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ABSTRACT
Asynchronous quasi-delay-insensitive (QDI) circuits are a promis-
ing solution for coping with aggressive process variations faced by
modern technologies, as they can gracefully accommodate gate and
wire delay variations. Furthermore, due to their inherent robustness,
such circuits are also promising for deep voltage scaling applica-
tions, where delays are orders of magnitude larger. However, QDI
design has an Achilles heel, which is its associated area and power
overhead penalties. These can hamper the adoption of this kind
of design in current and future technologies. A recently proposed
asynchronous circuit design template, the Sleep Convention Logic
(SCL), does reduce these overheads significantly. SCL is an enhance-
ment of the Null Convention Logic, a well-known asynchronous
circuit QDI design template. This paper analyzes the architecture
of circuits based on SCL, identifies and models associated timing
constraints that were not described before. The paper also shows
experimentally that respecting such constraints is fundamental to
guarantee correct operation of these circuits, especially under low
voltage supplies.
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1 INTRODUCTION
Asynchronous circuit design is becoming an increasingly important
topic for the VLSI research community. These circuits can tolerate
process, voltage and temperature variations more easily than their
synchronous counterparts [1, 10]. In fact, by avoiding the use of a
global clock signal, it is possible to reduce the number of timing
assumptions required to fulfill at design time, or even eliminate
some of these assumptions altogether. This leads to more efficiency
in coping with the growing amount of timing uncertainties arising
in modern technologies. These circuits rely on the use of local hand-
shake protocols for control and sequencing of events [1]. Therefore,
asynchronous logic is only active when and where required. In other
words, parts of the circuit can be quiescent while data flows only
through the path that is required to be active, potentially providing
power savings and making it easier to cope with contemporary
power efficiency requirements.

Differently from synchronous circuits, asynchronous circuits are
implemented using one of many available distinct design templates.
However, Martin and Nyström [10] cite that practical circuits most
often employ 1-of-n, 4-phase, quasi-delay-insensitive (QDI) tem-
plates. This is because these allow easier design and timing closure
and are more robust. Moreover, due to its robustness to PVT varia-
tions, QDI design has been introduced as an alternative to cope with
the side effects of aggressive techniques such as voltage scaling and
subthreshold operation, deemed for extremely low power applica-
tions. Because QDI design often requires special cells, distinct from
those available in commercial standard cell libraries, and because
such templates are not naturally supported by conventional EDA
tools, QDI design is far from reaching wide adoption today.

Among the several QDI templates proposed to date, a recent
one, called Sleep Convention Logic (SCL), constitutes an interesting
alternative to reduce QDI circuits area consumption and increase
performance [11]. The SCL template inherits several aspects from
its basis template, the Null Convention Logic (NCL) and combines
these with a fine-grained sleep logic architecture, which allows
logic simplification that leads to significant area gains. QDI circuits
are known to imply significant area overhead, around 2 to 4 times
the area of a equivalent synchronous circuit. SCL can reduce this
overhead and others associated to it, such as leakage power. The
proponents of SCL [11] point that its early completion scheme helps
in achieving higher throughput.
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Despite its advantages, the early completion scheme adds timing
constraints that are usually absent in more traditional QDI tem-
plates, but this has been so far overlooked. This occurs due to the
fact that using early completion schemes imply the acknowledge
signal can fire before or at the same time as data is stored. Thus,
if the acknowledge signal is propagated and processed faster than
the concurrent data propagation through a storage element, data
can be corrupted. The SCL template relies on the result of a race
between the acknowledgement signaling and data storage. Propo-
nents of SCL do pinpoint the existence of this constraint, but do
not deeply explore it in the available literature. This work analyzes
the SCL timing constraint and estimates how it impacts the SCL
architecture. The analysis quantifies the criticality of this timing
constraint during circuit operation, and pinpoints the gates and
wires that compose the critical paths of the mentioned race. Exper-
iments with three commercial technologies (CMOS 180nm, CMOS
65nm and FDSOI 28nm) under two widely distinct supply voltage
regimes (nominal and subthreshold) demonstrate the importance
of considering the identified timing constraint during the design of
SCL circuits.

2 QUASI-DELAY-INSENSITIVE DESIGN
Among the different asynchronous design templates available in the
literature, bundled-data (BD) and quasi-delay-insensitive (QDI) are
the main template families. An advantage of BD design templates
is that these can benefit, to some extent, of the use of conventional
design tools due to its similarity to synchronous design. The draw-
back of BD design is that such templates still require extra care with
the definition and verification of timing constraints existing among
data and control signals. An alternative to avoid these BD design
issues is to employ delay-insensitive (DI) channels [15], which is
the main strategy defining QDI design templates, associated with
appropriate communication protocols. In fact, QDI design is re-
ported by Martin and NystrÃűm as the most practical template,
due to its relaxed timing constraints [10]. It requires the choice of
handshaking protocol and of a DI code to represent data.

