
Energy Efficiency Management in Computational Grids
through Energy-aware Scheduling

Silvana Teodoro, Andriele Busatto do Carmo, Luiz Gustavo Fernandes
GMAP Research Group (FACIN/PPGCC)

Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)
Avenida Ipiranga, 6681 - Pr. 32, Porto Alegre, Brazil

{silvana.teodoro, andriele.carmo}@acad.pucrs.br, luiz.fernandes@pucrs.br

ABSTRACT
Energy consumption in High Performance Computing
(HPC) has become an important issue in the past few years.
The performance gain obtained by these environments is
matched by a proportional increase of energy use. Example
of such environments are computational grids, which are
used in several academic and enterprise projects. Given
this scenario, researchers have been trying to reduce the
energy consumption while minimizing performance loss at
the same time. This work proposes the use of energy-aware
scheduling for energy efficiency management in compu-
tational grids. Our solution exploits the main existing
approaches in the literature to reduce energy consump-
tion in HPC environments: management of idle resources
and energy-aware scheduling algorithms. We evaluate our
proposed approach in a simulation environment and the
algorithm was compared to other five traditional scheduling
algorithms that do not consider energy features. Results
show an energy reduction of up to 182.90% combined with
a performance loss up to 27.78% in the best cases.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management—cost es-
timation; D.2.8 [Software Engineering]: Metrics—
performance measures, process metrics; I.6.3 [Computing
Methodologies]: Simulation and Modeling—Applications

General Terms
Algorithms, Experimentation, Management, Measurement

Keywords
Energy efficiency, scheduling algorithms, computational
grid, simulation

1. INTRODUCTION
Energy efficiency in HPC has become an important issue

in the past few years. High energy consumption leads to
several environmental problems, and the performance gain

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’13 March 18-22, 2013, Coimbra, Portugal.
Copyright 2013 ACM 978-1-4503-1656-9/13/03 ...$15.00.

often corresponds to higher energy consumption. HPC en-
vironments are thus targets for the development of solutions
for the energy efficiency problem.

An example of a widely used high performance environ-
ment is a computational grid, since it allows the sharing
of hardware and software resources transparently such as
processing units, memory, persistent information, and oth-
ers [12]. Such transparency implies that users should not
be aware of heterogeneity, scalability and geographic loca-
tion of resources. Furthermore, grids are environments with
cheaper maintenance than others dedicated to HPC.

Recently, many works have been developed to solve the
energy efficiency problem in HPC environments (see Sec-
tion 2). Most of the approaches for reducing energy con-
sumption are based either on turning off idle resources or
scheduling tasks using specialized algorithms.

This work presents an approach to reduce the energy
consumption of computational grids through energy-aware
scheduling combined with a smart management of idle re-
sources. Our main goal is to reduce the energy consumption
for executing tasks while not decreasing significantly the
overall application performance. The main contributions of
this work can be summarized as follows:

• a general energy consumption model that can be used
for any environment whose task sizes are accounted in
flops; and

• a new energy-aware scheduling algorithm, that handles
active hosts combined with a strategy to identify the
right moment to turn off idle hosts.

To evaluate our approach, we simulate a grid environ-
ment using the SimGrid [1] framework along with LIBTS
(Library Tasks Scheduling) [4]. For this work, we con-
sider the most widely used kind of application for grid
computing: bag-of-tasks applications [10] (i. e., indepen-
dent tasks with no communication among them). These
applications are well suited for grids since in such en-
vironments the communication cost is quite significant
due to the distribution of the hosts in a wide area net-
work.

The rest of this paper is structured as follows: Section 2
presents the related work regarding energy efficiency in com-
putational grids, classified according to their proposal in
idle resources (Section 2.1) and scheduling (Section 2.2).
Our approach is introduced in Section 3, describing in de-
tail the simulation environment (Section 3.1), the consump-
tion module (Section 3.2) and the proposed scheduling al-
gorithm (Section 3.3). Section 4 presents the experimental
setup used to run our experiments. Our simulation results
are described in Section 5. Finally, Section 6 concludes the
work with final remarks and considerations for future re-
search.

