
the relevant database transactions in a compact data structure.

Streamcluster is an application used to simulate the data
stream cluster (data mining domain). Stream represents con-
tinuous incoming data, such as multimedia data, financial
transactions, and phone records. The operation of stream
clustering organizes data under real-time conditions. Thus, the
program spends most of the time evaluating the opening gain
of a new center and ways to reduce costs. This operation
uses a parallelism with static partitioning of data points and
the original data is memory bound and becomes increasingly

1http://parsec.cs.princeton.edu

2018 IEEE Symposium on Computers and Communications (ISCC)

978-1-5386-6950-1/18/$31.00 ©2018 IEEE 00451



computationally intensive as the dimension increases. Stream-
cluster computes how to cut costs by opening a new center.
It makes a comparison in order to analyze the cost of make a
new center or reassigning work from the existing point. The
native input used has 1,000,000 points, 200,000 block size
points and 128 point dimensions, 10-20 centers, and has up to
5,000 intermediate centers allowed.

Vips belongs to the media processing domain and is based
on VASARI Image Processing System (VIPS). It consists of
an image processing system for larger images similar to the
conventional image processing package. VIPS can evaluate the
image in a parallel approach, meld together the operations,
requiring no disk space for intermediate images, and no
unnecessary disk I/O. VIPS perform image transformation (a
common task on desktop computers) and construct a transpar-
ent multithreaded image processing pipeline on-the-fly. The
image process transformation has 18 stages. The native input
for VIPS uses an image with 18,000 x 18,000 pixels. VIPS
uses memory-mapped I/O to load on-demand the parts of an
input image. Subsequently, the operations are applied to the
image region before the output region is written back to disk.

Raytrace is a rendering application that simulates video
rendering and 3D scenes. The result is a photorealistic im-
age using a shading model that employs global information
to calculate the intensities of the shadows. Therefore, this
technique is commonly used in real-time animations, such as
movies and computer games. We used the native input that
has a method which samples the object surfaces, computes the
shadows and reflected light to render the image with HDTV
resolution (1920 X 1080 pixels).

III. EXPERIMENTAL PROCEDURE

The experimental methodology relies on passive measure-
ments for evaluating the performance of workloads behaving
on private clouds. We chose six PARSEC 3.0 benchmarks,
described in the previous section, to represent real-world
applications in the cloud. We deployed two private clouds
with the same machine configurations, using two popular and
growing open-source projects (KVM v.2.0.0 and LXC v.1.0.8).
We designed experiments for dedicated and shared machine
resource usage. In the experiment with dedicated resources, the
performance was collected from a single and isolated instance.
On the other hand for shared resources, which better represent
a real-world cloud environment with multiple tenants sharing
the physical resources, we launched 2 instances running on
the same physical machine. The number of threads used were
limited to the number of vCPUs available. For instance, in
the shared environment, we chose to run PARSEC up to 4
threads in order to scale the performance. Consequently, each
instance of the shared environment was sized with 4 vCPUs
and 12 GB of RAM (half of the total host resource). This was
done to test multi-threaded applications, since we do not focus
on overcommitted resources.

There are some architectural requirements for building an
efficient cloud for production environments [16]. In our exper-
iments, we focused on typical and popular cloud deployments

in order to assess the performance of applications under private
cloud conditions [1], [5]. We used identical machines to
normalize the performance between the deployed clouds. Each
machine had 24 GB of RAM, two Intel Xeon X5560 quad-core
2.80 GHz processors with the Hyperthreading intentionally
disabled, and using disks SATA II. We tested the performance
on created instances with the Ubuntu Server 14.04 (kernel
3.19.0) that was also used for the native environment. One host
was configured as the cloud manager, using the CloudStack
platform version 4.8 and another three hosts as computing
nodes.

IV. PERFORMANCE EVALUATION

The results of the experiments with each application are pre-
sented below in the form of graphs. We plotted the execution
time for each application using up to 8 threads in such a way
that each thread has an available core/vCPU. In this approach,
we consider cloud instances with a variant number of vCPUs
and memory available. Also, the applications executed inside
of the instances under a different number of threads. We
considered the total execution time for all the applications,
not only the time of the parallel region.