One of the most used DI codes is called dual-rail [10]. Channels
based on this code represent each data bit with two wires, which
of course brings the need of extra hardware, but relaxes timing
matching. A typical dual-rail channel works as follows: use two
wires d.t and d.f to represent each data bit and employ a return-to-
zero (RTZ), 4-phase, handshake protocol [13]. Figure 1(a) shows the
encoding convention for this channel. To represent a ’1’ logic level,
it is necessary to set d.t high and d.f low. The representation of a
’0’ logic level assumes d.t is set low and d.f high. Both signals set to
1 is an invalid state that must never occur. Figure 1(b) displays an
example of operation for a 2-bit (four data wires) channel operation.
Note that there is no control signal indicating data validity (such
as a request signal), given that each bit can be 0, 1 or be absent
(denoted by the occurrence of the spacer encoding). Data is valid
when, for every data bit, d.t and d.f have distinct logic values. The
communication protocol requires that between each pair of valid
data a spacer must occur. In this RTZ example, all wires return to
zero after sending data.
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Figure 1: The encoding basis for QDI circuits, the dual-rail
code and a selected protocol: (a) Conventions for encoding
a 1-bit dual-rail channel using the RTZ protocol; (b) An ex-
ample of waveform depicting the transmission of codeword
"11" followed by codeword "10", using a 2-bit, dual-rail chan-
nel based on the 4-phase, RTZ protocol.

Figure 1(b) shows the waveform that corresponds to the activity
of sending two 2-bit data through an RTZ 4-phase handshake dual-
rail channel. Initially, all data wires contain 0s, indicating a spacer,
also called absence of data or empty state or null. The receiver
announces it is available to get/process new data, by setting its
ack control signal to 0. Next, the value “11” is sent (d0.t and d1.t
are set to 1 and d0.f and d1.f are set to 0). Note that the receiver
computes when the new input data is valid, and announces it to the
sender by raising ack to 1. After data reception is acknowledged
by the receiver, the sender substitutes data bits by spacers. Then,
the receiver acknowledges the reception of the spacer and that
its has processed the data sent, by setting ack back to 0. The next
data transmission repeats the process for the data value “01”. The
denomination 4-phase protocol should now be clear, since 4 steps
are included in each data communication: (1) data sending; (2)
data reception recognition; (3) spacer sending; (4) spacer reception
recognition.

Several other codes and protocols exist [1]. This code and behav-
ior, combined with specific circuit structures defines a specific QDI
design template.

2.1 The QDI Limitation
In a QDI circuit, gates and wires can have arbitrary delays. However,
differently from strictly DI circuits [9], there is a set of designated
wire forks that must respect an isochronic timing constraint. Such
isochronic forks imply the requirement that the delay to different
ends of these must be the same [9]. Sparsø & Furber [13] explain
the isochronic fork as follows. Consider Figure 2. It shows a circuit
with three logic blocks (B0, B1 and B2) that are interconnected by
three wire segments, each with a specific delay (d0, d1 and d2).
The structure shows there is a fork F through which any value
produced by the output of the logic block B0 passes before reaching
the respective inputs of blocks B1 and B2. F begins after the wire
delay d0 and has two ends, each one with a wire delay: d1 and
d2. Following the definition proposed by Martin [9], if wire delays
d2 and d3 are identical (d1 = d2), the circuit in Figure 2 respects
the isochronic fork constraint and is thus called an isochronic fork.
Despite its elegance, this definition has been later refined to ease
the practical implementation and analysis of QDI circuits.
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In 1995, Manohar and Martin proposed an enhanced definition of
isochronic fork and of the isochronicity assumption [8]. Consider the
same structure presented in Figure 2. Consider also, without loss
of generality, that any change in F must be acknowledged (cause
a change) at either output o1 or output o2 but not necessarily on
both. According to Manohar & Martin [8], if fork F is isochronic,
it means that observing an acknowledgement in either output is
sufficient to assume that both B1 and B2 have processed the change
in F.

For example, when a transition on the input of B1 (after delay
d1) has been acknowledged by a transition on o1, then a transition
on the input of B2 (after delay d2) has also completed, even though
o2 may not have acknowledged it. This is called the isochronicity as-
sumption. More specifically, consider that a rising transition occurs
in F (F ↑). This transition will cause f 1 ↑ and f 2 ↑, respectively
after delays d1 and d2. Next, assume that only B1 generates a transi-
tion in its output (o1 ↑), while output o2 keeps the same logic level.
In this case, it is not possible to observe at o2 whether the transition
f 2 ↑ was processed by B2. However, if the fork is isochronic, after
seeing an effect in o1 due to F ↑, it is safe to assume that B2 already
processed transition F ↑ or that it will process this as expected by
the design.