1163

2. RELATED WORK
Many works have been developed trying to reduce the

energy consumption in computational grids. The most rele-
vant to the best of our knowledge are presented here, and we
classified them according to their approach. Some of these
works manage idle hosts, turning them off when possible and
the others schedule tasks following a specialized algorithm.
Section 2.1 presents a review of approaches that manage idle
hosts and Section 2.2 describes works based on scheduling
algorithms.

2.1 Idle Resources Approach
Ponciano et al. [11] propose two strategies to save energy

in computational grids:

• standby reduces the hard drive and processor activity.
Just the RAM memory keeps working; and

• hibernate saves the memory RAM state at the hard
drive reducing both memory and processor activity.

These strategies are applied whenever a host in a grid
becomes idle. In this case, it is important to decide for how
long the host must be idle in order to change its operation
mode. According to the authors, it is important to choose
the right time to apply one of the mentioned strategies. For
example, if the time for sleeping is short, i. e., if the host
become inactive as soon as it become idle, the energy will be
saved, but probably the time to respond to applications will
be longer. On the other hand, if the inactivity time is long,
the host will be for a long time on idle state consequently
spending more energy, but the response time for applications
will be shorter.
Another work, proposed by Olli Mämmelä et al. [9]

presents a mechanism for turning off idle hosts in a grid.
The time a task takes to start its execution is taken into
account to decide when turn off hosts. This work also
presents models to determine the energy consumption of
several computer components whenever they are idle, such
as processors, memory, hard drive, and others. Tasks with
different behavior were used to run tests, allowing the
stressing of different machine components (CPU, memory,
and others).

2.2 Scheduling Approach
Lizhe Wang et al. [14] propose a study to predict a whole

data center temperature. According to them, high tempera-
tures can increase the cooling cost and also increase the fre-
quency of hardware failures. As it is possible to reduce the
hosts temperature managing their load, the authors propose
a temperature prediction scheduling algorithm using an Ar-
tificial Neural Network (ANN), named Thermal-Aware task
Scheduling Algorithm (TASA). This algorithm aims to re-
duce the energy and temperature consumption in a data
center.
The work developed by Saurabh Kumar Garg et al. [5] pro-

poses a scheduling algorithm that distributes applications
in a grid. This distribution uses the Heterogeneity Aware
Meta-scheduling Algorithm (HAMA) that selects grid re-
sources according to their energy efficiency, from the most
to the less efficient. HAMA sorts received tasks using as
base the Earliest Deadline First (EDF) algorithm [8]. After
that, it uses the Dynamic Voltage Scaling (DVS) technique
to change the frequency of CPU to achieve a more signif-
icant reduction of energy consumption. It is important to
highlight that HAMA respects the deadline to the end of the
tasks execution.
The work proposed by Michael Lammie et al. [7], is a

scheduler aiming at reducing energy consumption in a clus-
ter while preserving some performance. To achieve this, the
authors attempted to change the number and frequency of
available processors. They have proposed three strategies:

• CPU frequency scaling - a technique to switch the CPU
frequency aiming at reducing the the energy consump-
tion and dissipate the heat;

• automatically sizing hosts - it allows to turn on/off
hosts aiming at attending some requirements, such as
queue size and tasks characteristics. Hosts are only
turned on when the active ones do not support the
overall load, and they are turned off after being idle
for a specific amount of time; and

• smart jobs allocation - optimization layer implemented
in cluster management algorithms, that looks to the
environment seeking for active hosts that are idle.

