
Evaluating, Estimating, and Improving Network

Performance in Container-based Clouds

Cassiano Rista∗, Marcelo Teixeira†, Dalvan Griebler∗‡ and Luiz Gustavo Fernandes∗

∗Pontifical Catholic University of Rio Grande do Sul (PUCRS),

GMAP Research Group (FACIN/PPGCC), 6681, Ipiranga Av. – Porto Alegre – RS – Brazil
†Federal University of Technology - Paraná (UTFPR), Pato Branco – PR – Brazil

‡Três de Maio Faculty (SETREM), 2405, Santa Rosa Av. – Três de Maio – RS – Brazil,

Laboratory of Advanced Research on Cloud Computing (LARCC)

Email: luis.rista@acad.pucrs.br

Abstract—Cloud computing has recently attracted a great deal
of interest from both industry and academia, emerging as an
important paradigm to improve resource utilization, efficiency,
flexibility, and pay-per-use. However, cloud platforms inherently
include a virtualization layer that imposes performance degra-
dation on network-intensive applications. Thus, it is crucial to
anticipate possible performance degradation to resolve system
bottlenecks. This paper uses the Petri Nets approach to create dif-
ferent models for evaluating, estimating, and improving network
performance in container-based cloud environments. Based on
model estimations, we assessed the network bandwidth utilization
of the system under different setups. Then, by identifying possible
bottlenecks, we show how the system could be modified to
improve performance. We then tested how the model would be-
have through real-world experiments. When the model indicates
probable bandwidth saturation, we propose a link aggregation
approach to increase bandwidth, using lightweight virtualization
to reduce virtualization overhead. Results reveal that our model
anticipates the structural and behavioral characteristics of the
network in the cloud environment. Therefore, it systematically
improves network efficiency, which saves effort, time, and money.

Index Terms—Cloud Computing; Network Performance; For-
mal Modeling; Petri Nets; Simulation.

I. INTRODUCTION

Cloud computing has become a common computational

resources in many organizations, universities, and research

centers. Currently, cloud computing delivers infrastructure

(IaaS), platform (PaaS), and software (SaaS) as services

such as the pay-as-you-go model to customers [1]. These

modern environments are responsible for executing data and

computation intensive applications, often characterized by

large amounts of transactions and workflows. Providing high

throughput for these applications and avoiding network per-

formance degradation is therefore of paramount importance.

Traditional cloud environments, which use virtualization

technologies that are not optimized for the execution of

network-intensive applications, add significant overheads [2].

Moreover, traditional networks are not designed for cloud

computing and pay-per-use cloud billing. This means that

customers need to monitor resource usage to stay within their

budget. However, unpredictable networking costs can make

this a difficult task.

In addition, modeling and estimating network performance

of container-based cloud environments is an extremely com-

plicated, because they are intrinsically complex both in terms

of structure and number of components. Yet, the capability to

predict the behavior of these systems is quite important for

capacity planning and management of these environments.

Finally, it is important to design a correct evolution roadmap

of each container-based cloud environment as well as keep

potential scalability problems under control. This can be done

by anticipating the effects of the deployment of new network-

ing mechanisms, being able to explore the scalability limits of

implemented applications, and by comparing different possible

proposed strategies. Hence, these three aspects require the

modeling language to be powerfully expressive and scalable,

to effectively model the basic structural elements of the real

cloud environment.

In the context of the Computers and Communications, an

important matter is the ability to estimate how an application

would behave in the face of physical changes or under, some-

times quite extreme, environmental conditions [3], [4], [5],

[6]. In network systems for example, this would include the

ability to anticipate possible bottlenecks, upgrades, infrastruc-

ture planning, resource provisioning, tolerance strategies, etc.

These estimations can be obtained from in-operating systems,

which can be stressed, therefore highlighting their limits.

In fact, stochastic models, such as Petri Nets extensions [7],

[8], [9] provide a reasonably accurate alternative to estimate

the performance of a system that is being deployed. This work

aims to design a modeling structure capable of representing

behavioral aspects of the real system in the future. Therefore,

such model can be simulated and estimations can be statis-

tically assessed. Based on this simulation model, estimations

for multiples scenarios can be combined and obtained with

fairly easily and quickly.

This paper extends our previous work [10], where we

introduced a deployment approach to improve network per-

formance in container-based clouds. We now exploit a novel

Stochastic Petri Net model that can graphically and mathemati-

cally represent network infrastructures. Then, it can be system-

atically assessed without having to construct, modify, or test

2018 IEEE Symposium on Computers and Communications (ISCC)

978-1-5386-6950-1/18/$31.00 ©2018 IEEE 00514

real configurations. Petri Nets has been used to analyze many

different areas. In Computer Science, it has been successfully

utilized to evaluate a range of communication infrastructures,

including the approaches in [11], [12], [13], [14], [15], [16].