Blackscholes (Figure 1) can be characterized as a CPU
intensive application that essentially performs floating-point
operations. These operations are performed with 10,000,000
options for financial portfolios and are calculated using a
portfolio with 1,000 options, which is pre-initialized in the
application. The input portfolios are read from a file in the disk
and fully allocated in memory before the processing begins.
The I/O operations of this application did not influence the
execution time. We observed that KVM instances in dedicated
and shared machine resources experiments had the greatest
performance degradation in Blackscholes. However, it was not
as bad if compared with the native environment results, pri-
marily because KVM is able to run natively the floating-point
operations without interference of the KVM drivers. Therefore,
the small application’s working set assigned to each thread
allows the cloud instances to exploit the machine’s cache
memory. These results also revealed the smaller overheads for
the LXC instances with almost native performance due to its
light virtualization layer.

Freqmine (Figure 2) processes a large input of transactions
from a database. Each transaction is made up of a set of
clicks on a web page with different sizes. Due the size of

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

1 2 3 4 5 6 7 8

S
e

c
o
n

d
s

Number of Threads

LXC

Native

KVM

σ

(a) Dedicated Machine Resources.

 60

 80

 100

 120

 140

 160

 180

 200

 220

1 2 3 4

S
e

c
o
n

d
s

Number of Threads

LXC Instance 1

LXC Instance 2

KVM Instance 1

KVM Instance 2

σ

(b) Shared Machine Resources.

Fig. 1. Blackscholes Execution Times.

2018 IEEE Symposium on Computers and Communications (ISCC)

978-1-5386-6950-1/18/$31.00 ©2018 IEEE 00452



 0

 100

 200

 300

 400

 500

 600

1 2 3 4 5 6 7 8

S
e
c
o

n
d

s

Number of Threads

LXC

Native

KVM

σ

(a) Dedicated Machine Resources.

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

1 2 3 4

S
e
c
o

n
d

s

Number of Threads

LXC Instance 1

LXC Instance 2

KVM Instance 1

KVM Instance 2

σ

(b) Shared Machine Resources.

Fig. 2. Freqmine Execution Times.

the input, the allocation in the memory is gradual, according
to the frequency of the processed values. The processing uses
intensive memory resources, with constant accesses and loads.
In fact, Freqmine reads more than it writes from memory
[17]. As a consequence, Freqmine is characterized as a high
data sharing because the worker threads process the same
data. Figures 2(a) and 2(b) show the performance results of
Freqmine execution. Overall, the execution time presented
similar results for the dedicated machine resource environment
in the LXC, KVM, and Native experiments.

Freqmine presented the same performance in the KVM
cloud instances for the shared machine resource environment.
In contrast, the results also revealed the greatest performance
degradation for the shared machine resource environment in
the LXC cloud instances. According to [17], this application
has parallelism overheads. After further investigation, we con-
cluded that this overhead combined with the high number of
lock synchronizations indicates that the LXC cloud instances
sharing the same machine resources have greater overheads
in this application because the LXC instances are competing
for memory. This issue was also reported by [18], where an
observation was made about cgroups interference, which has
poor memory isolation.

The performance of the VIPS application is shown in
Figure 3. VIPS is a media processing application with data
parallelism and coarse granularity. In addition, VIPS has a
low data sharing and medium exchange. The results from
executing VIPS from the dedicated machine resources showed
performance degradation in cloud instances due to the large
number of I/O operations that the application performed.
These operations are not performed natively because of the
additional layer of software that hypervisors apply over VMs.
Therefore, it induces performance overheads for I/O intensive
applications. In addition, VIPS loads the data from disk to
memory and the application’s threads communicate during
processing phases, which are performing image processing
operations. This behavior characterizes an intensive memory
and cache usage. When machine resources are shared, we
also noted that the application performed better in the KVM
instances than in LXC because the latter has an additional
overhead caused by poor resource isolation under intensive
inter-thread communication and memory use. We discussed
the same problem in the Freqmine application previously.

Swaptions (Figure 4) is a coarse grain data-parallel com-

 0

 20

 40

 60

 80

 100

 120

 140

 160

1 2 3 4 5 6 7 8

S
e
c
o

n
d

s

Number of Threads

LXC

Native

KVM

σ

(a) Dedicated Machine Resources.