Even though these works try to improve the energy effi-
ciency by using scheduling approaches, they differ from ours
in some aspects. Firstly, our solution is oriented to tasks
that do not present deadlines and are totally independent
from each other (i. e., there is no communication among
them). Secondly, our approach is specific for computational
grids differently from the work of [7], and consequently our
scheduling algorithm is framed by some specific aspects of
those platforms. For instance, in such platforms it is not
always possible to modify the CPU frequency of the hosts.

3. ENERGY-AWARE SCHEDULING
This section presents our approach based in a consump-

tion module and an energy-aware scheduling algorithm.
First, we introduce the simulation environment in Sec-
tion 3.1. Then, in Section 3.2, we present our consumption
module detailing the required information to compute the
energy spent while executing an application. Finally, our
energy-aware scheduling algorithm (named Low Energy
Consumption Scheduling Algorithm – LECSA) is discussed
in Section 3.3.

3.1 Simulation Environment
This section presents the simulation environment we used

for test our approach for managing energy efficiency in com-
putational grids. Ideally, it would be better to carry out
our experiments on a real grid environment, since we would
have more reliable results representing the real system be-
havior. However, in grid computing this is quite rare because
building and maintaining a grid infrastructure is timely and
financially expensive. Thus, it is not realistic to use such
environments for experiments at anytime. In this scenario,
simulate real environments behavior becomes an interesting
alternative, since we do not need to allocate a real infrastruc-
ture to perform experiments. Moreover, with simulation it is
possible to run experiments and combine different scenarios
in a shorter time [2].

We chose SimGrid [1] and LIBTS [4] as the tools to set our
experimental environment. SimGrid is a distributed systems
simulation framework and LIBTS is a library implemented
using the SimGrid API (version 3.5) which simulates sev-
eral classical scheduling algorithms. As illustrated in Fig-
ure 1, LIBTS is implemented inside the MSG SimGrid mod-
ule. Examples of scheduling algorithms available in LIBTS
are: WQ (Work Queue), WQR (Work Queue with Replica-
tion), Sufferage, XSufferage and Dynamic FPLTF (Fastest
Processor to Largest Task First). We integrated our con-
sumption module in this architecture in order to collect the
energy spent by each algorithm during the runtime. More-
over, LECSA was added to the set of scheduling algorithms
offered by LIBTS.

3.2 Consumption Module
In order to estimate the energy consumption of an ap-

plication and then know how much energy was spent for
each scheduling algorithm, we created a simple and efficient

1164

Figure 1: SimGrid Development Environment: Sim-
Grid Module MSG (a); LIBTS Architecture (b).

consumption module. This module computes each task and
each host energy consumption, as well as the total energy
spent during the application execution. This module re-
quires three basic information to work properly: (i) the task
size in flops, (ii) the host energy-efficiency in flops/watt and
(iii) the amount of energy spent when the host is idle. This
module can be adapted for any simulation environment with
the same model of power and consumption measures.
Firstly, it is necessary to know how much energy is

consumed by a single task. Equation (1) computes how
much energy is consumed during a task execution, where:
taskSize represents the task size and energyEfficiency is
a measure to point out how many flops can be executed
while a single watt is spent (flops/watt). This measurement
is used in several researches, including the Top500 list [13].
Thus, the energy consumption is given by:

ecTask = taskSize/energyEfficiency. (1)

Since we know the energy spent by each task during its
execution, it is possible to know how much energy a host
spends to execute all tasks assigned to it. This value can be
computed through Equation (2), where:

∑
ecTaski is the

sum of each task energy consumption executed in a specific
host; timeIdle is the idle time of the host; and ecIdle is the
host energy consumption on idle mode. In this case, we add
to the sum of all tasks energy consumption the idle time
of the host multiplied by its idle consumption. The energy
consumption of each host is computed through:

ecHosti =
∑

ecTaski + (timeIdle ∗ ecIdle). (2)

Finally, in order to know the total energy consumption of
the environment, Equation 3 presents the sum of the energy
consumed by all the hosts during their idle and active time:

ecTotal =
∑

ecHosti. (3)

Thus, it is possible to know how much energy was spent
while an application was executing according to the used
scheduling algorithm.

