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Abstract—Private IaaS clouds are an attractive environment
for scientific workloads and applications. It provides advantages
such as almost instantaneous availability of high-performance
computing in a single node as well as compute clusters, easy
access for researchers, and users that do not have access to
conventional supercomputers. Furthermore, a cloud infrastruc-
ture provides elasticity and scalability to ensure and manage
any software dependency on the system with no third-party
dependency for researchers. However, one of the biggest chal-
lenges is to avoid significant performance degradation when
migrating these applications from physical nodes to a cloud
environment. Also, we lack more research investigations for
multi-tenant cloud instances. In this paper, our goal is to perform
a comparative performance evaluation of scientific applications
with single and multi-tenancy cloud instances using KVM and
LXC virtualization technologies under private cloud conditions.
All analyses and evaluations were carried out based on NAS
Benchmark kernels to simulate different types of workloads. We
applied statistic significance tests to highlight the differences. The
results have shown that applications running on LXC-based cloud
instances outperform KVM-based cloud instances in 93.75% of
the experiments w.r.t single tenant. Regarding multi-tenant, LXC
instances outperform KVM instances in 45% of the results, where
the performance differences were not as significant as expected.

Index Terms—Cloud Computing; High Performance Comput-
ing; Multi-tenancy; Benchmark; Infrastructure as a Service; Vir-
tualization.

I. INTRODUCTION

Cloud computing architectures can generally be represented

as a layered stack with increasing levels of abstraction.

The first layer, the closest to the “bare metal” hardware is

the hypervisor. It enables the shared utilization of resources

on the high-level layers, such as Infrastructure as a Ser-
vice (IaaS), Platform as a Service (PaaS), and Software as
a Service (SaaS) [1]. Although cloud computing technologies
have been improved in the last decade [2], there is still a

performance overhead involved in virtualization. Especially

in the field of scientific computing, applications often require

High-Performance Computing (HPC) capabilities [3], usually
with low latency and high throughput network interconnec-

tions, hardware specific intrinsic instructions or Direct Memory
Access (DMA). To better identify potential, virtualization
induced, and performance bottlenecks, a proper and thorough

performance analysis is paramount important before migrating

applications to a cloud environment.

Performance analysis for HPC applications in cloud com-

puting environments has been a current research problem. Our

previous works [4] as well as related works (Section II) have

tackled the problem in different aspects, goals, environments,

and conditions. We found that the literature still lacks for em-

pirical studies that address the comparison of container-based

and kernel-based cloud instances with LXC/KVM virtualiza-

tion technologies over private cloud environment conditions.

Many other works create an evaluation about hypervisors and

virtualization technologies. Likewise, the evaluation of private

cloud environment is mainly done using OpenStack (most

popular Cloud Management Platform). Consequently, our goal

in this work is to deploy a private cloud with CloudStack

supporting Linux Containers (LXC) and Kernel-based Virtual
Machine (KVM) virtualizations with single and multi-tenants
cloud instances. We also focus on multithreading parallelism

using the OpenMP benchmark kernels developed by the NASA
Advanced Supercomputing Division (NAS), the NAS Parallel
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Benchmarks (NPB)1, which represent a wide range of scientific
application classes. Moreover, we use statistic analysis to

compare and validate our experimental results. The main

contributions of this paper are summarized such as follows:

• A performance evaluation, analysis, and comparison of
NAS Benchmark Kernels (scientific workloads) running

on different types of private cloud instances;

• An evaluation of the private cloud infrastructure perfor-
mance with single and multi-tenants cloud instances.

• A statistical view and analysis of the experiments.
The remaining of the paper is divided in six sections. Sec-

tion II presents the related work. In Section III we present the

experimental setup and methodology, along with the software

and cloud environments. Section IV presents the background

regarding the virtualization platforms and benchmark suite

used in our evaluation. In Section V we compare the perfor-

mance of our setups and present the respective results for each

environment. Next, in Section VI, we statistically analyze our

results and, lastly, we conclude in Section VII.

