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ABSTRACT
Classification of HEp-2 cell images is seeing an increasing
interest in the last years. Research on this subject is being
further stimulated by contests in important pattern recog-
nition conferences (ICPR-2012, ICIP-2013 and ICPR-2014).
Several feature extraction methods for those images were
proposed by researchers. In some cases, authors mine data
with thousands of dimensions, originated by morphology,
texture, pixel statistics and other features. Most of the pub-
lished works focus solely on classification accuracy, suppress-
ing the discussion about computational resources needed to
extract features, train the classifier and test the instances.
In this work, our research question is whether a classification
accuracy comparable to other works can be achieved when
using only features which are simple and fast to compute.
We have demonstrated that, at least in particular scenarios,
using only pixel value statistics and histogram can result in a
classification accuracy which is comparable to other works.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Image databases; I.5.1
[Pattern Recognition]: Models, Statistical

General Terms
Algorithms, Performance, Experimentation

Keywords
HEp-2 cells, Immunofluorescence pattern, Classification, Fea-
ture extraction, Image processing

1. INTRODUCTION
The human body produces antibodies to fight infections

and external agents which cause diseases. However, in some
cases, antibodies attack healthy tissue, causing autoimmune
diseases, such as systemic lupus erythematosus, systemic
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sclerosis, mixed connective tissue disease, polymyositis, der-
matomyositis, Sjögren’s syndrome, Felty’s syndrome and oth-
ers [19, 26]. Antinuclear autoantibodies (ANA) are useful
markers a physician can use to detect such diseases [26],
and the preferred method to detect ANA is the indirect im-
munofluorescence technique (IIF) on cell line HEp-2 (from
the laryngeal carcinoma substrate) [19]. The intensity level
for IIF can be either negative, intermediate or positive. Ob-
serving HEp-2 cells reveals that patients with such diseases
shows frequencies of ANA between 50 and 100% [26].

The standard way for identifying ANA needs at least two
experts opinions, and can be affected by subjective factors,
such as misinterpretation and fatigue. The task is labor-
intensive and time consuming [19, 26], being a good candi-
date for Computer-Aided Diagnosis (CAD) systems.

Classification is one of the most commonly used data min-
ing tasks, and is suitable for classifying IIF cell images. As
classical data mining algorithms requires tabular data, com-
prised with records (also called rows, instances or objects)
and attributes (also called columns, features or dimensions),
mining images normally involves preprocessing the input im-
ages, transforming them in a dataset in such format [11].

In the context of image processing, attributes are generally
called features. There are several approaches for feature
extraction, but there is no standard categorization. Some
examples include:

• Morphology: number of objects, number of holes, area,
perimeter, roundness and convex hull;

• Texture: Grey Level Coocurrence Matrix (GLCM) [12],
Local Binary Patterns (LBP) [20], Grey Level Run-
Length Matrices (GLRM) [23], Gray Level Size Zone
Matrix (GLSZM) [25];

• Statistics: mean, standard deviation, skewness, kurto-
sis and histograms;

• Some others: Discrete Cosine Transform (DCT) [2],
Discrete Wavelet Transform (DWT) [18], 2D Gabor
Wavelets [15], Discrete Fourier Transform (DFT), Scale
Invariant Feature Transform (SIFT) [17], Speeded-Up
Robust Features (SURF) [4] and Histograms of Ori-
ented Gradients (HoG) [6]

When too many features are employed it is also expected
that the demand of computational resources is increased.
This applies for processing each image, training the clas-
sifier and classifying the instances. Also, the larger is the
data dimensionality, the more sparse is the training data in
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Figure 1: Zoomed samples of images in the dataset, with both intermediate (top) and positive (bottom)
intensities for each class: Ctr, Glg, Hgn, Ncl, Nmn and Spk, respectively.

the dimensional space, which can lead to the classifier per-
formance degradation due to overfitting. This is known as
“curse-of-dimensionality” [14]. As such, this paper focuses
on experimenting classification of HEp-2 IIF cell images us-
ing features which are simple and fast to compute. The
results are contrasted to other published works, in order to
determine whether a comparable accuracy can be achieved,
at least in particular scenarios.