 20

 40

 60

 80

 100

 120

 140

 160

1 2 3 4

S
e
c
o

n
d

s

Number of Threads

LXC Instance 1

LXC Instance 2

KVM Instance 1

KVM Intance 2

σ

(b) Shared Machine Resources.

Fig. 3. Vips Execution Times.

 0

 50

 100

 150

 200

 250

 300

 350

1 2 3 4 5 6 7 8

S
e
c
o

n
d

s

Number of Threads

LXC

Native

KVM

σ

(a) Dedicated Machine Resources.

 50

 100

 150

 200

 250

 300

 350

1 2 3 4

S
e
c
o

n
d

s

Number of Threads

LXC Instance 1

LXC Instance 2

KVM Instance 1

KVM Instance 2

σ

(b) Shared Machine Resources.

Fig. 4. Swaptions Execution Times.

putation with low data sharing and exchanging, performing
mainly floating-point operations, which is a similar character-
istic of Blackscholes. It breaks the input into small chunks
and stores it in the array of portfolios. Then, portions of the
array are equally distributed among the worker threads. The
results presented in Figure 4(a) and Figure 4(b) show that in
both experiments (dedicated and shared machine resources)
the execution times were similar among the cloud instance
types and native scenario. However, we can observe that this
application has a slightly better performance in the LXC
instances than in the KVM instances. We can infer the same
conclusion from Blackscholes, because they have the same
performance and pattern behavior.

Streamcluster (Figure 5) is a data mining application with
medium granularity and low data sharing characteristics. In the
dedicated machine resource environment, the execution times
presented contrast between the cloud instance types with high
standard deviations. This is a result of the environment and the
application’s characteristics. The execution of streamcluster
with a single thread is different, because the traffic in the cache
is only characterized by private read operations and without
shared reads when using a single thread [17]. Therefore, in
this situation there was low or nonexistent cache usage. Conse-
quently, the aforementioned advantages available in the KVM
instances were not exploited when running Streamcluster with
a single thread.

Our Streamcluster experiments with shared resources (Fig-
ure 5(b)) also revealed performance gains in the cloud in-
stances. With further investigation [17], we identified that
it uses the cache memory efficiently for multithreading. In
addition, both KVM and LXC can take advantage of Kernel

2018 IEEE Symposium on Computers and Communications (ISCC)

978-1-5386-6950-1/18/$31.00 ©2018 IEEE 00453



 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

1 2 3 4 5 6 7 8

S
e
c
o
n
d
s

Number of Threads

LXC

Native

KVM

σ

(a) Dedicated Machine Resources.

 100

 150

 200

 250

 300

 350

 400

 450

1 2 3 4

S
e
c
o
n
d
s

Number of Threads

LXC Instance 1

LXC Instance 2

KVM Instance 1

KVM Instance 2

σ

(b) Shared Machine Resources.

Fig. 5. Streamcluster Execution Times.

Samepage Mergin (KSM)2 that groups identical data allo-
cated in different virtual machine instances running in the
same host [19]. Therefore, we conclude that Streamcluster
performed better in the cloud instances due to KSM on shared
machine resources.

Another aspect related to the superior performance in the
shared environment, is that our machines have Intel VT-x
virtualization support [20]. This allows KVM instances to run
instructions with native access to the CPU. This technology is
specifically impacted in the Streamcluster, because the cache
miss rate is minimal (the data size fits in cache) and the
majority of operations are loads from cache for the native
input that was used. In fact, running instructions with native
access to CPU enables an effective cache usage. Also, this
application’s characteristics combined with the setup of our
experiment has resulted in optimized performance.

Figure 6 presents the execution times of Raytrace. It is
characterized by data-parallel computations, high data sharing,
and low data exchanging. This application presented poor
scalability in our experiments. In fact, a significant part
of the computations are run sequentially. Raytrace’s results
show LXC performing well, with native performance in the
dedicated machine resource and better than KVM in the shared
environment. On the other hand, KVM performed the worst.
Raytrace has a large working set that the KVM instances were
unable to take advantage of memory and cache optimization.
Moreover, there is no significant contrast between dedicated
and shared environments. Thus, this application has proven
to show suitable characteristics for being run in multi-tenant
environments.