To the best of our knowledge, this is the first model based

on Stochastic Petri Nets and Link Aggregation that has been

proposed for effectively modeling, analyzing, and improving

the performance of container-based cloud environments in

emerging network-intensive distributed applications. In addi-

tion to providing a general model for deploying network in-

frastructures, we also show that this model can be simulated to

estimate network performance in cloud-based systems. Also,

it provides a suitable way to deploy network link aggregation.

Furthermore, we evaluate how network-intensive applica-

tions perform in a container-based cloud environment to

demonstrate applicability, feasibility, efficiency, and accuracy.

The combination of all these modeling and analysis features

characterize the novel aspect of the paper. Because we exploit

the design level of the network, implementation details are

irrelevant and therefore analysis can be conducted without a

complete version of the real system, which tends to be quite

valuable when deploying prototypes.

The article is organized as follows: Section II introduces the

background related to the literature in Section III; Section IV

describes the proposed model, which is extended for network

aggregations in Section V. Finally, Section VI discusses our

conclusions and future work.

II. BACKGROUND

A. Petri Nets

An option widely used for in-advance assessment of dy-

namic systems, including networked cloud-based systems [5],

[14], [17], [18] is given by Petri Nets (PNs) [7], [8], [9]. PN

structures a powerful formalism combining mathematical and

intuitive modeling interfaces. It therefore provides mechanisms

to model and assess systems characterized by concurrency,

synchronization, resource sharing, faults, failures, bottlenecks,

and others [12], [19]. These features appear quite often in

advanced networked systems, which makes PNs a natural

choice for modeling them.

Structurally, a PN is composed of places (modeling states),

transitions (modeling state changes), and directed arcs (con-

necting places and transitions). To express the conditions that

hold in a given state, places are marked with tokens.

Extensions of PNs have been developed to represent an

important class of time-dependent processes, such as com-

munication channels, code processing, hardware designs, and

system workflows.

Generalized Stochastic Petri Nets (GSPNs) [8], for example,

is an extension that combines timed and non-timed PNs. In

GSPN, time is represented by random variable, exponentially

distributed, which are associated to timed transitions. When

the time is irrelevant for a given transition, one can simply

use non-timed (or immediate) transitions.

Formally, a GSPN is a 7-tuple GSPN = 〈P, T ,Π , I , O,
M,W〉, where:

• P = {p1, p2, . . . , pn} is a finite set of places;

• T = {t1, t2, . . . , tm} is a finite set of transitions;

• Π : T → N is the priority function, where:

Π(t) =

{

≥ 1, if t ∈ T is immediate;

0, if t ∈ T is timed.

• I : (T × P) → N is the input function that defines the

multiplicities of directed arcs from places to transitions;

• O : (T × P) → N is the output function that defines the

multiplicities of directed arcs from transitions to places;

• M : P → N is the initial marking function. M indicates

the number of tokens1 in each place, i.e., it defines the

state of a GSPN model;

• W : T → R
+ is the weight function that represents

either the immediate transitions weights (wt) or the timed

transitions rates (λt), where:

W(t) =

{

wt ≥ 0, if t ∈ T is immediate;

λt > 0, if t ∈ T is timed.

The relationship between places and transitions is estab-

lished by the sets •t and t•, defined as follows.

Definition 1: Given a transition t ∈ T, define:

•
•t = {p ∈ P | I(t, p) > 0} as the pre-conditions of t;

• t• = {p ∈ P | O(t, p) > 0} as the post-conditions of t.

A state of a GSPN changes when an enabled transition fires.

Only enabled transitions can fire. Immediate transitions fire as

soon as they are enabled. The enabling and firing rules for

transitions are defined next.

Definition 2 (Enabling Rule): A transition t ∈ T is said to

be enabled in a marking M if and only if:

• ∀p ∈ •t,M(p) ≥ I(t, p).

When an enabled transition fires, it removes tokens from

input to output (its pre and post conditions).

Definition 3 (Firing Rule): The firing of transition t ∈ T
enabled in the marking M leads to a new marking M ′ such

that ∀p ∈ (•t ∪ t•), M ′(p) = M(p)− I(t, p) +O(t, p).
A GSPN is said to be bounded if there is a limit k > 0 on

the number of tokens in each place. Therefore, it ensures that

the state-space resulting from a bounded GSPN is finite.