2. IIF IMAGES DATASET
This work uses the IIF images dataset from the ICIP-

2013 contest1. This dataset is comprised of 13,596 gray
scale images, being 7,448 and 6,148 of intermediate and pos-
itive intensities, respectively. No negative intensity images
are provided. For each image there is also a correspond-
ing mask image, describing the cell boundary. The dataset
contains images with the following six classes: Centromere
(Ctr), Golgi (Glg), Homogeneous (Hgn), Nucleolar (Ncl),
Nuclear Membrane (Nmn) and Speckled (Spk). Figure 1
shows zoomed samples of each class in each intensity, and
Table 1 shows the number of instances per intensity and
class in the dataset.

Table 1: Number of instances per intensity and
class.

Intensity Ctr Glg Hng Ncl Nmn Spk
Intermed. 1,363 375 1,407 1,664 1,265 1,374
Positive 1,378 349 1,087 934 943 1,457
Total 2,741 724 2,494 2,598 2,208 2,831

3. RELATED WORK
Despite being a relatively unexplored area [1], classifica-

tion of HEp-2 IIF cell images has been performed by some
published researches. Each work extracts a set of image fea-
tures, and apply one or more data mining algorithm. The
main focus of most of those papers is the classification ac-
curacy, without mentioning computational resources needed
to run the tool. Table 2 presents some of those papers,
sorted by publication year in descending order. The table

1http://nerone.diiie.unisa.it/contest-icip-2013/
index.shtml

columns are the publication reference and year, the number
of dimensions (Dim) and approximated claimed accuracy
(Acc). In this table, the following abbreviations are used for
classifiers: Random Forest (RF), Support Vector Machine
(SVM), Regression Tree (RT), multiclass SVM (mSVM),
k-Nearest Neighbors (kNN), Neural Networks (NN), Näıve
Bayes (NB), Nearest Convex Hull (NCH), Logistic Regres-
sion (LR), AdaBoost (AB), Learning Vector Quantization
(LVQ), Mahalanobis Distance Classifier (MDC) and Parzen
Window Classifier (PWC).

The Table 2 shows that only one of the reviewed works
[8] employed less than a dozen attributes. Others employed
dozens [21, 24, 13], hundreds [1, 9, 7, 16, 22] or even thou-
sands [10] of attributes. Four of the reviewed works [27,
25, 3, 5] didn’t make a clear statement about the actual
number of dimensions used, only describing the employed
features. In terms of classification accuracy, most of the re-
viewed works claim to achieve 90% or more [1, 27, 21, 9,
25, 10, 16, 22, 24, 3, 8]. The highest claimed accuracy was
achieved by a work which didn’t specify the dimensional-
ity employed [25]. Another data from this table is that two
works which achieved almost the same accuracy, 90 and 91%
employed a 9 and 2,342 attributes, respectively, indicating
that accuracy and number of features are not proportional.

4. METHOD
As stated in Section 3, most published works for IIF cell

classification focus on extracting a feature set from images
and mining the resulting data with classification algorithms.
Most of them have used more than one feature category (for
example, morphological and texture) together, in order to
increase accuracy, getting even to the point of thousands of
features [10].

However, a question that remains unanswered is whether
an acceptable classification accuracy can be achieved when
using simple and computationally-efficient feature sets. To
test this hypothesis, this work compares the time needed to
compute distinct feature sets, in order to select those which
can be computed faster. Afterwards, some well-known clas-
sifiers are applied, and the classification results are analyzed.