II. RELATED WORK

Cloud computing evaluation became a hot topic in research

field, and many papers have made performance evaluations [5],

[6], [3], [7]. We consider a related work those with virtualiza-

tion or cloud computing evaluation on scientific workloads.

In our previous performance analysis under private cloud

conditions, we tackled different aspects. The environments

were also the Cloudstack manager with two different types

of cloud instances (KVM and LXC). In Vogel, et al. [6], the

work focused on the network evaluation and optimization. Our

findings demonstrated that KVM-based cloud instances have

small network performance degradation regarding throughput.

The container-based instances had the best results and KVM

instances presented the worst latency. Griebler, et al. [8] made

a performance analysis with PARSEC benchmark using the

three mainstream application domains (financial, data mining,

and media processing). Results highlighted that these appli-

cations in the LXC instances tend to outperform KVM when

there is a dedicated machine resources environment. However,

when two instances are sharing the same machine resources,

applications tend to achieve better performance in the KVM

instances. In this paper now, we used NAS Parallel Benchmark

to represent the scientific applications with OpenMP.

For instance, Roloff, et al. leads to a detailed comparison of

HPC applications running on three cloud providers (Amazon

EC2, Microsoft Azure and Rackspace). The characteristics

analyzed such as deployment facilities, performance and cost

efficiency were listed and compared with clustering machines.

They also performed their experiments using OpenMP and

MPI version of NPB for Xen and Hyper-V in a OpenStack

cloud environment. Results showed that HPC can work effi-

ciently in the cloud, but the authors emphasize large differ-

ences between cloud providers, suggesting that behavior and

application types perform differently depending on the cloud

1https://www.nas.nasa.gov/publications/npb.html

scenario [9]. In contrast, our paper is focusing on private cloud

managed by CloudStack and provides a performance analysis

between KVM and LXC technologies.

To evaluate the communication performance of HPC appli-

cations, a study was developed by Okada, et al. using the

NAS MPI parallel benchmarks. They compared the execu-

tion behavior in Google Compute Engine, OpenStack using

KVM virtualization, and a NUMA multiprocessor system

using LXC container. The authors concluded that HPC users

should use the appropriate number of vCPUs on each Virtual
Machine (VM), avoiding the overcommitment of resources
because application performance may be affected by scheduler

and hyper-threading issues [10]. Differently, our paper focus

on multithreading parallelism by using NAS OpenMP parallel

benchmarks to compare LXC and KVM virtualization over

private cloud conditions managed by CloudStack.

Furthermore, another performance evaluation was done by

Xavier, et al., where various container-based virtualization

experiments were performed (LXC, OpenVZ and Linux-

VServer) for HPC. LINPACK, STREAM, IOzone, NetPIPE,

NAS OpenMP and MPI parallel benchmarks and the Isolation
Benchmark Suite (IBS) were used to evaluate performance,
memory, disk, network, overhead and isolation, comparing

containers with Xen virtualizations. The study highlights that

HPC can only take advantage of virtualization if the overhead

is reduced. It also argues that containers have almost native

hardware performance, with differences between them in the

implementation of resource management. However, container-

based systems are not yet mature because they do not have

better isolation, meanwhile, if HPC does not require resource

sharing, a container can be attractive because of the minimal

overhead [11]. Our work differs from this study in the virtual-

ization technologies used and in the private cloud conditions.

Kang, et al. conducted an in depth system performance

comparison using Amazon EC2 and Openstack with focus on

KVM and Xen hypervisors. They evaluated CPU, memory,

storage and network resources. Moreover, they compared and

analyse diverse performance aspects based on hypervisor, stor-

age, and network configurations. The benchmarks used were

PerfKitBenchmarker, CoreMark, HPCC, SPEC CPU™2006,

NPB, Fio, Iperf and Netperf. Using similar VMs instance types

results on similar system performance for CPU and memory-

intensive benchmarks. For storage, several AWS volume types

were compared showed the improvements available using

SSD volumes. Related to network performance, AWS heavily

depends on the instance types, instead, OpenStack instances

can have very high performance with little virtualization

overhead, but can also be poor when vCPUs are being used.

