Go Functional Model for a RISC-V Asynchronous
Organisation - ARV

Marcos L. L. Sartori, Ney L. V. Calazans
PUCRS-FACIN - Ipiranga Av., 6681 - Porto Alegre - Brazil, 90619-900
marcos.sartori @acad.pucrs.br, ney.calazans @pucrs.br

Abstract— This work presents ARV, an asynchronous super-
scalar organisation for the RISC-V architecture. As far as the
authors could verify, this is the first proposal of an asynchronous
version for this recent open source processor architecture. The
organisation is modelled using Google’s Go as a high level hard-
ware description language. Go has proved adequate to model the
refined handshake structures present in the asynchronous design
of complex super-scalar structures. Preliminary performance
data obtained using the Go model enabled a detailed evaluation
of the organisation, providing design exploration of several points
to further improve the organisation before committing to its
implementation at lower abstraction levels.

[. INTRODUCTION AND RELATED WORK

Processors are complex circuits where active paths are
highly dependent on the instruction execution flow. They
are overwhelmingly employed in multiple domains, including
in low and ultra-low power mobile applications with tight
power consumption budgets. These circuits benefit from recent
technology advances and also provide a design challenge
where novel techniques and flows can be explored.

Asynchronous design has over the years demonstrated ad-
vantages over synchronous design in several application do-
mains [1]. These advantages derive from, e.g.: (i) eliminating
the clock distribution network and its overheads, which can ac-
count for 40-70% of the overall circuit power consumption; (ii)
widening the spectrum of electromagnetic emission, reducing
noise in mixed signal applications; (iii) executing operations
based on average case delay, instead of the worst case delay
required by synchronous design. This improves performance
and efficiency; (iv) making circuits more robust to ageing,
process and operating conditions variations, enabling more
aggressive voltage scaling to reduce power consumption. The
asynchronous design of processors has a potential to create
new, advantageous tools for solving problems. This has been
claimed in several efforts in the past, as described e.g. in [2].

Synchronous digital circuits rely on clock signals that
provide a discrete common timing reference to ensure correct
operation. Asynchronous circuits are digital circuits with no
such discrete timing reference. Instead, in an asynchronous
design correct operation is accomplished using local hand-
shakes between communicating entities [3]. Local handshakes
signal when new data is ready and signal back when inputs can
change after being processed. A commonly used handshake
protocol develops in four steps: (i) a producer announces data
availability, by issuing a request to the consumer; (ii) when
ready, the consumer acknowledges the request, storing data
and replying with an acknowledge signal; (iii) the producer
acknowledges the consumer reception by lowering its request
signal; (iv) the consumer announces its availability to receive

978-1-5386-1911-7/17/$31.00 ©2017 IEEE 381

new data by lowering the acknowledgement signal. This is an
example of the so-called 4-phase handshake protocol. Another
frequently used choice is the 2-phase protocol, in which data
can be made available after the consumer rises its acknowledge
signal [3]. This is usually more complex to implement.

The use of a handshake protocol between processing ele-
ments form a handshake channel. Logic elements intended to
transform data must be transparent to the handshake mech-
anism. The combination of storage and logic elements forms
a logical stage. Logical stages are chained using channels to
form a pipeline in which rokens flow in wavefronts carrying
data. A circular pipeline is called a loop. Loops can be used
to store information and perform iterative computation. Closed
loops must have bubbles to allow token propagation, otherwise
deadlock conditions can arise.

There are different asynchronous design templates used to
implement several variations of 4-phase or 2-phase protocols.
Templates employing strict channel timing assumptions and
explicit request signals are part of the Bundle Data (BD)
family, while templates using Delay Insensitive (DI) encoding
to eliminate channel timing assumptions are often part of the
Quasi Delay Insensitive (QDI) family.

Modelling is an important step in any processor design.
This is true in asynchronous design as well. Technologies
used to model asynchronous circuits should typically reflect
the behaviour of handshake channels.

Since asynchronous circuits are highly concurrent and com-
munication between components relies on handshake channels,
languages designed with concurrency and communication in
mind provide a better formalism to describe asynchronous
circuits than traditional HDL languages like Verilog and
VHDL, both of which assume an underlying synchronous
hardware paradigm. The basis for several such languages
is the Communicating Sequential Processes (CSP) formal-
ism proposed by Hoare [4], [5]. Message passing in CSP
abstracts the handshake protocol and underlying encoding
details, allowing behavioural validation and optimisation of
complex asynchronous constructs. This enables the detection
and elimination of deadlock conditions early in the design,
furthering overall correctness from the design start.