4.1 Feature selection
Intuitively, the features which are faster to extract from

images are those which perform simple operations over raw
pixel values. Some of those operations are pixel-value his-
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Table 2: Some recent publications on HEp-2 IIF image classification.
Publication Features Classifier(s) Dim. Acc.
Agrawal et al, 2013 [1] Morphological, statistical, LBP, HoG, GLCM, GLRM, Laws k-NN, NB, RF, SVM 489 93%
Wiliem et al, 2013 [27] Dual-region codebook, using both SIFT and DCT NCH ? 96%
Snell et al, 2012 [21] Roundness, DCT and statistical mSVM 40 98%
Ersoy et al , 2012 [9] Histogram, HoG, Hessian matrix and LBP RT 130 93%
Di Cataldo et al, 2012 [7] GLCM and DCT SVM 372 87%
Thibault & Angulo, 2012 [25] GLSZM and Pattern spectrum (PS) LR, RF, NN ? 99%
Ghosh & Chaudhary, 2012 [10] SURF, morphological features, GLCM, HoG mSVM 2,342 91%
Li et al, 2012 [16] LBP, DCT, 2D Gabor Wavelets, morphological and statistical mSVM 180 98%
Strandmark et al, 2012 [22] Morphological features and GLCM RF 966 97%
Theodorakopoulos et al, 2012 [24] Morphological and LBP SVM 86 96%
Ali et al, 2012 [3] Contrast differences, based on difference of Gaussians K-NN ? 96%
Cordelli & Soda, 2011 [5] Statistical, LBP and Wavelets NN, kNN, SVM, AB ? 79%
Hsieh et al, 2009 [13] Statistical, BVLC, SGLDM, GLDM, NGTDM, fractals LVQ 51 80%
Elbischger et al, 2009 [8] Statistical and morphological MDC, PWC 9 90%

tograms and statistical central moments. In order to se-
lect which features we would use for classification, we have
measured the time taken to extract the following features
from the ICIP-2013 IIF image dataset: 2 central moments
statistics (mean and standard deviation), 4 central moments
statistics (mean, standard deviation, skewness and kurtosis)
and a normalized 16-bin intensity histogram. For compari-
son, we have included a feature set for texture and a feature
set for analysis in frequency domain: GLCM and wavelet
coefficients, respectively.

Table 3 presents the time taken to calculate each feature
for all 13,596 images in the training dataset (as described
in Section 2). The presented times were calculated by av-
eraging 10 executions for each feature. The time spent on
loading images and reading pixel values is not included, as
they are constant for any feature extraction method. All
tests were executed as a Java application using OpenJDK 2

version 7u65, running on a 64 bit Linux system on an Intel
core i7-4500U (4x1,8Ghz) laptop with 8G RAM.

Table 3: Time taken to extract distinct features
from ICIP-2013 IIF contest cell images.

Features Time taken
Histogram (16 bins) 0.9s
Statistics (2 central moments) 1.1s
Statistics (4 central moments) 3.4s
GLCM (size 32, 1px diff., 4 angles) 10.2s
Wavelet (size 64, 4 level DWT) 20.7s
GLCM (size 32, 1-3px diff., 4 angles) 64.2s

Confirming our initial expectations, histogram and statis-
tics are significantly faster to calculate, when comparing
to other methods, like GLCM and wavelet coefficients. As
such, those were the features we have used in our tests, as
reported in the next section.

4.2 Classifier selection
In order to test our hypothesis, that classification results

can still be comparable to other related works when using
simple and fast features, we need to test those features with
at least one classifier. As most of the works cited in Table
2 have used either Random Forest and/or Support Vector
Machine algorithms in their works [1, 21, 7, 25, 10, 16, 22,

2http://openjdk.java.net/

24, 5], those are the algorithms we have also employed in our
test. The classifiers were executed using the fastest features
according to Section 4.1, extracted from images in the ICIP-
2013 IIF contest dataset (described in Section 2).