When the number of tokens in each input place p of t
is N times the minimum needed to enable t (∀p ∈ •t,
M(p) ≥ N×I(t, p), where N ∈ N and N > 1), it enables the

transition to fire more than once. In this situation, the transition

t is said to be enabled with degree N > 0. Transition firing

may use one of the following dynamic semantics:

• single-server: N sequential fires;

• infinite-server: N parallel fires;

• k-server: the transition is enabled up to k times in

parallel; tokens that enable the transition to a degree

higher than k are handled after the first k firings.

GSPNs can be isomorphic according to Continuous-Time

Markov Chains (CTMC) [8]. However, they are more ex-

pressive, because they allow metrics to be computed by

1Black dots are usually used to graphically represent a token in a place.

2018 IEEE Symposium on Computers and Communications (ISCC)

978-1-5386-6950-1/18/$31.00 ©2018 IEEE 00515

both simulation and analysis of the state-space. In the last

case, GSPN are indeed converted into CTMC for analysis.

Furthermore, GSPNs allow to combine exponential arranges

to model different time distributions [20].

B. Link Aggregation

Link aggregation, also referred to as trunking, is a tech-

nology defined in the IEEE 802.1AX-2014 Link Aggregation

Standard (formerly IEEE 802.3ad) [21]. The standard is a layer

2 control protocol that provides a method to combine the

capacity of multiple full-duplex Ethernet links into a single

logical link. This link aggregation group is then treated as if it

were in fact a single link. The main benefits of link aggregation

are [21]:

• Increased bandwidth: multiple links combined into one

logical link;

• Automatic failover and failback: traffic from a failed

link is automatically switched over to other links in the

aggregation;

• Improved administration: all interfaces are administered

as a single unit.

• Less drain on the network address pool: all aggregation

can be assigned one IP address.

In order to use the basic link aggregation, the respective

network devices must first be configured so that the interfaces

are aggregated as one group. There are two distinct methods

to configure basic link aggregation: static or dynamic. In the

static method, all configuration settings are setup directly on

each participating group’s network device. In the dynamic

method, each function begins dynamically using the Link

Aggregation Control Protocol (LACP).

Fig. 1. Traditional link aggregation topology using a switch with LACP.

The dynamic method ensures that the protocol automatically

detects interface failures and performs failover to standby in-

terfaces. A failure is assumed and the relevant network device

becomes unavailable. As a result, the sending or receiving

of packets is only performed by the remaining interfaces. In

the static method on the other hand, interface failures must

be manually identified when they occur above the physical

level or between peers that are not directly connected. The

disadvantage here is that there is no method to detect any

kind of cabling or configuration errors.

Figure 1 illustrates a local network with two systems. Each

system has a link aggregation configured using the dynamic

method. Note that the two systems are connected by a switch

with LACP. System A has an aggregation that consists of two

interfaces, eth1 and eth2. These interfaces are connected to

the switch through aggregated ports. System B also has an

aggregation of two interfaces, eth1 and eth2. These interfaces

are also connected to aggregated ports on the switch. In

this link aggregation topology, the switch must support the

IEEE 802.1AX-2014 standard and the switch ports must be

configured for aggregation.

C. Container-based Cloud

The container-based virtualization approach is also known

as operating system level virtualization. Here the virtualization

layer runs as an application within the operating system. The

operating system kernel runs on the hardware host with several

isolated VM guests called containers.

Technically, container-based virtualization is a lightweight

alternative to hypervisors [22]. This approach splits the phys-

ical machine resources, creating multiple isolated user space

instances on the same operating system. Users have the illusion

that they are working on their own independent network,

memory, and file system. Figure 2 presents a high-level

configuration of the traditional architecture of Linux containers

(LXC).

Fig. 2. This illustrates the architecture of LXC.

It must be emphasized that LXC basically uses two kernel

features to define processes [23]: namespaces and cgroups

(control groups). Kernel namespaces provide process isolation

by creating separate namespaces for containers and enable

the creation of an abstraction of a particular global sys-

tem resource and make it appear as a separated instance.

As a result, multiple containers can use the same resource

simultaneously without creating a conflict. The kernel also

uses cgroups to group processes to manage system resources.

Moreover, cgroups allows for the allocation of CPU time,

system memory, and network bandwidth among user-defined

groups of tasks. Finally, the management interface creates a

higher layer that interacts with the kernel components and

provides tools for constructing and managing containers.