Therefore, when hardware configurations are similar AWS

and OpenStack have corresponding performance. However,

OpenStack has the advantage that it can accommodate more

hardware heterogeneity due to its openness [12]. In contrast,

our paper used Cloudstack as cloud management, LXC based-

clouds and also perform a statistical comparison.

Moreover, J. Zhang, et al. compared the performance of

KVM, Docker, and native environment as well as compar-
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TABLE I
SERVICE OFFER OF CLOUDSTACK INSTANCES

Name Processor GHz vCPUs Mem (GB) Network
Single Tenant HPC Xeon X5560 2.80 8 21.60 1GbE

Multi-Tenants HPC Xeon X5560 2.80 4 10.80 1GbE

ing Single Root I/O Virtualization (SR-IOV) and PCI pass-
through with high performance interconnects (InfiniBand). In

addition, this paper used representative HPC applications and

benchmarks such as Graph500, NAS, LAMMPS and SPEC

MPI 2007. As contribution this work shows that container-

based solution can deliver better performance than hypervisor-

based solution overall. Finally, this evaluation also indicate

that passthrough performs better than SR-IOV in almost all

micro-benchmarks and applications. However, it can not be

ignored the fact that SR-IOV is able to support multiple VMs.

The combination of container with PCI passtrought is able

to deliver near-native performance for end applications [13].

This work was done without a cloud management platform.

In contrast, our paper introduces the comparison of LXC and

KVM in a private cloud.

III. EXPERIMENTAL SETUP

This research investigates application performance in a

virtualized cloud environment, where the configuration of

hardware and software is intended to resemble a production

environment with varying parameters. These variations include

(i) the type of workload, i.e., the different types of bench-

marks and applications of the NPB, (ii) the type of resource

allocation (exclusive vs shared) and (iii) the type of hardware

virtualization using LXC and KVM.

All tests were performed in the Laboratory of Advanced
Research on Cloud Computing (LARCC)2 at SETREM. The
underlying software stack is based on CloudStack 4.8 as the

cloud middleware and three identical servers running Ubuntu

14.04, KVM 2.0.0 and LXC 1.0.8. The hardware of each server

is composed of one Intel Xeon X5560 quad-core 2.80 GHz

processor with Hyperthreading intentionally disabled, 24GB

RAM (DDR3 1333MHz), SATA II based storage and a 1GbE

network connection. Software and benchmarks are compiled

using the GNU Compiler Collection based Fortran compiler in

version 4.8.5 (Red Hat 4.8.5-11). The general cloud structure

consists of one front-end node for administration and manage-

ment along with two compute nodes to run the workloads and

applications. Both, primary and secondary storage, locations

are exported from the front-end node via NFS and are used

for storing the VM images, templates and operating system

images. The service offer used on the LXC and KVM-based

cloud instances are shown in the Table I. As a good practice

the utilization of memory allocated (RAM) in the instances

are 90% of the full node capacity.

Our methodology is depicted in Figure 1. The NAS

OpenMP Parallel Benchmark was used and compiled with

2http://larcc.setrem.com.br/

Fig. 1. High-level representation of the methodology followed in the
evaluation.

class B3, i.e., a medium sized incarnation of the bench-

mark, which means that the applications will assume: (I)

2030 random-number pairs for EP; (II) a grid with size of
512x256x256 and 20 iterations for FT; (III) IS will sort 225

number of keys with maximum value of 221; (IV) a grid with
size of 256x256x256 and 20 iterations for MG; (V) and CG

will have 75000 number of rows with 13 values non-zero

and 75 iterations to perform with an eigenvalue shift of 60

[14]. In addition, we create two main scenarios: The first one

is a single tenant where CloudStack LXC-based cloud and

CloudStack KVM-based cloud instances were deployed with

full machine resources. The second is a multi-tenant scenario

where two CloudStack instances of LXC-based cloud and two

CloudStack instances of KVM-based cloud were deployed

and the service offer its a half of the total host resources.