3.3 Scheduling Algorithm
Aiming at managing the energy efficiency in a computa-

tional grid, we developed an energy-aware scheduling algo-

rithm named LECSA. In order to schedule tasks, LECSA
presents four well-defined steps:

1. tasks are sorted in descending order, according to
taskSize. Task size is measured in flops;

2. hosts are also sorted in descending order, according to
their energy-efficiency value which indicates how many
flops can be executed with a single watt ;

3. it is decided how many and what hosts will be used
during tasks execution. This decision is based on the
energy-efficiency (flops/watt) of each host, the amount
of tasks to be computed and the tasks size heterogene-
ity (the tasks size heterogeneity variation is described
in Section 4). There are two possible scenarios (in
both, idle hosts are turned off aiming at reducing the
energy consumption):

• the amount of tasks is smaller than the number
of available hosts - in this case, only hosts having
energy-efficiency values among the top 30% are
used;

• the amount of tasks is larger than the number
of available hosts - here, the decision is based on
tasks heterogeneity. The higher is the tasks size
heterogeneity, the higher is the amount of hosts
with different energy-efficiency values used. For
instance, for tasks with 0% heterogeneity, only
the hosts having energy-efficiency among the top
20% are used. With tasks size heterogeneity vary-
ing up to 25%, the hosts having energy-efficiency
among the top 40% are used and so on. The entire
set of hosts is used only when tasks size hetero-
geneity varies up to 100%.

4. tasks are divided among all hosts defined in step 3.
The goal is to send the same number of tasks to each
host. When the result of this division (total number of
tasks by the total number of active hosts) is not exact,
each left task is sent to the first host of the list (which
has the higher energy-efficiency). Notice that tasks are
sent to hosts in a sequence of different rounds. There
will be as many rounds as the total number of tasks
divided by the number of active hosts. One task at a
time is sent to each host, keeping all hosts occupied
during the distribution.

Table 1: Application Granularity.

Amount of tasks Hosts/tasks
Task size
(flops)

720 0.125 1,000,000
144 0.625 5,000,000
29 3.103 25,000,000

4. EXPERIMENTAL SETUP
This section describes our experimental setup. We first

explain the granularity of applications. Then, we introduce
the hosts and tasks heterogeneity and finally we present the
hosts energy-efficiency configuration.

As mentioned in Section 3, our simulation uses the Sim-
Grid framework [1]. We chose this simulation framework due
to its compatibility with our model, where computational
power is represented by flops and the energy-efficiency can
be handled in flops/watt. In our tests, we use WQ, WQR,
Sufferage, XSufferage and Dynamic FPLTF since they are
scheduling algorithms specialized for grids. We configured
90 hosts in the simulated computational grid.

1165

Table 2: Hosts Configuration.
Base hosts Simulation hosts

Green500 Top500 Power Energy-efficiency Power Energy-efficiency
list list (Teraflops) (Megaflops/watt) (flops) (flops/watt)
1 64 172.49 2,026.48 6,000 0.070
58 228 72.03 467.73 7,000 0.045
7 114 103.20 1,266.26 8,000 0.098
40 235 70.28 731.85 9,000 0.094
110 477 51.88 341.32 10,000 0.066
123 51 194.40 318.69 11,000 0.018
127 217 73.83 305.33 12,000 0.049
100 366 56.73 354.56 13,000 0.081
82 62 174.90 372.02 14,000 0.029

Granularity of Applications

We defined the application granularity based on the work
of [3] which sets the basis for constructing test scenarios for
grid computing experiments. Therefore, we set up 3 groups
composed by applications divided in different amounts of
tasks: 29, 144 and 720. For each group, there is a task
mean size (see Table 1). Our goal was to configure different
scenarios, testing situations in which the number of tasks
is much smaller than, close to and much bigger than the
number of hosts.