2018 IEEE Symposium on Computers and Communications (ISCC)

978-1-5386-6950-1/18/$31.00 ©2018 IEEE 00516

In short, LXC runs at the operating system level, providing

abstractions directly for guest applications. Thus, all containers

share a single operating system kernel and should have weaker

isolation than hypervisor-based systems. However, from the

customer’s point of view, each container executes exactly as

if it were a stand-alone operating system.

LXC is currently an attractive lightweight virtualization in

cloud environments. It runs a distinct image that provides all

files necessary to support the processes, because it is included

in the Linux kernel. Thus, it allows a set of processes to

be isolated from the rest of the system, providing an image

that contains all of an applications dependencies. Moreover, it

is portable and consistent as it moves from development, to

testing, and finally to production.

III. RELATED WORK

This section presents an overview on the research related to

the topics addressed in this paper, as shown in the Figure 3.

Fig. 3. Schematic literature overview.

A networked system includes at least three central inter-

connected components: SLA regulator, QoS monitor, and net-

working engine. Each of these components can be approached

at many different abstraction levels, but in general two high-

level strategies can be identified in the literature:

(a) a posteriori analysis, which is a top-down view that

waits for the infrastructure to be developed, so it can

be monitored, stressed, measured, and subsequently

improved [13], [15], [17], [24];

(b) a priori analysis, which defines a bottom-up view

that tries to understand predictably, how the system

will behave under certain conditions, and then based

on this it implements proactive functional corrections

[11], [16], [25], [26].

Posterior analysis is focused more on monitoring and con-

trolling the relationship of the network partners. It has a

wide range of tools to support it and a massive range of

verification methods and techniques. Hence, the infrastructure

already exists, so possible improvements primarily depend on

re-factoring.

On the other hand, prior analysis aims to anticipate how

the network system would behave under particular variable

conditions. This is a predictive approach that can be conducted

anytime during the system’s life-cycle. For example, if the

infrastructure already exists, it can be useful for capacity

planning, resource allocation, elasticity, etc.. Moreover, it can

also be useful for planning the construction of the system

itself. In any case, this approach requires a model that is

able to reproduce the network behavior with a certain level

of abstraction, in order to properly conduct experiments.

Models and prototypes have been extensively used in the

literature to formalize and investigate many different aspects

of network systems in cloud environments [10], [14], [16],

[18]. One can specifically identify two classes of predictive

analysis models: Stochastic and deterministic models [27].

Stochastic analysis is a wide term to indicate the combina-

tion and interaction between classical analysis and the theory

of probability. Thus, Petri Nets allow engineers to create a

formal model to estimate resource consumption for a range of

workload profiles and network configuration options, within a

short period of time [11], [28], [29]. This enables realistic SLA

clauses with an agreement between customers and providers,

in addition to helping to plan system upgrades, discovering

or preventing bottlenecks, and anticipating potential SLA

violations.

In this paper, we are more interested on the stochastic level

of modeling, as highlighted in Figure3. Although the literature

provides some options for predictive stochastic analysis of

networks, we argue that our proposal is innovative because

it takes parallel advantages from Link Aggregation (Section

II-B) and Container-based Cloud (Section II-C). These are in-

tegrated in a cloud computing environment in order to provide

the opportunity to manage the trade-offs between scale-up and

scale-out. For instance, in the bare-metal scenario, the size of

each server is defined by the available hardware. Consequently,

the system administrator has to adjust the application to fit this

size. On the other hand, when system administrators are in a

cloud scenario, they can reconfigure the amount of resources

based on the needs of the application. This feature allows

the administrator to optimize resource usage while delivering

better completion times.

In addition to the advantages of the cloud computing envi-

ronment, we are also interested in reducing the performance

degradation that is commonly caused by using virtualization

technologies. Therefore, we use Linux Containers in our

proposed model, because container-based instances provide

almost the same performance as the native environment [30].

Finally, we also show how network bandwidth can be

increased by using the Link Aggregation [21], which results

higher availability and capacity, while the network infrastruc-

ture remains unchanged.

2018 IEEE Symposium on Computers and Communications (ISCC)

978-1-5386-6950-1/18/$31.00 ©2018 IEEE 00517

IV. PROPOSED MODEL FOR REGULAR CLUSTERING

Now we introduce the GSPN model proposed in this paper

to estimate network bandwidth utilization under different sys-

tem setups. Based on the model’s estimations, we then show

how the system can be modified to create performance im-

provements and realistic infrastructure planning. Our approach

verifies throughput and latency in addition to comparing the

overhead added by using container-based cloud instances. We

used the NetPipe benchmark [31] in two bare-metal configu-

rations (Regular TCP and IEEE 802.1AX-2014) and a cloud

instance configuration with both LXC and IEEE 802.1AX-

2014 deployed.