V. FINAL REMARKS

We considered private cloud environments that are an at-
tractive alternative for resource-intensive applications, such as
PARSEC benchmarks. Therefore, we avoided overcommitting
resources when running more than one cloud instance on a
single machine, because the system administrator is given
control of the private cloud to guarantee better performance.
In contrast, related studies addressed performance concerning
CPU overcommitment for public cloud environments.

2This feature was originally created for hosts that run virtual machines.
Recently, it has been incorporated in the Linux Kernel. Thus, LXC is also
able to take advantage of it.

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

1 2 3 4 5 6 7 8

S
e
c
o
n
d
s

Number of Threads

LXC

Native

KVM

σ

(a) Dedicated Machine Resources.

 100

 120

 140

 160

 180

 200

 220

 240

 260

1 2 3 4

S
e
c
o
n
d
s

Number of Threads

LXC Instance 1

LXC Instance 2

KVM Instance 1

KVM Instance 2

σ

(b) Shared Machine Resources.

Fig. 6. Raytrace Execution Times.

Although PARSEC is a set of benchmarks, it can be used
to represent real-world application workloads. For example,
Raytrace can be found in 3D modelling applications and
Blackscholes in financial modeling for several well known
applications [21]. Thus, analyzing the findings regarding the
performance of these applications running in private cloud
infrastructures, can be extrapolated to the behavior of other
applications with similar characteristics. Public providers may
also benefit from our results, since we used the same virtual-
ization technologies.

Our results show that the performance of an application
in a cloud environment varies according to its behavior,
environment, and the virtualization technologies used. In some
applications, the cloud instances performed well, achieving al-
most native performance. On the other hand, some applications
with specific characteristics presented overhead in the cloud
instances. In the dedicated environment, LXC instances on
average had slightly better performance than KVM instances.
The Blackscholes, Swaptions, and Freqmine results reveal
almost native performance, because of the negligible overhead
in both cloud scenarios. For instance, comparing to the native
performance in Blachscholes with 2 threads, we see a minor
difference of 3.2% in KVM instances and 2.0% in LXC
instances.

The results of Raytrace and VIPS running in KVM instances
demonstrate the impact of data sharing in the cloud. In
contrast, we see a performance overhead in KVM instances
for Raytrace (up to 6.3% with 4 threads) due to the high
data sharing between processing threads. Vips is characterized
by low data sharing, thus KVM instances performed better
than LXC instances (eg., 3.1% with a single thread in the
shared environment). KVM has challenges regarding data
sharing between threads within instances [22], although Vips
characteristics resulted in KVM instances performing better.

Finally, LXC is an option for performance sensitive work-
loads because containers often present better performance than
full or para-virtualization technologies. Indeed, the perfor-
mance of PARSEC applications in LXC instances (compared
to KVM instances) was better for the dedicated environment in
the most of the tests. In some scenarios, KVM outperformed
LXC in a shared environment. Therefore, Hypervisor virtual-
ization has proven to be more effective in resource isolation.
Furthermore, from the resources management perspective,
containers are not always the most suitable alternative because

2018 IEEE Symposium on Computers and Communications (ISCC)

978-1-5386-6950-1/18/$31.00 ©2018 IEEE 00454



they lack functionalities and have flexibility and compatibility
limitations.

VI. RELATED WORK

Performance analysis of applications running in cloud envi-
ronments has become relevant in the literature. We understand
related works as those that share an application scenario or
test environment that is similar to our approach. Nikounia and
Mohammad [23] evaluated the performance of the PARSEC
applications only under a KVM-based virtualized environment.
The authors addressed so-called hypervisor noise, which is the
performance degradation caused by the use of virtualization.
In addition, they assessed neighbors’ noise, which refers to
interference among VMs running on the same host. They
deployed two multi-core machines with the KVM hypervisor
installed. The results revealed a significant overhead caused by
the virtualization layer. This degradation was caused mainly
by the overcommitment of resources, which reduces the pro-
cessing power available for multithreaded applications. In our
paper, we focused on different analysis, including container-
based instances as well as instances sharing machine resources.
We also selected a set of application domains to in-deep
characterize the performance events.