Hosts Heterogeneity

We used two environments with different levels of hetero-
geneity among their hosts in order to reproduce as close
as possible the configuration of real computational grids. In
this sense, our grid machines present a computational power
measured in flops and this power respects a specific limit.
Each host speed is defined according to a uniform distribu-
tion keeping the average of all hosts speed which is nearby
10,000 flops. The levels of heterogeneity we used are:

• low heterogeneity - the hosts speed diversify accord-
ing to an uniform distribution from 9,000 up to 11,000;
and

• high heterogeneity - the hosts speed diversify
according to uniform distribution from 6,000 up to
14,000.

Tasks Heterogeneity

We also defined different task sizes, from homogeneous (0%)
to completely heterogeneous (100%). The ranges used were
0%, 25%, 50%, 75% and 100% of the mean size of tasks in
the group. For example, for a range of 25%, tasks size can
present values up to 12.5% below and above the mean size
(1,000,000; 5,000,000 and 25,000,000).

Hosts Energy-efficiency Configuration

Find the power in flops and energy-efficiency in flops/watt
of off-the-shelf machines is not a trivial task. For that rea-
son, the values of hosts energy-efficiency for our simulation
were defined proportionally to real machines configuration
(extracted from Green500 [6] and Top500 [13] lists from
November, 2011). Table 2 shows all values used to com-
pute the energy-efficiency of each simulated host according
to its computational power. We chose the hosts according to
their characteristics, trying to keep our simulated environ-
ment more realistic. Their ranking in Green500 and Top500
lists are placed at the first columns followed by their com-
putational power and energy-efficiency values.
Our machines have computational power ranging from

6,000 up to 14,000 flops. The energy consumption values
of idle hosts was defined randomly (from 4 up to 12 watts

per hour). These values are usually lower than the energy
consumed during any task execution.

5. SIMULATION RESULTS
In this section, we present the obtained results in our sim-

ulation experiments in terms of energy consumption and
performance gain/loss for each environment previously in-
troduced. Figure 2 allows a visual comparison of the con-
sumption and performance results of each tested scheduling
algorithm.

In Table 3, we can clearly identify in which cases LECSA
presented the best and worst energy efficiency and perfor-
mance as well. LECSA saved 182.9% of energy in Envi-
ronment 2 with 29 homogeneous tasks with a performance
loss equivalent to 27,78%. The lower energy consumption
reduction occurs in Environment 1 with 720 tasks and 25%
of tasks size range. In this particular case, the performance
gain was 0.27%.

In terms of performance, the maximum gain achieved by
LECSA was 9.21% in Environment 1 with 144 100% hetero-
geneous tasks with a reduction in consumption equivalent
to 50.66%. On the other hand, the maximum loss of perfor-
mance was 54.75% in Environment 2 with 144 homogeneous
tasks with 102.78% energy efficiency improvement. Also, it
is possible to notice that in scenarios with 29 tasks (much
more machines than tasks) either for Environments 1 or 2,
LECSA presented the best results for energy efficiency.

We realize that the higher is the hosts heterogeneity,
the higher is the reduction of consumption obtained using
LECSA. However, the performance decreases as well. Also,
the higher is the granularity of application (29 tasks with
size of 25,000,000 flops), the higher is the energy saved
(e. g., 147.57% in average for Environment 1). In this
case, the performance loss is 38.25% in average. On the
other hand, the lower granularity (720 tasks with size of
1,000,000 flops) presents the smallest energy economy (at
most 59.04% in average) with a performance loss about
1.82% in average.

Finally, in terms of tasks heterogeneity, LECSA pre-
sented an energy consumption reduction between 100.00%
and 182.90% for homogeneous tasks. On the opposite (100%
heterogeneity), the consumption gain ranged from 23.20%
up to 150.24%.