The number of threads used were limited to the number of

vCPUs available. For instance, in the single tenant scenario,

we run NPB-OMP up to 8 threads and in the multi-tenant

scenario we run NPB-OMP up to 4 threads. This was done

to test multithreading applications, since we do not focus on

over-commitment of resources. To create a baseline of results

we also measured running on the native hardware, without

virtualization. For instance, we define as scenarios the single

and multi-tenants and environments as KVM-based cloud,

LXC-based cloud and Native.

IV. BACKGROUND

This section presents an overview of the virtualization

platforms (KVM and LXC) as well as the benchmark suite

used in our evaluation (NPB).

A. Kernel-based Virtual Machine

KVM is an open source solution which creates a full

virtualization environment and enable Linux x86 to create

VMs with unmodified guest operating systems [15]. It uti-

lizes virtualization extensions (Intel VT-x or AMD-V), which

allows a user space program to utilize the hardware virtualiza-

tion features of various processors [16]. Regarding to Linux

process, KVM is treated as regular one through the Quick
Emulator (QEMU) [13]. In addition, KVM does not perform
emulation, instead it uses and provides the /dev/kvm/ device,

which sets up the VM address space and feeds the simulated

I/O trough QEMU [17].

3https://www.nas.nasa.gov/publications/npb problem sizes.html
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Fig. 2. LXC(Left) and KVM (Right) Overview [6].

B. Linux Containers

LXC is an OS-level virtualization, which abstracts com-

putational resources through Control Groups (cgroups) to
control system resources via namespaces, create and isolate the

objects within the called container [15], [18]. These containers

share the kernel with the host OS and thus, its processes

and file system are accessible from the host. Therefore, it

is defined as being a lightweight virtualization, which does

not require physical hardware emulation. The main purpose

of using Linux Containers is to provide resources or the same

environment such as a VM. Finally, through a combination of

kernel security features, it makes possible to create a virtual

environment on the same machine without a hypervisor [15],

[19].

Containers can divide resources that are managed by an

operating system, into isolated groups to balance demands

on resource usage. Furthermore, LXC can execute native

instructions to the CPU core without any special interpretation

mechanism. Thus, through the use of containers, the OS gives

the applications the illusion of running on separate machines

while sharing the underlying resources [20]. Figure 2 shows a

comparison between LXC (OS-level virtualization) and KVM

(full-virtualization). Both technologies use the Libvirt API. As

can be seen LXC requires less software abstraction, using

the same kernel of native OS and using Linux Bridges or

native interfaces for network connectivity, while KVM uses a

paravirtualized VirtIO driver for I/O operations and network

connectivity offered to VMs.

In this paper, we aim at address performance aspects on

private cloud deployments by using open source solutions. The

cloud instances are deployed using KVM and LXC and are

statistically compared and analysed.

C. NAS Benchmark Kernels

In order to assess the performance and feasibility when

running real-world applications on cloud scenarios, we chose

the NAS Parallel Benchmarks, which is a suite of applications

designed to aid performance benchmarking of parallel super-

computers [21]. Derived from computational fluid dynamics
(CFD) applications, these benchmarks consist of five kernels

and three pseudo-applications including new benchmarks such

as unstructured adaptive mesh, parallel I/O, multi-zone appli-

cations, and computational grids [22]. Each application has

its particular characteristics, and these will be described in the

evaluation. The benchmark set that we chose included integer

sort, floating-point performance, calculation of matrix and

memory intensive communication fields. For this evaluation,

we consider only the five kernels from NPB suite which are

described below.

Kernel IS: Integer Sort Sorts whole numbers using “bucket
sort”. IS Kernel performs a large integer sort operation,

important in “particle method” codes. It makes tests both

integer computation speed and communication performance.

This benchmark is a specific generator of a large array by a

scheme and then sort it [23].

Kernel EP: An Embarrassingly Parallel Benchmark
Independent generation of Gaussian values and random vari-

ables using the Polar Marsaglia method. EP Kernel provides

an estimate of the attainable limits for floating-point perfor-

mance, that is, processor without interprocessor communica-

tion. EP kernel measures floating-point performance by tabu-

lating statistics on pseudo-random data. It displays the simplest

possible communication pattern between processes [24].

Kernel CG: Conjugate Gradiant Calculation of matrix
values. This application uses a gradient method to compute

an approximation to the smallest eigenvalue of a matrix.