As stated by Agrawal et al [1], classification of IIF im-
ages with intermediate and positive intensity values should
be measured separately, as classifying intermediate inten-
sity cells is harder. Figure 1 makes it visually clear that
intermediate intensity images have less contrast and details,
when compared to positive intensity images. With less vi-
sual discrimination between classes, it is expected to have
worst classification results.

The results of our tests are presented in Table 4. It shows,
for each combination of feature, intensity level and algo-
rithm, the classification accuracy (first row), the time taken
to build the model with all images in the dataset (second
row) and the time taken to test the same images in the
training set (third row). The features are shown as 2S (2 mo-
ments central statistics), 4S (4 moments central statistics),
H (16-bin normalized histogram), 2S+H (2 moments cen-
tral statistics plus 16-bin normalized histogram) and 4S+H
(4 moments central statistics plus 16-bin normalized his-
togram). The intensity levels are presented as I (intermedi-
ate), P (positive) and C (combined). The reported accura-
cies were calculated using 10-fold cross validation method.
For this task, we have used the implementations provided
by the Weka 3.6.113 library, keeping their default settings.

The time taken to train the model and test the training set
were measured because our objective is to perform resource-
efficient classification, with classification accuracy compara-
ble to other works. It should be noted that, as the dataset
contains more intermediate than positive intensity images,
both times (to train and test the dataset) are expected to be
lower in positive, which has 6,148 samples, than in interme-
diate images, which has 7,448 samples. Consequently, the
times for combined features should be larger, as the dataset
has 13,596 images in total.

As shown in Table 4 the classifier which performed better
in all aspects was Random Forest. It presented a higher
classification accuracy and reduced times, both to build the
classifier and to test the dataset, when compared to SVM.
Hence, we have concluded that the Random Forest classifier
is well suited for our work.

3http://www.cs.waikato.ac.nz/ml/weka/
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Table 4: Classification using the combinations of 2
and 4 central moments statistics and histogram, for
Random Forest and Support Vector Machine classi-
fiers.

Random forest SVM
Feat. I P C I P C

2S 58.19% 75.93% 59.80% 63.76% 79.16% 64.98%
0.90s 0.70s 1.32s 5.54s 7.86s 26.32s
0.11s 0.09s 0.13s 4.03s 4.07s 18.97s

4S 79.82% 92.24% 82.74% 79.70% 88.71% 80.77%
1.01s 0.78s 1.87s 4.30s 4.76s 18.30s
0.11s 0.09s 0.15s 3.12s 2.64s 13.90s

H 58.67% 91.74% 68.51% 34.69% 55.81% 41.92%
1.04s 0.78s 1.74s 7.18s 4.32s 23.44s
0.13s 0.11s 0.21s 5.01s 3.56s 16.72s

2S+H 74.61% 92.24% 78.71% 62.49% 80.17% 64.84%
0.93s 0.74s 1.86s 4.54s 2.99s 14.65s
0.12s 0.12s 0.22s 4.14s 2.49s 15.79s

4S+H 80.03% 94.11% 84.10% 77.79% 89.44% 79.47%
1.02s 0.86s 1.83s 3.68s 2.75s 12.48s
0.13s 0.11s 0.20s 3.57s 2.20s 14.83s

4.3 Classification results
Table 4 also shows that classification accuracy is signifi-

cantly higher for positive than intermediate or combined in-
tensity images. This is also consistent with Agrawal et al [1].
For this reason, we have focused on positive intensity only.
In this scenario, we have highlighted in the table the 3 fea-
ture combinations with highest accuracy: 4S+H (94.11%),
4S (92.24%) and 2S+H (92.24%). When all images are con-
sidered, those feature combinations were also the ones with
highest accuracy: 84.10%, 82.74% and 78.71%, respectively.