6. CONCLUDING REMARKS
This paper presented an energy efficiency management so-

lution for computational grids using energy-aware schedul-
ing. This solution is based on a scheduling algorithm named
LECSA which tries to assign higher energy consumption
tasks to hosts with better energy-efficiency values turning
off unused hosts when necessary. We compared our algo-
rithm to several classical scheduling algorithms in terms of
energy consumption and performance. Naturally, LECSA

1166

 0

 100

 200

 300

 400

 500

 600

 700

 800

WQ WQR Suff Xsuff DFPLTF LECSA
 0

 5

 10

 15

 20

 25

 30

 35

 40

E
xe

cu
tio

n
tim

e
(m

in
ut

es
)

P
ow

er
 c

on
su

m
pt

io
n

(G
W

)

Algorithms

Environment 1 - Power consumption X Execution time (29 Tasks)

Execution time-0%
Power consumption-0%
Execution time-25%
Power consumption-25%
Execution time-50%

Power consumption-50%
Execution time-75%
Power consumption-75%
Execution time-100%
Power consumption-100%

(a) Environment 1 with 29 tasks

 0

 20

 40

 60

 80

 100

 120

 140

WQ WQR Suff Xsuff DFPLTF LECSA
 0

 5

 10

 15

 20

 25

E
xe

cu
tio

n
tim

e
(m

in
ut

es
)

P
ow

er
 c

on
su

m
pt

io
n

(G
W

)

Algorithms

Environment 1 - Power consumption X Execution time (144 Tasks)

Execution time-0%
Power consumption-0%
Execution time-25%
Power consumption-25%
Execution time-50%

Power consumption-50%
Execution time-75%
Power consumption-75%
Execution time-100%
Power consumption-100%

(b) Environment 1 with 144 tasks

 0

 50

 100

 150

 200

 250

 300

 350

 400

WQ WQR Suff Xsuff DFPLTF LECSA
 0

 5

 10

 15

 20

E
xe

cu
tio

n
tim

e
(m

in
ut

es
)

P
ow

er
 c

on
su

m
pt

io
n

(G
W

)

Algorithms

Environment 1 - Power consumption X Execution time (720 Tasks)

Execution time-0%
Power consumption-0%
Execution time-25%
Power consumption-25%
Execution time-50%

Power consumption-50%
Execution time-75%
Power consumption-75%
Execution time-100%
Power consumption-100%

(c) Environment 1 with 720 tasks

 0

 50

 100

 150

 200

 250

 300

WQ WQR Suff Xsuff DFPLTF LECSA
 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

E
xe

cu
tio

n
tim

e
(m

in
ut

es
)

P
ow

er
 c

on
su

m
pt

io
n

(G
W

)

Algorithms

Environment 2 - Power consumption X Execution time (29 Tasks)

Execution time-0%
Power consumption-0%
Execution time-25%
Power consumption-25%
Execution time-50%

Power consumption-50%
Execution time-75%
Power consumption-75%
Execution time-100%
Power consumption-100%

(d) Environment 2 with 29 tasks

 0

 50

 100

 150

 200

WQ WQR Suff Xsuff DFPLTF LECSA
 0

 5

 10

 15

 20

E
xe

cu
tio

n
tim

e
(m

in
ut

es
)

P
ow

er
 c

on
su

m
pt

io
n

(G
W

)

Algorithms

Environment 2 - Power consumption X Execution time (144 Tasks)

Execution time-0%
Power consumption-0%
Execution time-25%
Power consumption-25%
Execution time-50%

Power consumption-50%
Execution time-75%
Power consumption-75%
Execution time-100%
Power consumption-100%

(e) Environment 2 with 144 tasks

 0

 100

 200

 300

 400

 500

WQ WQR Suff Xsuff DFPLTF LECSA
 0

 2

 4

 6

 8

 10

 12

 14

 16

E
xe

cu
tio

n
tim

e
(m

in
ut

es
)