It is typical of unstructured grid computations, testing long

and irregular communication, using unstructured matrix vector

multiplication.

Kernel MG: Multi Grid Intensive communication for
short and long-distance memory. It is a simplified multigrid

calculation. It requires long and structured communication,

short and long distance data communication test.

Kernel FT: Fast Fourier Transform Fourier transform

method, using all-to-all communication. It is 3-D partial dif-

ferential equation solved using FFTs, performing the essence

of many “spectral” codes. As a definition, it is a rigorous test

of heavy long-distance communication performance.

V. PERFORMANCE EVALUATION

The results obtained (execution time of three distinct envi-

ronments (Native, LXC and KVM) and two scenarios (single

and multi-tenants) are shown and described with a specific

color in the graphs below. In the single tenant scenario, we

identified the environments with red for the Native, green for

LXC and blue for KVM. On the other hand, in the multi-

tenant scenario, the environments were identified with dark-

green for LXC Instance 1, light-green for LXC Instance 2,

dark blue for KVM Instance 1 and light blue for KVM

Instance 2 respectively. We plotted the execution time for each

application in such a way that each thread has an available

core/vCPU. In this approach, we consider cloud instances

with a variant number of vCPUs and memory available. Also,

the applications executed inside the instances used a different

number of threads. We considered the total time (not only

the parallel region) for all the applications. At first glance,

we can observe that KVM-based cloud scenario presented

the worst results, indicating that this kind of virtualization

imposes a considerable overhead compared to LXC and Native

environments .
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Fig. 4. FT Execution Times.

EP kernel (Figure 3) has its operations totally independent

in each thread number configuration. The operations involve

the generations of Gaussian random variants. This application

presents the actual context of parallel processing. It is noticed

that in each increasing number of threads, the execution time

has decreased considerably. This means that the performance

gain follows at levels close to the recommended ones, with

small differences between the environments. We observe that

in both single (Figure 3(a)) and multi-tenants (Figure 3(b)),

this kernel provides similar results in all environments (LXC-

based cloud, KVM-based clouds and native). Moreover, the

results obtained of Hashimoto, et al, shown that the perfor-

mance degradation in EP is minimum because it requires less

memory capacity [25].

FT (Figure 4) is a memory intensive application, focused

on “everything for all communication”. It presents some

performance losses in the first thread at the full virtualized

environment (KVM-based) with single tenant (Figure 4(a)).

As this application uses a large amount of memory, the
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virtualization penalty is most significant. Moreover, we can

observe that in the environment where are competition for

resources between the tenants (Figure 4(b)), the difference

between LXC-based cloud and KVM-based cloud is reduced.

This behaviour is expected because KVM provides resource

isolation [26].

Similarly, CG (Figure 5) and IS (Figure 6) presented a visual

performance difference between the cloud scenarios in both

single and multi-tenants. In CG application, there are some

vector with vector multiplication operations and a vector with

matrix multiplication operation, which generates a large vol-

ume of memory updates at the end of each loop iteration. As

expected, the full virtuatization had worse results and a consid-

erable overhead with respect to containers in single and multi-

tenants. Moreover, KVM-based cloud provides results with

a significant standard deviation. In the multi-tenant scenario

(5(b)), we can see different results between the tenants. In ad-

dition, Regola, et al. emphasized that virtualization penalty is

most significant in benchmarks that requires large amounts of

communication or memory access [27]. Based on our results,

we can also conclude that LXC-based cloud (single and multi-

tenants) had low performance overhead when compared to the

Native environment represented in microseconds.

In IS, the bucket sort algorithm performs operations at dif-

ferent memory positions to classify a vector of integer values.

Also, this application has some specific characteristics, such as

the smallest set of work and the fastest execution time among

all applications in the NAS OpenMP parallel benchmark.