In another related work, Wang et al. [24] address perfor-
mance isolation at the application level. They also highlighted
that multi-tenancy is divided in three parts: shared infrastruc-
ture, shared middle-ware, and shared application. The authors
present an approach using the Kalman filter to dynamically
estimate the application-level CPU consumption of multi-
tenant Web applications to determine their performance iso-
lation. Experimental results using TPC-W e-commerce suite
on middleware TomCat and database MySQL, showed that
the results correspond to the measurements with acceptable
estimation errors. In contrast, our research performs an in-
clusive performance analysis in the enterprise application
domains using different workloads. Additionally, we focused
on application characteristics instead of the multi-tenant cloud
user implications.

The performance of cloud environments has also been
analyzed by Iosup et al. [25]. In fact, they have explored
cloud feasibility for scientific computing workloads. Their
performance evaluation is focused on Many-Task Computing
(MTC) applications running on 4 IaaS public cloud providers
(Amazon EC2, GoGrid (GG), ElasticHosts (EH), and Mosso).
The evaluated cloud providers have poor performance with
the applications tested. Despite the challenges regarding per-
formance on cloud environments, cloud is still an alternative in
some cases for scientific computing due to quick resource pro-
visioning. Differently, our experiments covered private cloud
conditions and multi-threading applications from the enterprise
domain.

In Leitner and Cito [26], the performance of workloads
running on public cloud providers is also evaluated, regarding
EC2, GCE, Microsoft Azure, and IBM. These authors present
a literature review concerning performance and its predictabil-
ity on cloud environments. They validated their hypothe-

ses with experiments. The extensive evaluation demonstrated
a significant contrast of performance comparing the cloud
providers. Also, the performance impact caused by the cloud
multi-tenancy shown to be different among cloud providers.
The most commonly used infrastructures such as EC2 and
Azure caused higher variations and unpredictability. Again,
our experiments covered a different cloud environment with a
different application set.

Performance evaluation of Hypervisors deployed in a cloud
data-center is presented in Huber et al. [27]. They tested
XenServer and VMware ESX. The SPEC, PASSMARK, and
Iperf benchmarks used stressed CPU, memory, disk and net-
work performance. The main goal was to evaluate the Hy-
pervisor’s scalability and overcommitment. The results show
that VMware has a better performance and resource isolation,
while the CPU and memory results were similar in both
scenarios. In contrast, we focused on real-world workloads and
cloud environments (container and kernel-based instances).

Previous works have also studied relevant themes address-
ing performance through benchmarks in cloud data center
infrastructures. The need for benchmarking is emphasized in
Iosup, Prodan, and Epema [8], where important aspects such
as methodology, system property, workload, and metrics are
presented and described, which were taken into account in our
experiments. Their approach proposed experiments using more
complex workloads in order to be representative for cloud
users. They also addressed aspects related to multi-tenancy
on cloud environments. Furthermore, Folkerts et al. [9] also
highlighted relevant aspects (e.g., metrics, workloads, require-
ments) for benchmarking the cloud performance. In this paper,
we aim to assess the feasibility of cloud environments for
PARSEC applications using the aforementioned best practices.

Moreover, Nikounia and Mohammad [23] presented a per-
formance evaluation of PARSEC benchmarks which addressed
the problem of overcommitment. On the other hand, we
evaluated performance isolation of cloud infrastructures. We
also go even further by evaluating the combination of different
applications for a multi-tenancy scenario, and comparing dif-
ferent virtualization deployments (KVM and LXC) as well as
the impacts with respect to the bare-metal/native environment.

In contrast to Iosup et al. [25], Leitner and Cito [26],
and works that have evaluated performance aspects on public
providers, we are addressing the performance of private cloud
environments using open-source virtualization technologies.
Our motivation is that many organizations have their own
clouds to achieve a more customized and dedicated envi-
ronment. Huber et al. [27] and other studies have evaluated
the performance aspects of virtualization technologies, but
not necessarily considering the cloud platform. Also, we ex-
ploited representative workloads/applications for private cloud
deployments using KVM and LXC virtualization, instead of
Xenserver and VMware ESX. Finally, our cloud instances
were deployed with CloudStack.