P
ow

er
 c

on
su

m
pt

io
n

(G
W

)

Algorithms

Environment 2 - Power consumption X Execution time (720 Tasks)

Execution time-0%
Power consumption-0%
Execution time-25%
Power consumption-25%
Execution time-50%

Power consumption-50%
Execution time-75%
Power consumption-75%
Execution time-100%
Power consumption-100%

(f) Environment 2 with 720 tasks

Figure 2: Simulation Results

presented in all cases the best energy reduction in compari-
son to classical algorithms since their main goal is to increase
the performance gain regardless of energy consumption con-
cerns. In general, LECSA presented some loss of perfor-
mance in comparison to the others algorithms which is ac-

ceptable if a reduction in energy consumption is possible. In
many cases, however, its performance was close to the best
classical algorithm. Finally, it is worthy to highlight that in
some cases, LECSA surprisingly achieved performance im-
provement as well.

1167

Table 3: LECSA Performance and Consumption loss/gain.
Consumption Performance

#Tasks Heterogeneity Best 2° Rank LECSA Diff. % LECSA Best 2° Rank LECSA Diff. % LECSA

E
n
v
ir
o
n
m
e
n
t
1

29

0% LECSA XSuff 1° +141.06 XSuff Suff 3° -16.64
25% LECSA XSuff 1° +143.23 DFPLTF Suff 3° -17.93
50% LECSA XSuff 1° +155.03 DFPLTF Suff 3° -17.81
75% LECSA XSuff 1° +148.32 DFPLTF Suff 3° -17.92
100% LECSA XSuff 1° +150.24 DFPLTF Suff 5° -17.94

144

0% LECSA XSuff 1° +120.79 DFPLTF Suff 3° -1.95
25% LECSA WQ 1° +31.96 LECSA Suff 1° +2.16
50% LECSA DFPLTF 1° +35.94 LECSA Suff 1° +7.99
75% LECSA DFPLTF 1° +41.64 LECSA Suff 1° +8.58
100% LECSA WQ 1° +50.66 LECSA DFPLTF 1° +9.21

720

0% LECSA DFPLTF 1° +118.00 DFPLTF LECSA 2° -10.70
25% LECSA XSuff 1° +5.07 LECSA XSuff 1° +0.27
50% LECSA XSuff 1° +11.63 LECSA DFPLTF 1° +0.45
75% LECSA DFPLTF 1° +17.05 LECSA DFPLTF 1° +0.72
100% LECSA Suff 1° +27.47 LECSA Suff 1° +0.14

E
n
v
ir
o
n
m
e
n
t
2

29

0% LECSA XSuff 1° +182.90 DFPLTF Suff 3° -27.78
25% LECSA XSuff 1° +173.07 DFPLTF Suff 3° -38.58
50% LECSA XSuff 1° +157.85 DFPLTF Suff 3° -42.12
75% LECSA XSuff 1° +83.61 DFPLTF Suff 3° -40.17
100% LECSA XSuff 1° +106.55 DFPLTF Suff 3° -42.60

144

0% LECSA XSuff 1° +102.78 Suff DFPLTF 6° -54.75
25% LECSA XSuff 1° +84.87 DFPLTF Suff 6° -30.33
50% LECSA WQ 1° +66.59 Suff DFPLTF 3° -17.42
75% LECSA XSuff 1° +45.72 Suff LECSA 2° -1.34
100% LECSA XSuff 1° +35.54 Suff LECSA 2° -3.11

720

0% LECSA XSuff 1° +100.00 Suff LECSA 2° -2.73
25% LECSA XSuff 1° +77.86 Suff LECSA 2° -1.55
50% LECSA XSuff 1° +59.42 Suff DFPLTF 4° -1.71
75% LECSA DFPLTF 1° +34.72 LECSA Suff 1° +0.67
100% LECSA XSuff 1° +23.20 LECSA Suff 1° +0.39

As future works, we believe that our solution can be im-
proved taking into account the energy spent by communi-
cation operations among tasks. Also, we believe that a dy-
namic solution based on specialized energy-aware scheduling
algorithms is the natural path to follow. In this case, the en-
vironment should be capable of choosing the best scheduling
algorithm depending of the input tasks configuration.