Note that IS running in KVM (blue color) both single and

multi-tenants performed even worse without using parallelism

(Figure 6). In addition, this application provides a significant

amount of standard deviation on KVM-based cloud. On multi-
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tenant scenario (Figure 6(b)), the competition for resources

make the tenants perform differently. IS scalability problem

was already reported by Strazdins, et al. [7]. Moreover, we can

note that LXC-based cloud has a near native performance with

single tenants. However, with multi-tenants (Figure 6(b)), the

difference between LXC-based cloud and KVM-based cloud

decreases as the number of threads increases. Therefore, taking

into account the standard deviation both have similar results

with 4 threads.

MG application provides a solution to a three-dimensional

discrete Poisson equation using Multi Grid approach. The

impact of KVM overhead are smaller in relation to other

methods as can be visualized in Figure 7. Although MG is

a memory intensive kernel, the memory access seems not

impact significantly. The single tenant (Figure 7(a)) LXC-

based clouds had close results to the native environment. In

multi-tenant scenario (Figure 7(b)), both LXC and KVM-based

clouds provided similar results.

Our experiments led us to a deeper investigation about the

technologies that can affect the obtained results. We identi-

fied that the Kernel Samepage Mergin (KSM) [28] increases
memory density generating shared pages by merging equal

ones. Consequently, there will be more memory available for

running more VMs or applications on the same system [29].

In addition, both KVM-based cloud and LXC-based cloud

can take advantage mainly in the multi-tenant environment

on which the available memory is divided by two tenants. As

these tenants are executing the same applications, KSM merge

equals pages requisition. Particularly, this technology impacts

directly in multi-tenant scenario of EP and MG applications,

which uses the cache memory efficiently and presents close

results between LXC and KVM-based clouds.

Moreover, Intel VT-x virtualization support in our machines

may also impact on the performance. Neiger, et al. emphasize

that this technology makes KVM run instructions with native

access to CPU cores [30]. This technology impacts over the

same applications which makes efficient use of cache memory

(EP and MG). Moreover, the application characteristics com-

bined with the experimental setup of our tests have resulted

in an optimized performance.

VI. STATISTICAL ANALYSIS

We performed a statistical analysis to test the following

hypotheses:

• H0 : LXC == KVM .
The performance when running a given NAS OpenMP

parallel benchmark in a LXC-based cloud instance is

equal when running it in a KVM-based cloud instance.

• H1 : LXC =! KVM .
The performance when running a given NAS OpenMP

parallel benchmark in a LXC-based cloud instance is

different when running it in a KVM-based cloud instance.

We used the IBM SPSS4 to perform the statistical hy-

pothesis tests. In this process, we first performed the sample

4https://www.ibm.com/us-en/marketplace/spss-statistics

collection. Subsequently, the normality test was done. This

test is executed to determine if the sample distribution is a

normal curve, determining whether the sample is parametric

or non-parametric for the hypothesis test. The normality exists

when the Kolmogorov-Smirnov and Shapiro-Wilk approaches

have a significance greater than 0.05 (Sig > 0.05). Considering
that the samples in this article are less than 31, the author [31]

recommends the use of Shapiro-Wilk approach that is for small

samples.

The next step was to perform the parametric or non-

parametric test in each sample previously defined by the nor-

mality test. The T Test was applied in the parametric samples,

which paired the samples and compared them to obtain the

result of significance. On the other hand, the Wilcoxon Test

was applied in the non-parametric samples, which ranks the

samples and also compares them to obtain the significance.

The significance of these tests (T test and Wilcoxon Test) will

indicate whether the comparison is significantly different or

not using the 95% confidence level. The use of this statistical

process allows small differences to be detected according

to [31].

Table II and III presents the results of the comparison

between LXC and KVM with sigle and multi-tenants respec-

tive as well as the hypothesis test for H0 and H1. In the

columns “LXC-OMP α” and “KVM-OMP ω” lines with gray
background indicate non-parametric test and lines with white

background indicate parametric test performed. Also, in the

“Sig.” column numbers with gray background highlights that
LXC had the best result in this specific hypothesis test. The

numbers with black background and white font highlight that

KVM had the best execution time in this specific hypothesis

test. The numbers with white background and black font we

accept H0, which means that the difference is not significant

between LXC and KVM environments. Note that in Table II

(single tenant) almost all the tests we rejectedH0 and accepted

H1.