Some previous works proposed flows starting with high-
level models written in specialised languages based on CSP
to implement asynchronous circuits. Two noteworthy examples
are: (i) Balsa [6], an asynchronous circuit description language
and synthesis system based on direct syntactical translation
targeting both QDI and BD templates; (ii) and Proteus [7], a
performance guided asynchronous ASIC design flow targeting
QDI templates for high performance applications.

Balsa instantiates asynchronous netlist macros implement-

ing high-level functions defined in the language and later
optimises the generated netlist. The Proteus flow compiles
CAST, a language previously used in a flow proposed by
Martin et al. [8], to RTL-level Verilog descriptions. Traditional
logic synthesis tools are then used to generate synchronous
netlists which are optimised and transformed into asynchron-
ous netlists of a target template.

This article explores the use of Go, a modern program-
ming language proposed by Google, which implements CSP-
inspired primitives. Go here is seen as a high-level hardware
description language. The choice to implement the RISC-
V architecture [9] comes from its simplicity, versatility and
development tools availability. Unlike other open instruction
set architectures (ISAs), RISC-V was designed from the start
to be simple, flexible and extensible, which facilitates its
port to different technologies and application domains. As
far as the authors could verify, this is both the first proposed
asynchronous RISC-V organisation and the first use of Go as a
hardware description language. Original contributions are thus
two: (i) giving the first results of investigating the suitability
of Go to model asynchronous circuits; (ii) and provide a first
step towards an asynchronous design for the RISC-V ISA.

II. ASYNCHRONOUS CIRCUIT MODELLING USING GO

Go is a new programming language designed by Robert
Griesemer, Rob Pike and Ken Thompson at Google [10]. It
is a compiled, structured, strongly typed, imperative language
focused in concurrency.

Concurrency is built into Go using two primitives: (i)
goroutines, a form of lightweight threads sharing the program
address space managed by the Go runtime environment; and
(ii) channels, typed conduits in which data can be trans-
ferred as messages using send and receive operations. These
primitives constitute a valid implementation of CSP, making
Go an interesting candidate for the high-level modelling of
asynchronous circuits.

Also, the use of Go allows modern software verification
techniques, e.g. unit testing, static code analysis, deadlock
detection, displaying potential advantages over other languages
traditionally employed to model asynchronous circuits.

By default, sending and receiving messages on channels
blocks the execution of goroutines. Non-blocking channels
are possible, by using buffered sends and conditional reading.
However, this is not a feature originally available in CSP .

Figure 1 illustrates a conditional reading of the Set channel.
Stage 0 only reads the Set channel when it provides valid
data, otherwise it reads s0. Channels that are only read when
complete are called uncoupled channels. Loops which feature
uncoupled channels are called uncoupled loops.

Channels provide synchronisation analogous to fully buf-
fered handshake channels; goroutines concurrency is analog-
ous to pipelining parallelism; and messages are analogous to
tokens flowing in a pipeline carrying data.

An asynchronous pipeline stage, composed of logic and
a handshaking storage element, is modelled in Go using a
goroutine containing an eternal loop performing the following
steps: (i) receive data from input channels, blocking execution
if the channel is empty; (ii) perform data transformation on the
input; (iii) send data to the output channels, possibly blocking

execution until the next stage receives from the channel. Initial
(reset) states are modelled by sending the initial conditions
to the corresponding channel prior to entering the receive-
process-send loop (see the s1 <—0 command in Stage 0 of
Figure 1).

To capture the nature of asynchronous circuits, the goroutine
loop should only operate on information received through
channels, meaning that goroutines should not rely on internal
state variables. State variables inside a goroutine would imply
instantiating an implicit loop of handshaking elements, break-
ing the correlation between goroutines and pipeline stages.
It is preferable to model state-holding loops manually, using
multiple goroutines and channels as in Figure 1.

Stage 1 Output Stage

for data := range s1
rangesti o for data := range s2 {

s2.<-data fmt.
) }
s1<0

for data := range s0 {
select {
case val := <- set:

s0

st < val
set default:

s1<data+1
¥

Stage 0

Fig. 1. An asynchronous counter with parallel load, implemented with a
closed loop and an uncoupled set channel in Go. It uses conditional reading
with the select statement.