The classification accuracy per class is depicted in Figure
2. All feature combinations are included, so we can analyze
the impact of each feature on each class. It can be noted
that 2S only have a good (+90%) accuracy for the Ctr class.
Specially for the Glg class, using 2S resulted in only 22.6%
of accuracy, which is not shown in the graph, whose y-axis
scale ranges from 60 to 100%. Histogram was the most dis-
criminating feature for Ctr and Ncl, as combining it with
statistical features didn’t improve the classification results
significantly for those classes. For Glg, Hgn, Nmn and Spk
classes, the most discriminating feature was 4S. In all those
classes, however, the combination with histogram showed
the best results. Another interesting data from Figure 2 is
that Glg was the only class which didn’t achieve 90% accu-
racy in any feature combination.

4.4 Classification errors
For a more detailed view on classification results on the

best accuracy scenario, Table 5 presents the confusion ma-
trix. In this table, rows are counters for the real class, while
columns are counters for the predicted class. The table
shows that for Nmn class, classification errors are relatively
well distributed among other classes. For other classes, most
errors were concentrated on a single class: for Glg, Spk; for
Ctr, Ncl; for Spk, Hgn; for Ncl, Ctr; and for Hgn, Spk. It
can also be noted that Ctr and Hgn had mutually zero false
positives.

Still on the best performing combination, Table 6 shows
the false positives per class. This table presents the absolute

Figure 2: Accuracy per class for features with higher
accuracy for positive intensity images, using Ran-
dom Forest.

Table 5: Confusion matrix for the best performing
combination: 4 moments central statistics plus his-
togram, using the Random Forest algorithm over
positive intensity images.

Nmn Glg Ctr Spk Ncl Hgn
Nmn 914 3 4 9 4 9

Glg 5 283 18 26 16 1
Ctr 2 5 1,337 10 24 0
Spk 12 17 6 1,386 4 32
Ncl 6 4 60 7 854 3

Hgn 22 2 0 48 3 1,012

number of false positives (FP), the total number of instances
per class (N) and the normalized false positive rate (FP /
N). The highest normalized false positive rate was Glg. This
may be related to the fact it was the class with less instances
in the dataset. The class with less relative false positives was
Hgn.

Table 6: False positives for the best performing
combination: 4 moments central statistics plus his-
togram, using the Random Forest algorithm over
positive intensity images.

False positives Instances Rate
Nmn 47 943 4.98%
Glg 31 349 8.88%
Ctr 88 1378 6.39%
Spk 100 1457 6.86%
Ncl 51 934 5.46%
Hgn 45 1,087 4.14%

5. CONCLUSION
In our experiment for HEp-2 IIF cell classification, we

have taken a different approach than most of the other works
in the same subject (some of them reviewed in Table 2).
Most of those publications extract a wide range of features
from images, like morphology and texture, in the hope that
it can increase classification accuracy. However, they usually
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don’t discuss the computational resources needed both to
train the classifier and to extract features from images.

Our work, when considering positive-intensity images only,
has achieved about 94% of classification accuracy. This
result was obtaining using only statistics and histogram.
These features are significantly faster to compute than oth-
ers, as shown in Table 3. Most of the reviewed works achieved
90% or more of classification accuracy on HEp-2 IIF images
[1, 27, 21, 9, 25, 10, 16, 22, 24, 3, 8]. All of them, how-
ever, used more numerous and complex features than we
did. When considering images in both intensities (positive
and intermediate), our classification accuracy drops to about
84%, but is still comparable to some of the reviewed works
[7, 5, 13], which also applied features which are significantly
more complex than the one we used.

We have demonstrated that, at least for positive intensity
HEp-2 IIF images, using simple statistical and histogram
features is enough to obtain a classification accuracy com-
parable to other, more complex approaches. Together with
the Random Forest classifier, a computationally-efficient so-
lution for automated image classification can be achieved.
Computer-aided diagnosis systems could benefit from the
proposed approach when classifying positive intensity im-
ages. For intermediate intensity images, such systems could
rely on more complex methods, if needed.
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