We begin by modeling the regular (non-aggregated) setup

and then we extend it to consider link aggregation in the next

section. Consider the GSPN model shown in Figure 4.

tλ

dtλ

p̟

pω

tS1

tS2

p̺1

p̺2

pπ1pπ1

pπ2pπ2

pκ1

pκ2

pτ1

pτ2

tγ1

tγ2

dtγ1

dtγ2

pφ

Fig. 4. Proposed model for the regular scenario.

The model starts when the timed transition tλ fires tokens

toward a master place named p̟, representing network re-

quests arriving for processing. Tokens are fired according to

the delay dtλ of the transition tλ. Place p̟ is responsible for

centralizing these requests until they can be distributed over

the network by a switch device, modeled by the place pω . We

consider the transition from p̟ to pω as immediate.

Requests in pω can be served (executed) either by the slave

processor tS1 or tS2, with the same probability. Once a slave

service is chosen, the respective token (request) remains in a

buffer named p ,̺

i i = 1, 2, while it is waiting to be served by

the slave.

This buffering time is immediate, as long as the slave has

enough resources (network bandwidth) to transmit the request.

Otherwise it has to wait until this is the case. The calculation

of the enabling rule is: p̺i is served whenever the number of

resources available (place pκi) is equal to or greater than the

the package size to be transmitted (arcs weight from/to pκi),

i.e., pπi < #pκi .

After being served (place pτi) during a certain time (trans-

mission time), which is defined by the delay of the timed

transition tγi (dtγi), the token leaves the model, which means

that the request answer has been replied by the opposite link

channel, which we do not aim to model here. The delay dtγi

is derived from the latency (ping time) added by the available

bandwidth from the message pack mean size, i.e.,

dtγi = latency +
bandwidth

mean message size
.

A. Experiment Setup

A set of input parameters were required for the GSPN in

Figure 4 to be simulated. We specifically provided the setup

parameters in Table I.

TABLE I
MODEL SETUP PARAMETERS

dtλ #p
κ
i p

π
i dt

γ
i

600 1048576 100 to 800 lat+
#p

κ
i

p
π
i

The delay dtλ of the transition tλ defines the desired request

arrival rate. In general, it can be switched so that the different

workloads are simulated. In our experiment, we initially kept

dtλ fixed, because our main objective is to test network traffic

(messages) load. In Section V we further variate both work

and traffic loads.

We start by assigning a delay of 600 (ms) to dtλ, which

leads to the arrival rate of 0.6, i.e., close to 2 requests

per second (req/s). Because our GSPN model has two slave

modules to process master requests, the arrival rate for each

slave module is close to 1/s which coincides to the arrival

rate of the benchmark that is used.

Additionally, we set up the parameter #pκi (second column)

to 1048576, which corresponds to the network bandwidth (1

gigabits) in kB. Parameter pπi models message size and it

is associated to transition weights that manipulate resources

from/to #pκi . They are defined as a range, because they

correspond exactly to the parameters we aim to variate. In

this paper, we use a message size variation from 100 to 800
kB, which keeps us in accordance to the benchmark-guided

experiments. This additionally leads us to assign the delay dtγi ,
modeling the native network latency to transfer a message pack

from one network point to another.

B. Statistical Results

If one has to estimate the network bandwidth utilization for

a range of message sizes, let us assume that messages variate

from 100 to 800 kB, as the parameters were established in

Table I. A direct way to plot network saturation points for

this range is by submitting the system to loading stress tests.

In fact, we can use the Netpipe benchmark [31] to describe this

online test, and the result is shown in Table II, row Measured.

Netpipe [31] is a protocol independent performance bench-

mark that visually represents the network performance under

a variety of conditions. It uses a simple series of ping-pong

tests over a range of message sizes to provide a complete

measurement of network performance. Message sizes are

chosen at regular intervals with slight differences to provide

a complete evaluation of the communication system. Each

data point includes many ping-pong tests to provide accurate

2018 IEEE Symposium on Computers and Communications (ISCC)

978-1-5386-6950-1/18/$31.00 ©2018 IEEE 00518

timing. Latency is calculated by dividing the round trip time

in half for small messages (less than 64 Bytes).

On the other hand, those saturation points could be an-

ticipated by simulating the proposed GSPN model in Figure

4. The advantage would be that one could simulate, within

a reasonable accuracy, a much larger range of points, in a

much shorter period of time, with no implementation costs. In

addition, it enables multiple analyses to be made, such as local

saturation points, bottlenecks, etc. By simulating our model to

the range of message sizes, we obtained the results shown in

Table II, row Estimated.