Acknowledgements
This work is part of a research project with financial support
of Brazilian research agencies: Coordenação de Aperfeiçoa-
mento de Pessoal de Nı́vel Superior (CAPES) and Fundação
de Amparo à Pesquisa do Estado do Rio Grande do Sul
(FAPERGS).

7. REFERENCES
[1] H. Casanova. Simgrid: A toolkit for the simulation of

application scheduling. In CCGRID, pages 430–441.
IEEE Computer Society, 2001.

[2] H. Casanova, A. Legrand, and M. Quinson. Simgrid:
A generic framework for large-scale distributed
experiments. In D. Al-Dabass, A. Orsoni,
A. Brentnall, A. Abraham, and R. N. Zobel, editors,
UKSim, pages 126–131. IEEE, 2008.

[3] D. P. da Silva, W. Cirne, and F. V. Brasileiro. Trading
cycles for information: Using replication to schedule
bag-of-tasks applications on computational grids. In
H. Kosch, L. Böszörményi, and H. Hellwagner, editors,
Euro-Par, volume 2790 of Lecture Notes in Computer
Science, pages 169–180. Springer, 2003.

[4] P. B. Franco. Escalonamento de tarefas em ambiente
de simulação de grid computacional. Master’s thesis,
Universidade Estadual Paulista, 2011.

[5] S. K. Garg and R. Buyya. Exploiting heterogeneity in
grid computing for energy-efficient resource allocation.
In The 17th International Conference on Advanced
Computing and Communications, 2009.

[6] Green500. The green500. http://www.green500.org/,
November 2011.

[7] M. Lammie, P. Brenner, and D. Thain. Scheduling
grid workloads on multicore clusters to minimize
energy and maximize performance. In GRID, pages
145–152. IEEE, 2009.

[8] J. Y.-T. Leung and J. H. Anderson. Handbook of
Scheduling: Algorithms, Models, and Performance
Analysis. Chapman and Hall/CRC, 2004.

[9] O. Mämmelä, M. Majanen, R. Basmadjian, H. D.
Meer, A. Giesler, and W. Homberg. Energy-aware job
scheduler for high-performance computing, 2011.

[10] M. A. S. Netto and R. Buyya. Coordinated
rescheduling of bag-of-tasks for executions on multiple
resource providers. Concurrency and Computation:
Practice and Experience, 24(12):1362–1376, 2012.

[11] L. Ponciano and F. V. Brasileiro. On the impact of
energy-saving strategies in opportunistic grids. In
GRID, pages 282–289. IEEE, 2010.

[12] U. Schwiegelshohn, R. M. Badia, M. T. Bubak,
M. Danelutto, S. Dustdar, F. Gagliardi, A. Geiger,
L. Hluchy, D. Kranzlmüller, E. Laure, T. Priol,
A. Reinefeld, M. Resch, A. Reuter, O. Rienhoff,
T. Rüter, P. M. A. Sloot, D. Talia, K. Ullmann,
R. Yahyapour, and G. von Voigt. Perspectives on grid
computing. Future Generation Computer Systems,
26(8):1104–1115, 2010.

[13] Top500. Top500 supercomputers site.
http://www.top500.org, November 2011.

[14] L. Wang, G. von Laszewski, F. Huang, J. Dayal,
T. Frulani, and G. Fox. Task scheduling with
ANN-based temperature prediction in a data center: a
simulation-based study. Eng. Comput. (Lond.),
27(4):381–391, 2011.

1168

	MAIN MENU
	Help
	Search
	Search Results
	Print
	Author Index
	Keyword Index
	Table of Contents