III. THE ARV PROCESSOR ORGANISATION

The organisation presented in Figure 2 was designed using
the modelling technique described in Section II. It is an
asynchronous super-scalar pipeline implementing the RISC-V
32-bit Integer Architecture, also known as RV32I. The pipeline
employs speculative execution and a register locking scheme
to deal with branches and hazards.

Control Loop

Fig. 2. Block diagram representation of the ARV execution pipeline
organisation. Arrows represent handshake channels and blocks represent
pipeline stages.

ARV is composed by communicating elements organised
in two nested loops, forming the Execution Pipeline: (i) the
outermost loop is an uncoupled Control Loop (CL), respons-
ible for fetching, decoding and terminating instructions; and
(1) the Datapath Loop (DL), which retrieves, manipulates and
stores data.

Additionally, three other auxiliary loops are present: (i) the
Program Counter Loop is responsible for keeping track of the

382

Program Counter (PC) and stream tag; (ii) the Valid Tag Loop
is responsible for holding the valid tag identifying the current
valid instruction flow; (iii) and the Register Locking Loop
(RLL), responsible for identifying registers being modified by
instructions currently under execution.

As usual, the PC is used for fetching new instructions and
as an operand in some instructions, while the valid tag is used
by the Retire Unit to identify and cancel instructions that have
been invalidated by branches or exceptions.

The basic flow of instructions in the pipeline is a follows:
(i) the fetch address feeds the Memory Instruction Port; (ii)
the fetched opcode, PC and stream tag values associated with
the instruction feed the Decoder Unit, which identifies the
operands and the operation; (iii) the Operand Fetch Unit is
fed. It reads the operands from registers, possibly holding
the instruction execution to avoid hazards. Once ready, the
instruction target register address feeds the Target Register
Unit, which locks the target register for reading, while the
operation feeds the Dispatcher Unit; (iv) the Dispatcher Unit
records the instruction in the Program Ordering Queue and
sends the instruction to the appropriate Execution Unit; (V)
the selected Execution Unit is where the instruction is in fact
executed and results wait for collection; (vi) the Retire Unit re-
orders instructions as defined by the Program Ordering Queue
and verifies conditions for the achievement of instructions
by asserting their validity tag; (vii) the instruction finishes
execution as the Register Bank stores the result from the Retire
Unit to the address read from the Target Register Queue,
unlocking the target register for reading; (viii) optionally,
branches are taken, updating the PC and the Tag.

The Control Loop (CL) is the system outermost loop. It is
responsible for controlling the execution flow of programs. Its
entry point is the Program Counter Loop and its end point is
the Valid Tag Loop. It shares a path with the Datapath Loop
(DL) from the Operand Fetch Unit to the Retire Unit.

Every instruction is associated with a PC and Stream
Tag value. The PC is used as address to fetch instructions
from memory and as an operand in some instructions. The
Stream Tag identifies instructions that must be cancelled due
to branching and/or exceptions. It does so by counting the
number of times the program counter is set at both ends,
sending the value kept at the Program Counter Loop along the
instruction in the pipeline. Next it compares the tag received
with the instruction to the tag kept in the Valid Tag Loop. If
the Stream Tag received from the Program Ordering Queue
by the Retire Unit does not match the updated value kept by
the Valid Tag Loop, any program counter updates, memory
or register writes performed by the instruction are not issued,
effectively cancelling the instruction.

The Retire Unit increments the valid tag and issues the
branch target to the Next Program Counter and Tag Calculator
(NPC) through a buffered uncoupled channel when a branch
or exception occurs. When the NPC receives the branch target,
it increments the Stream Tag and sets the PC accordingly.

The branch target channel is uncoupled, since NPC checks
the validity of the input and acts accordingly, instead of
blocking while it waits for a valid input. As the path closing the
loop contains an uncoupled channel, the loop itself is called an
uncoupled loop. A buffer is used in the branch target channel

to avoid deadlocks created by race conditions in the uncoupled
input, possibly eliminating the available bubble that allows
token mobility in the loop.

The branch target uncoupled channels close the CL, making
it an uncoupled loop. This is important due to how the DL
deals with pipeline hazards, which occur because the DL stalls
decoding and fetching of instructions while it inserts bubble
pseudo-instructions. This fact increases the number of tokens
and saturates the CL.