TABLE II
SYSTEM UTILIZATION (REGULAR): MEASURED AND ESTIMATED

COMPARISON

System Utilization

p
π
i 100 200 300 400 500 600 700 800 Avg

Measured 88% 89% 90% 90% 91% 91% 91% 92% 90,1%
Estimated 90% 93% 94% 94% 96% 98% 99% 99% 95,4%

It is important to note that when the transition tλ first fires,

in addition to inserting a token in p̟, it also creates a copy

of this token in pφ. Therefore, by collecting statistics in pφ,

we are able to describe the entire system’s expected behavior.

Because we are assuming the same probability of the slaves to

serve and also the same standard for message sizes, we only

focus on monolithic analysis. To estimate system utilization in

Table II, we implemented the formula P{#pφ > 0} using the

TineNET tool [32] which computes the probability for tokens

in pφ. In general, our estimations show an accuracy level of

95.4%, which we argue is reasonable from a stochastic point

of view.

V. EXTENDED GSPN MODEL FOR AGGREGATED

CLUSTERING

Now, we use the idea of link aggregation, presented in

Section II-B, in order to extend our model to estimate how

much this strategy improves the standard approach. Then we

compare our estimations to the measured improvements again

to check accuracy. Consider the GSPN model in Figure 5.

This model corresponds to a new version of the GSPN

shown in Figure 4, extended to an additional structure that

duplicates the processing power of each slave, as a result of the

duplication of the real network link. Actually, the model can

be generically replicated to any number of network interfaces.

TABLE III
SYSTEM UTILIZATION (DUAL AGGREGATION): MEASURED AND

ESTIMATED COMPARISON

p
π
i 100 200 300 400 500 600 700 800

Measured (Aggr.) 68% 75% 79% 82% 88% 88% 90% 91%
Estimated (Aggr.) 70% 78% 84% 86% 90% 89% 92% 94%
Estimated (Reg.) 90% 93% 94% 94% 96% 98% 99% 99%

Improvement 10%

The impact of this strategy in real network systems remains

to be seen. To do this estimation we fed our new model the

same parameters as in Table I and then we did a simulation

using the same setup for the range of network messages. As a

result, we collected the estimations about system utilization for

this new scenario. Table III shows the results, compares them

to the system utilization estimated from the regular scenario,

and to the system utilization measured from the real system

running under the link aggregation setup.

tλ

dtλ

p̟

pω

tSA1

tSB1

tSA2

tSB2

p A̺

1

p A̺

2

p B̺

1

p B̺

2

pπA1pπA1

pπA2pπA2

pπB1pπB1

pπB2pπB2

pκA1

pκA2

pκB1

pκB2

pτA1

pτA2

pτB1

pτB2

tγA1

tγA2

tγB1

tγB2

dtγA1

dtγA2

dtγB1

dtγB2

pφ

Fig. 5. Extended model including link aggregation.

There is an improvement around 10% from link aggregation

to the regular setup. Although this may seem to be a minor

improvement, it has to be highlighted that the first message

size (100kB) was 20% less saturated. For the heaviest ex-

periment (800kB), the difference was smaller. Even though

link aggregation is not at the saturation level (94%), the

regular setup is already far saturated. Actually it saturates

much earlier, with traffic of 600kB messages.

Thus, from the presented experiment, we could say that we

did not find the saturation point for (dual) link aggregation.

VI. CONCLUSION

In this paper, we proposed a model by using Stochastic

Petri Net approach to evaluate, estimate, and improve net-

work bandwidth utilization under different system setups. Our

model anticipates the overhead imposed by adding container-

based cloud instances, in the context of LXC and IEEE

802.1AX-2014 link aggregation solutions. The main goal was

to increase the network bandwidth and, consequently, achieve

better throughput and latency.

In addition to the proposed modeling structure, we also

conducted a set of experiments in order to asses a number

of different system setups. We subsequently constructed a

real network infrastructure based on the model’s suggestions,

2018 IEEE Symposium on Computers and Communications (ISCC)

978-1-5386-6950-1/18/$31.00 ©2018 IEEE 00519

attempting to show how estimations would impact system

performance in practice. We used the standard industry bench-

mark NetPipe in two bare-metal configurations (Regular TCP

and IEEE 802.1AX-2014) and a cloud instance configuration

with LXC and IEEE 802.1AX-2014 deployed.