Observing the arithmetic means, we identified that LXC-

based cloud instances presented better results in the majority

of the tests (93.75%) with significant differences. The KVM

presented better results only in the Kernel FT with eight

threads (1.56%). Finally, in 4.69% of the tests, it is not pos-

sible to say that there are significant differences. In addition,

Table III (multi-tenant) shows that in 45% of the tests, we can

reject H0 (no significant differences between the samples).

The arithmetic means show that in 55% of the tests there are

significant differences, and those highlighting results to LXC-

based cloud.

VII. CONCLUSION

This paper presented a performance analysis and evaluation,

using a statistical approach to identify if the results are sig-

nificantly different. Our work covered experiments performed

in two scenarios (single and multi-tenants) over private cloud

conditions deployed with the CloudStack platform. The envi-

ronments supported both KVM and LXC virtualization tech-

nologies, where the NAS OpenMP parallel benchmarks were
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TABLE II
STATISTICAL ANALYSIS - LXC VS KVM - SINGLE TENANT.

LXC-OMP (α) KVM-OMP (ω) α VS ω
Bench Th x̄ (10x) σ (10x) x̄ (10x) σ (10x) Sig.

1 3,434 0,014 5,131 0,545 0,005

2 2,035 0,014 2,729 0,260 0,000

3 1,394 0,015 1,83 0,175 0,000

4 1,027 0,007 1,341 0,131 0,000

5 0,873 0,040 1,092 0,122 0,013

6 0,709 0,007 0,904 0,103 0,005

7 0,623 0,007 0,787 0,090 0,005

IS

8 0,542 0,004 0,703 0,081 0,005

1 81,211 0,647 81,724 0,485 0,202

2 40,461 0,092 40,905 0,155 0,005

3 27,151 0,200 27,393 0,237 0,009

4 20,36 0,138 20,551 0,133 0,025

5 16,255 0,018 16,365 0,036 0,005

6 13,704 0,382 13,648 0,021 0,720

7 11,609 0,075 11,71 0,044 0,018

EP

8 10,188 0,081 10,378 0,082 0,012

1 79,506 0,162 165,296 49,410 0,005

2 41,095 0,368 78,467 22,265 0,005

3 33,954 0,485 56,603 15,430 0,009

4 23,043 0,713 40,707 11,671 0,005

5 23,735 0,158 33,686 8,258 0,009

6 19,196 0,803 28,437 6,663 0,008

7 19,015 0,142 26,336 4,457 0,005

CG

8 16,332 0,297 24,019 4,270 0,005

1 16,004 0,034 16,429 0,186 0,005

2 8,061 0,032 8,361 0,053 0,000

3 5,572 0,022 5,714 0,068 0,000

4 4,129 0,041 4,372 0,056 0,005

5 3,518 0,031 3,648 0,025 0,000

6 2,915 0,087 3,147 0,023 0,005

7 2,749 0,054 2,925 0,344 0,000

MG

8 2,278 0,020 2,663 0,146 0,005

1 73,013 0,325 76,448 1,076 0,000

2 37,855 0,247 38,964 0,547 0,001

3 25,903 0,097 26,666 0,335 0,000

4 19,807 0,180 20,469 0,315 0,005

5 16,35 0,085 16,9 0,274 0,000

6 14,269 0,077 14,422 0,178 0,034

7 13,014 0,164 13,055 0,178 0,602

FT

8 12,015 0,176 11,855 0,164 0,022

experimented. We concluded that LXC provides the smaller

overhead for this kind of applications. In the first scenario

when comparing the instance types, container-based virtualiza-

tions outperforms kernel-based virtualization on 93.75% under

private cloud conditions with a CloudStack platform for our

samples. Only for an exceptional case (FT with eight threads)

that KVM-based instance outperform LXC with minimal dif-

ference. Moreover, LXC-based cloud outperforms KVM on

55% of the results. In 45% there are no significant differences.