The Decoder Unit is responsible for three tasks: (i) de-
termining the instruction format, used by the Operand Fetch
Unit to identify instruction operands; (ii) decoding the three
register fields to a one-hot register address used by the
Execution Pipeline; (iii) identifying the instruction operation
the Execution Unit performs.

The Datapath Loop (DL) is a closed loop with six logical
stages: (i) the Operand Fetch Unit; (ii) the Dispatcher; (iii)
first and (iv) second stages of the Execution Unit and Program
Ordering Queue; (v) the Retire Unit; (vi) the Register Bank.

The DL holds a constant amount of 5 tokens. New instruc-
tions are admitted in the loop as old instructions are retired.

The Operand Fetch Unit is the entry point of instructions
into the DL. It is responsible for retrieving data from the Re-
gister Access Controller and completing immediate operands.
It also stalls the pipeline in case of data hazards.

Data hazards are avoided by locking registers that are
waiting for data to be written. If an instruction attempts to read
a locked register, the Operand Fetch Unit stalls the decoding
of new instructions and inserts bubbles in the pipeline.

The Register Locking Loop (RLL), detailed in Figure 3
tracks the currently locked registers. It is composed by a 4-
stage Target Register Queue, an OR logical stage and the
Operand Fetch Unit. The DL and RLL are closed loops of
the same length, running in parallel. Every token in the RLL
corresponds to a token in the DL.

instructions and operands’
to Dispatcher

Operand Fetch Target Register || Target Register Target Register Target Register
instruction Unit fargel_register | Queue Stage 0 Queue Stage 1 Queue Stage 2 Queue Stage 3

from decoder

Register Lock
Loop

OR Operator

locked_register

register read data register write address

Register Bank

register read address register write data and enable signal

from Retire Unit

Fig. 3. Block diagram detailing the Register Locking Loop and the Operand
Fetch mechanism.

After retrieving all operands, the instruction has all the
information to complete execution. It then follows to the
dispatcher unit, where it is steered to the execution unit
responsible for accomplishing it.

The pipeline uses a fan-out distribution characteristic of
asynchronous circuits. Instructions are only sent to units
involved in their execution. An interesting aspect of this is
the potential for energy saving, since units not operating on
an instruction need not produce switching activity.

The fan-out unit selection scheme introduces problems
when there is a discrepancy in the individual delays of distinct

383

TABLE I
PERFORMANCE ESTIMATES EXTRACTED FROM SIMULATION

riscv-test test-hanoi

Bubble insertion loss | 94.4% 120%
Branch misprediction loss | 48.8% 15%

Bypass Unit Utilisation | 50% 59.8%

Adder Unit Utilisation | 18% 26.4%
Logic Unit Utilisation | 1.6% 0.6%
Shifter Unit Utilisation | 4.1% 0.9%
Branch Unit Utilisation | 13% 8.8%
Memory Unit Utilisation | 12.9% 3.3%

units. This may cause instructions to execute out of order. As
a consequence, instruction reordering techniques are required
to guarantee correct execution.

The Program Ordering Queue helps to perform the reorder-
ing of instructions. When the Dispatcher issues an instruction
to one of the execution units, it registers which unit was
selected along with the stream tag in the Program Ordering
Queue. The Retire Unit reorders instructions by collecting
results from the Execution Units in the order determined by
the Program Ordering Queue.

Since an instruction reordering mechanism is introduced,
it becomes simple to improve throughput by implementing
parallel execution. To achieve a theoretical best case of 2-
instruction parallelism, the Program Ordering Queue is two-
stage deep. Besides, to accommodate the scenario of two
instructions being dispatched to a same Execution Unit in
sequence, units are each two-stage long.

IV. VALIDATION AND EXPERIMENTS

The model was validated to correctly implement the RISC-
V ISA by running two bare-metal applications: (i) a port
of the official RISC-V RV32I compliance test (riscv-test);
and (ii) a simple C application implementing a non-recursive
solution for the tower of Hanoi problem (test-hanoi). The
RV32I compliance test is a set of assembly routines designed
by the RISCV-V Foundation to test the correct implementation
of the RISC-V ISA. It does so by testing each instruction at
corner cases and printing on the screen the result of each test.
Tower of Hanoi is a simple C program employing function
calls, loops and memory access. It was compiled using GCC
with optimisation flags tuned to our processor implementation.
The idea of this test was to stress the pipeline with a regular
program workload, checking for unpredicted hardware bugs
and providing real world performance estimations.