Results revealed that the model can anticipate, with rea-

sonable accuracy, the structural and behavioral characteris-

tics of cloud computing. Hence, network efficiency can be

improved systematically without the need for complete real

infrastructure modifications. It is also important to highlight

that other network-intensive applications could take advantage

of our model, such as big-data applications that require high

bandwidth and throughput as well as low latency [33], [34].

In the future, we hope to provide a framework that can

be easily integrated with cloud platforms (e.g., OpenStack

and OpenNebula) to evaluate, estimate, and enhance network

bandwidth in an elastic way, without the need for real infras-

tructures.

ACKNOWLEDGMENT

The authors would like to thank CAPES, FAPERGS, PU-

CRS and SETREM for their partial financial support.

REFERENCES

[1] P. M. Mell and T. Grance, “Sp 800-145. the nist definition of cloud
computing,” Gaithersburg, MD, United States, Tech. Rep., 2011.

[2] G. Wang and T. S. E. Ng, “The impact of virtualization on network
performance of amazon ec2 data center,” in 2010 Proceedings IEEE

INFOCOM, March 2010, pp. 1–9.

[3] G. Kousiouris, A. Menychtas, D. Kyriazis, S. Gogouvitis, and T. Var-
varigou, “Dynamic, behavioral-based estimation of resource provision-
ing based on high-level application terms in cloud platforms,” Future

Generation Computer Systems, vol. 32, pp. 27 – 40, 2014.

[4] S. Wandelt, X. Sun, M. Zanin, and S. Havlin, “Qre: Quick robustness
estimation for large complex networks,” Future Generation Computer

Systems, pp. –, 2017.

[5] J. P. Macker and I. Taylor, “Orchestration and analysis of decentralized
workflows within heterogeneous networking infrastructures,” Future

Generation Computer Systems, vol. 75, pp. 388 – 401, 2017.

[6] A. M. Chirkin, A. S. Belloum, S. V. Kovalchuk, M. X. Makkes,
M. A. Melnik, A. A. Visheratin, and D. A. Nasonov, “Execution
time estimation for workflow scheduling,” Future Generation Computer

Systems, vol. 75, pp. 376 – 387, 2017.

[7] T. Murata, “Petri nets: Properties, analysis and applications,” Proceed-

ings of the IEEE, v.77, pp. 541–580, 1989.

[8] D. Kartson, G. Balbo, S. Donatelli, G. Franceschinis, and G. Conte,
Modelling with Generalized Stochastic Petri Nets, 1st ed. John Wiley
& Sons, Inc., 1995.

[9] M. A. Marsan, G. Balbo, and G. Conte, “A class of generalized stochastic
Petri nets for the performance analysis of multiprocessor systems,” in
ACM Transactions on Computer Systems, vol. 2, 1984, pp. 1–11.

[10] C. Rista, D. Griebler, C. A. F. Maron, and L. G. Fernandes, “Improving
the network performance of a container-based cloud environment for
hadoop systems,” in 2017 International Conference on High Perfor-

mance Computing Simulation (HPCS), July 2017.

[11] M. Teixeira, R. Ribeiro, C. Oliveira, and R. Massa, “A quality-driven ap-
proach for resources planning in service-oriented architectures,” Expert

Systems with Applications, vol. 42, no. 12, pp. 5366 – 5379, 2015.

[12] R. German, Performance Analysis of Communication Systems : Model-

ing with Non-Markovian Stochastic Petri Nets, 1st ed. United Kingdom:
John Wiley and Sons, 2000.

[13] O. J. Haggarty, W. J. Knottenbelt, and J. T. Bradley, “Distributed
response time analysis of gspn models with mapreduce,” in 2008

International Symposium on Performance Evaluation of Computer and

Telecommunication Systems, June 2008, pp. 82–90.

[14] H. He, S. Pang, and Z. Zhao, “Dynamic scalable stochastic petri net: A
novel model for designing and analysis of resource scheduling in cloud
computing,” Scientific Programming, vol. 2016, 2016.

[15] Y. Yagawa, A. Sutoh, E. Malamura, and T. Murata, “Modeling and
performance evaluation of cloud on-ramp by utilizing a stochastic petri-
net,” in IIAI International Congress on Advanced Applied Informatics,
July 2016, pp. 995–1000.

[16] H. Chen, C. Zhou, Y. Qin, A. Vandenberg, A. V. Vasilakos, and
N. Xiong, “Petri net modeling of the reconfigurable protocol stack for
cloud computing control systems,” in IEEE International Conference on

Cloud Computing Technology and Science, Nov 2010, pp. 393–400.
[17] G. Fan, H. Yu, and L. Chen, “A formal aspect-oriented method for mod-

eling and analyzing adaptive resource scheduling in cloud computing,”
IEEE Transactions on Network and Service Management, vol. 13, no. 2,
pp. 281–294, June 2016.