Note that the percentage is referred to the number of “Sig.”
that indicates significantly different with better execution time

for each scenario. Therefore, we can highlight that with multi-

tenants, the KVM-based cloud had results closer to the LXC-

TABLE III
STATISTICAL ANALYSIS - LXC VS KVM - 2 MULTI-TENANTS.

LXC-OMP (α) KVM-OMP (ω) α VS ω
Bench-UserN Th x̄ (10x) σ (10x) x̄ (10x) σ (10x) Sig.

1 3,443 0,018 4,173 0,614 0,005

2 1,895 0,153 2,096 0,294 0,153

3 1,296 0,130 1,472 0,245 0,103
IS-USER1

4 0,988 0,081 1,103 0,162 0,059

1 3,439 0,017 4,258 0,304 0,000

2 2,054 0,091 2,207 0,190 0,077

3 1,379 0,150 1,468 0,112 0,235
IS-USER2

4 1,06 0,095 1,130 0,081 0,061

1 81,117 0,633 81,705 0,490 0,037

2 40,755 0,247 41,192 0,322 0,002

3 27,18 0,222 27,298 0,020 0,308
EP - USER1

4 20,39 0,155 20,568 0,113 0,053

1 81,221 0,697 81,728 0,193 0,052

2 40,722 0,227 41,129 0,169 0,009

3 27,214 0,230 27,499 0,253 0,022
EP-USER 2

4 20,451 0,160 20,530 0,054 0,150

1 79,363 0,143 96,507 34,734 0,005

2 42,987 1,425 65,931 28,072 0,022

3 32,769 1,470 40,916 13,249 0,047
CG-USER1

4 29,849 0,819 39,089 9,957 0,022

1 79,382 0,158 117,611 42,876 0,005

2 44,258 1,546 48,639 3,854 0,003

3 33,482 1,523 40,834 9,560 0,022
CG-USER2

4 29,9 1,030 36,656 7,923 0,028

1 15,99 0,009 16,258 0,106 0,005

2 8,332 0,084 8,288 0,060 0,129

3 5,809 0,158 5,748 0,033 0,263
MG-USER1

4 4,527 0,312 5,020 1,374 0,221

1 15,992 0,007 16,347 0,010 0,000

2 8,281 0,113 8,405 0,105 0,088

3 5,822 0,098 6,026 0,322 0,036
MG-USER2

4 4,82 0,289 4,740 0,303 0,475

1 72,679 0,096 74,458 0,902 0,005

2 37,651 0,214 38,481 0,506 0,001

3 26,467 0,325 26,914 0,248 0,000
FT-USER1

4 21,864 0,585 22,430 0,601 0,093

1 72,68 0,077 75,281 0,837 0,005

2 37,677 0,866 39,119 0,739 0,001

3 26,562 0,283 27,480 0,493 0,001
FT-USER2

4 22,353 0,465 22,298 0,837 0,575

based clouds.

We also discovered that the high memory usage and access

in these applications impacted significantly the performance of

KVM-based instances. That is because full virtualization adds

more instructions that need to be managed by the CPU. Con-

sequently, it has to treat more information and bufferization

that causes performance degradation compared with the native

environment performance. Moreover, KSM and Intel VT-x

are permissive technologies for better performance, which can

impact significantly on applications which performs efficient

cache memory usage.

Finaly, LXC-based cloud is the best option for scientific

applications with single tenants in our tests. Despite that LXC-

based cloud had also better results with multi-tenants, the num-

ber of results that there is no significant differences between

the cloud environments is about 45%. Although multi-tenants
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LXC-based cloud was the best option, KVM-based cloud

can still be considered a suitable option. The performance

increasing of KVM-based cloud with multi-tenants is due to

the isolation of resources and users. On the other hand, LXC

has the best results with single tenants and a worse resource

isolation.

In the future, we plan to evaluate different application

domains (e.g., Stream Processing, Big Data, Deep Learn-
ing, and Machine Learning) to discover different behaviours;

include different IaaS management tools (e.g., OpenStack,
OpenNebula); perform the experiments with overprovision of

computer resources or even multi-tenancy, which are practices

widely used in the Cloud; and perform our experiments with

other virtualization technologies (e.g., HyperV, VMWare, Xen,
Docker).
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