To allow software execution, the external memory was mod-
elled using a Go byte vector mapped to an image file contain-
ing the program. The memory vector was encapsulated using
goroutines that provide the asynchronous interface expected
by the processor model. Two virtual registers were included
in the processor memory address space to print results and
terminate execution. Pipeline performance estimations were
extracted using counters in key pipeline stages. From this data
it is possible to establish losses due to branch misprediction,
bubble insertion and execution unit utilisation.

Each test was repeated 100 times and a simple arithmetic
mean was used to account for the non-deterministic nature of
parallel execution. The results are presented in Table 1.

V. CONCLUSIONS AND FUTURE WORK

The ARV processor model took three months to go from
conception to validation. Results demonstrate that the model
correctly implements the RISC-V RV32I architecture.

Go proved a language adequate to model complex hand-
shake channel-based circuits. The Authors thus believe jus-
tified its use for design validation as a hardware description
language. The source code, tools and experiments described
here and other material (such as the first Author’s end-of-
term dissertation) are available openly in the Github de-
velopment platform (see https://github.com/marlls1989/arv).
Ongoing work comprises developing tools to automatically
transform the high level Go description into lower level netlists
using asynchronous templates.

Preliminary performance results obtained from the model
indicate there is room to optimise it, even though no precise
timing measurements can in fact be extracted at this point. The
timing analysis required for performance evaluation depends
on the proposal of a more detailed model, with features that
allow estimating signal propagation delays. Such finer-grain
models are the target of ongoing work. One of the points
to address for optimising the model are in reducing branch
mispredictions. Ongoing work addresses the development of
more sophisticated branching prediction mechanisms.

The Authors suggest that the cost of bubbles in asynchron-
ous templates are inferior to the cost of additional hardware
to avoid hazards, ongoing work is evaluating this hypothesis.
Improvements to the register locking and operand fetching
mechanisms can further reduce the cost of bubbles.

The Authors are also currently exploring the necessary steps
to implement the proposed organisation in real silicon using
asynchronous design techniques.

REFERENCES

[1] S. M. Nowick and M. Singh, “Asynchronous Design — Part I: Overview
and Recent Advances,” IEEE Design and Test, vol. 32, no. 3, pp. 5-18,
2015.

[2] K. Slimani, J. Fragoso, M. Es Sahliene, L. Fesquet, and M. Renaudin,
Low-Power Asynchronous Processors. Boca Raton, FL: Taylor and
Francis, 2006, ch. 5, pp. 5.1-5.20.

[3] J. Sparsg and S. Furber, Principles of Asynchronous Circuit Design — A
Systems Perspective. Springer, 2001.

[4] C. A. R. Hoare, Communicating Sequential Processes. Prentice
Hall International, 1985. [Online]. Available: http://www.usingcsp.com/
cspbook.pdf

, “Communicating Sequential Processes,” Communications of the
ACM, vol. 21, no. 8, pp. 666677, Aug. 1978.

[6] A. Bardsley, “Balsa: An asynchronous circuit synthesis system,”
Master’s thesis, University of Manchester, 1998. [Online]. Available:
http://apt.cs.manchester.ac.uk/ftp/pub/apt/theses/bardsley_mphil.pdf

[7] P. A. Beerel, G. D. Dimou, and A. M. Lines, “Proteus: An asic flow for
ghz asynchronous designs,” IEEE Design Test of Computers, vol. 28,
no. 5, pp. 36-51, Sept 2011.

[8] A.J. Martin and M. Nystrom, “CAST: Caltech Asynchronous Synthesis
Tools,” California Institute of Technology (CALTECH), Tech. Rep.,
June 2004. [Online]. Available: http://www.async.caltech.edu/Pubs/PS/
2004 _turkuacid_CAST.ps

[9] A. Waterman, Y. Lee, D. A. Patterson, and K. Asanovié, “The RISC-V

Instruction Set Manual, Volume I. User-Level ISA, Version 2.1,”

University of California, Berkeley, Tech. Rep. UCB/EECS-2016-118,

May 2016. [Online]. Available: http://www2.eecs.berkeley.edu/Pubs/

TechRpts/2016/EECS-2016-118.html

Google Inc., “The Go Programming Language,” 2012.

Available: https://golang.org

(3]

[10] [Online].

384

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