2018 IEEE Symposium on Computers and Communications (ISCC)

978-1-5386-6950-1/18/$31.00 ©2018 IEEE 00455



VII. CONCLUSION AND FUTURE WORKS

This paper has presented a performance analysis of repre-
sentative application domains (data mining, financial analysis,
and media processing). The cloud instances covered LXC and
KVM options, as well as the use of dedicated and shared
physical machine resources. Our experiments have shown that
performance varied according to the application’s character-
istics, virtualization technology, and cloud environment. We
concluded that applications running in the LXC instances
tended to outperform the KVM instances in a dedicated
machine resource environment. However, when there are two
instances sharing the same machine resources, these applica-
tions tend to achieve better performance in KVM.

The financial domain proved to be more suitable for cloud
environments in terms of application characteristics, with al-
most native performance. On the other hand, media processing
applications had high variations in the cloud environments,
which will be a challenge for improving performance. In data
mining, although there is a high I/O operations, the cloud
performance and resource isolation has been better than in
media processing.

In the future, we plan to evaluate other application do-
mains to discover different and additional behaviors, perform
experiments with an overcommitted environment using the
same benchmarks, and analyze the performance impact of
the benchmarks with other virtualization technologies (e.g,
HyperV, VMWare, Xen, Docker).

ACKNOWLEDGMENT

The authors would like to thank for the partial support from
HiPerfCloud project, CAPES, FAPERGS, and institutional
support of SETREM, PUCRS and UNIPAMPA.

REFERENCES

[1] A. Vogel, D. Griebler, C. A. F. Maron, C. Schepke, and L. G. Fernandes,
“Private IaaS Clouds: A Comparative Analysis of OpenNebula, Cloud-
Stack and OpenStack,” in 24th Euromicro International Conference on
Parallel, Distributed and Network-Based Processing (PDP). Heraklion
Crete, Greece: IEEE, Febuary 2016, pp. 672–679.

[2] P. Mell, T. Grance et al., “Sp 800-145. the nist definition of cloud
computing,” Computer Security Division, Information Technology Lab-
oratory, National Institute of Standards and Technology, Gaithersburg,
MD, United States, Tech. Rep., 2011.

[3] R. Buyya, C. Vecchiola, and S. Selvi, Mastering Cloud Computing:
Foundations and Applications Programming, ser. ITPro collection. El-
sevier Science, 2013.

[4] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A View
of Cloud Computing,” Commun. ACM, vol. 53, no. 4, pp. 50–58, Apr.
2010.

[5] A. Vogel, D. Griebler, C. Schepke, and L. G. Fernandes, “An Intra-Cloud
Networking Performance Evaluation on CloudStack Environment,” in
25th Euromicro International Conference on Parallel, Distributed and
Network-Based Processing (PDP). St. Petersburg, Russia: IEEE, March
2017, p. 5.

[6] C. Rista, D. Griebler, C. A. F. Maron, and L. G. Fernandes, “Improving
the network performance of a container-based cloud environment for
hadoop systems,” in 2017 International Conference on High Perfor-
mance Computing Simulation (HPCS), July 2017, pp. 619–626.

[7] A. Khajeh-Hosseini, D. Greenwood, and I. Sommerville, “Cloud Mi-
gration: A Case Study of Migrating an Enterprise IT System to IaaS,”
in 2010 IEEE 3rd International Conference on Cloud Computing, July
2010, pp. 450–457.

[8] A. Iosup, R. Prodan, and D. Epema, “IaaS Cloud Benchmarking:
Approaches, Challenges, and Experience,” in Cloud Computing for
Data-Intensive Applications, X. Li and J. Qiu, Eds. New York, NY:
Springer New York, 2014, pp. 83–104.

[9] E. Folkerts, A. Alexandrov, K. Sachs, A. Iosup, V. Markl, and C. Tosun,
“Benchmarking in the Cloud: What It Should, Can, and Cannot Be,”
in Selected Topics in Performance Evaluation and Benchmarking: 4th
TPC Technology Conference, TPCTC 2012, Istanbul, Turkey, August 27,
2012, Revised Selected Papers, R. Nambiar and M. Poess, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013, pp. 173–188.

[10] C. Vecchiola, S. Pandey, and R. Buyya, “High-performance cloud
computing: A view of scientific applications,” in Pervasive Systems,
Algorithms, and Networks (ISPAN), 2009 10th International Symposium
on. IEEE, 2009, pp. 4–16.

[11] K. Kourai and R. Nakata, “Analysis of the Impact of CPU Virtual-
ization on Parallel Applications in Xen,” in 2015 IEEE Trustcom/Big-
DataSE/ISPA, vol. 3, Aug 2015, pp. 132–139.