[18] Y. Cao, H. Lu, X. Shi, and P. Duan, Evaluation Model of the Cloud

Systems Based on Queuing Petri Net. Cham: Springer International
Publishing, 2015, pp. 413–423.

[19] M. Teixeira, R. Ribeiro, C. Oliveira, and R. Massa, “A quality-driven ap-
proach for resources planning in service-oriented architectures,” Expert

Systems with Applications, vol. 42, no. 12, pp. 5366 – 5379, 2015.
[20] A. A. Desrochers, Applications of Petri Nets in Manufacturing Systems:

Modeling, Control and Performance Analysis. IEEE Press, 1994.
[21] “IEEE standard for local and metropolitan area networks – link aggre-

gation,” IEEE Std 802.1AX-2014 (Revision of IEEE Std 802.1AX-2008),
pp. 1–344, Dec 2014.

[22] M. G. Xavier, M. V. Neves, F. D. Rossi, T. C. Ferreto, T. Lange,
and C. A. F. D. Rose, “Performance evaluation of container-based
virtualization for high performance computing environments,” in 2013

21st Euromicro International Conference on Parallel, Distributed, and

Network-Based Processing, Feb 2013, pp. 233–240.
[23] A. Vogel, D. Griebler, C. Schepke, and L. G. Fernandes, “An intra-

cloud networking performance evaluation on cloudstack environment,”
in 25th Euromicro International Conference on Parallel, Distributed and

Network-Based Processing (PDP). St. Petersburg, Russia: IEEE, 2017,
p. 5.

[24] A. G. Kumbhare, Y. Simmhan, M. Frincu, and V. K. Prasanna, “Re-
active resource provisioning heuristics for dynamic dataflows on cloud
infrastructure,” IEEE Transactions on Cloud Computing, vol. 3, no. 2,
pp. 105–118, April 2015.

[25] G. Mencagli, M. Vanneschi, and E. Vespa, “A cooperative predictive
control approach to improve the reconfiguration stability of adaptive
distributed parallel applications,” ACM Transactions Autonomic Adaptive

Systems, vol. 9, no. 1, pp. 2:1–2:27, Mar. 2014.
[26] A. Castiglione, M. Gribaudo, M. Iacono, and F. Palmieri, “Exploiting

mean field analysis to model performances of big data architectures,”
Future Generation Computer Systems, vol. 37, pp. 203 – 211, 2014.

[27] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event

Systems, 2nd ed. New York: Springer Science, 2008.
[28] W. Tan, Y. Fan, and M. Zhou, “A petri net-based method for compati-

bility analysis and composition of web services in business process exe-
cution language.” IEEE Trans. on Automation Science and Engineering,
vol. 6, no. 1, pp. 94–106, 2009.

[29] W. M. P. Van der Aalst, “The application of petri nets to workflow
management,” Journal of Circuits, Systems and Computers, vol. 08,
no. 01, pp. 21–66, 1998.

[30] R. Rizki, A. Rakhmatsyah, and M. A. Nugroho, “Performance Analysis
of Container-Based Hadoop Cluster: OpenVZ and LXC,” in 4th In-

ternational Conference on Information and Communication Technology

(ICoICT), May 2016, pp. 1–4.
[31] NetPipe, A Network Protocol Independent Performance Evaluator

(NetPipe), 2017. [Online]. Available: http://bitspjoule.org/netpipe
[32] A. Zimmermann, TimeNET 4.1, 2017. [Online]. Available:

http://www.tu-ilmenau.de/TimeNET
[33] M. V. Neves, C. A. F. D. Rose, K. Katrinis, and H. Franke, “Pythia:

Faster Big Data in Motion Through Predictive Software-Defined Net-
work Optimization at Runtime,” in 28th International Parallel and Dis-

tributed Processing Symposium (IPDPS), ser. IPDPS ’14. Washington,
DC, USA: IEEE Computer Society, 2014, pp. 82–90.

[34] R. F. E. Silva and P. M. Carpenter, “Controlling Network Latency in
Mixed Hadoop Clusters: Do We Need Active Queue Management?” in
41st Conf. on Local Computer Networks, Nov 2016, pp. 415–423.

2018 IEEE Symposium on Computers and Communications (ISCC)

978-1-5386-6950-1/18/$31.00 ©2018 IEEE 00520