[12] P. Mehrotra, J. Djomehri, S. Heistand, R. Hood, H. Jin, A. Lazanoff,
S. Saini, and R. Biswas, “Performance Evaluation of Amazon EC2 for
NASA HPC Applications,” in Proceedings of the 3rd Workshop on
Scientific Cloud Computing, ser. ScienceCloud ’12. New York, NY,
USA: ACM, 2012, pp. 41–50.

[13] N. Sabharwal, Apache CloudStack Cloud Computing. Packt Publishing,
2013.

[14] N. Barrow-Williams, C. Fensch, and S. Moore, “A Communication
Characterization of Splash-2 and Parsec,” in 2009 IEEE International
Symposium on Workload Characterization (IISWC), 2009, pp. 86–97.

[15] PARSEC, “Princeton Application Repository for Shared-Memory Com-
puters <http://parsec.cs.princeton.edu/overview.htm>,” 2017, last ac-
cess Oct, 2017.

[16] B. P. Rimal, A. Jukan, D. Katsaros, and Y. Goeleven, “Architectural
Requirements for Cloud Computing Systems: An Enterprise Cloud
Approach,” J. Grid Comput., vol. 9, no. 1, pp. 3–26, Mar. 2011.

[17] C. Bienia, “Benchmarking Modern Multiprocessors,” Ph.D. dissertation,
Princeton University, Princeton, NJ, USA, 2011.

[18] Z. Zhuang, C. Tran, J. Weng, H. Ramachandra, and B. Sridharan,
“Taming Memory Related Performance Pitfalls in Linux Cgroups,” in
2017 International Conference on Computing, Networking and Commu-
nications (ICNC), Jan 2017, pp. 531–535.

[19] A. Arcangeli, I. Eidus, and C. Wright, “Increasing Memory Density by
Using KSM,” in Proceedings of the Linux Symposium, 2009, pp. 19–28.

[20] G. Neiger, A. Santoni, F. Leung, D. Rodgers, and R. Uhlig, “Intel
Virtualization Technology: Hardware Support for Efficient Processor
Virtualization.” Intel Technology Journal, vol. 10, no. 3, 2006.

[21] A. Shinde and K. Takale, “Study of Black-Scholes Model and its
Applications,” Procedia Engineering, vol. 38, no. Supplement C, pp.
270–279, 2012, international Conference on Modelling Optimization and
Computing.

[22] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An Updated
Performance Comparison of Virtual Machines and Linux Containers,”
in 2015 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), March 2015, pp. 171–172.

[23] S. H. Nikounia and S. Mohammadi, “Hypervisor and Neighbors’ Noise:
Performance Degradation in Virtualized Environments,” IEEE Transac-
tions on Services Computing, vol. pp, no. 99, pp. 1–1, 2015.

[24] W. Wang, X. Huang, X. Qin, W. Zhang, J. Wei, and H. Zhong,
“Application-Level CPU Consumption Estimation: Towards Perfor-
mance Isolation of Multi-tenancy Web Applications,” in 2012 IEEE Fifth
International Conference on Cloud Computing, June 2012, pp. 439–446.

[25] A. Iosup, S. Ostermann, M. N. Yigitbasi, R. Prodan, T. Fahringer, and
D. Epema, “Performance Analysis of Cloud Computing Services for
Many-Tasks Scientific Computing,” IEEE Transactions on Parallel and
Distributed Systems, vol. 22, no. 6, pp. 931–945, June 2011.

[26] P. Leitner and J. Cito, “Patterns in the Chaos — A Study of Performance
Variation and Predictability in Public IaaS Clouds,” ACM Trans. Internet
Technol., vol. 16, no. 3, pp. 15:1–15:23, Apr. 2016.

[27] N. Huber, M. von Quast, M. Hauck, and S. Kounev, “Evaluating
and Modeling Virtualization Performance Overhead for Cloud Envi-
ronments,” in CLOSER 2011 - Proceedings of the 1st International
Conference on Cloud Computing and Services Science, 01 2011, pp.
563–573.

2018 IEEE Symposium on Computers and Communications (ISCC)

978-1-5386-6950-1/18/$31.00 ©2018 IEEE 00456