B0

B1

B2

d0

d1

d2

F

f1

f2

o1

o2

Figure 2: Defining isochronic forkswith a lumped delaywire
model [13].

In parallel with Manohar & Martin, van Berkel et al. also pro-
posed the definition of extended isochronic fork [14]. According to
these authors, the fork in Figure 2 is an extended isochronic fork if
the delay difference between F → o1 and F → o2 is smaller than
the delays of the gates driven by the output nodes o1 and o2. That
means that all output nodes must be stable when the following
gates are triggered. An important aspect is that this definition does
not consider the wire delays of the fork only, but also the gate de-
lays. This is different from the original definition of the isochronic
fork, where gate delays were not considered.

To conclude this discussion, it is relevant to ask what conse-
quences could result from violating an isochronic fork assumption.
Returning to Figure 2, assume that F is used to trigger the genera-
tion of related control and data signals o1 and o2, respectively in
blocks B1 and B2, which work based on the fact that F is isochronic.
If F is not isochronic we could e.g. generate the control signal o1
before data signal o2 is stable. This could clearly lead to data cor-
ruption in downstream hardware using o1 and o2. Section 4 shows
the SCL design template produces isochronic fork constraints that
need to be carefully designed.

3 SLEEP CONVENTION LOGIC
SCL is a QDI asynchronous logic design template [11] inspired on
NCL [2]. Its structure has two main characteristics: (i) use of NCL
gates with early completion [12] and fine-grained multi-threshold

CMOS (MTCMOS) power-gating [16]. In fact, SCL was initially
called Multi-Threshold Null Convention Logic (MTNCL) [16]. Com-
pared to NCL, SCL brings gate-level and architectural that may
result in area and performance advantages [11]. As an example,
Figure 3 shows a 3-stage SCL pipeline. Each stage contains a com-
binational logic block F , a register R, a completion detectorCD and
a settable C-element1 C .2
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Rn-1 Fn-1

set
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ack(n)

CDn-1

S
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S

Stage n

Rn Fn
S
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S
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Rn+1 Fn+1
S

CDn+1

S

C

S

set set

data_i(n) data_i(n+1)data_i(n-1)

ack(n+1)

sleep(n-1)

ack(n+2)

data_i
(n+2)

sleep(n) sleep(n+1)
ack(n-1)

sleep(n-2)

Figure 3: Structure of a 3-stage SCL pipeline.

The SCL template integrates the acknowledgement signal ack
with the sleep mechanism. Basically, focus attention on Stage n.
When this pipeline stage acknowledges the previous Stage n − 1, it
also resets the sleep signal, which takes Stagen out of sleepmode. To
better understand the SCL pipeline operation, consider the structure
in Figure 3 in a sleep state: all data_i(n) = null (contain a spacer)
and all ack(n) = sleep(n) = 1, i.e. all pipeline stages are in sleep
mode. Initially, when a first data (data_i(n−1) and sleep(n−2) = 0)
arrives, sleep(n − 1) is reset, awaking CDn to check the validity of
data_i(n). When data_i(n) presents a valid data token,CDn asserts
its output, which forces the output of the C-element of Stage n to
0 (ack(n) = 0). Remember that ack(n + 1) = 1. At this moment,
two concurrent events take place, as the output of the C-element
of Stage n forks to two paths: (a) the acknowledge signal ack(n) is
lowered, signaling that stage n − 1 confirms the data validity and
(b) the stage n sleep signal is disabled (sleep(n) = 0), awaking Rn ,
Fn and CDn+1. Enabled, register Rn and the combinational block
Fn can now propagate their inputs, generating a valid data token
in data_i(n), which will be detected by CDn+1. Next, stage n + 1
can execute the same process as described previously for Stage n.

The combinational logic blocks Fi consist basically of SCL gates,
which couple a threshold function with positive integer weights
assigned to inputs and power-gating logic. Compared to NCL gates,
SCL gates present a notable area reduction, due to the fact that the
latter only use two logic blocks from the original definition of NCL
gates: the HOLD0 and SET [2]. The remaining logic blocks (HOLD1
and RESET) are replaced by the sleep logic, which is responsible
for generating logic 0 at the output. This optimization removes
the need for using feedback logic present in most NCL gates, to
provide the NCL hysteresis mechanism. An SCL gate is named
according to its threshold value, equivalent to what is used in NCL
gates. Following the terminology presented in [11], an SCL gate
is denoted by THmnWw1, ...,wn , where n is the number of gate
inputs,m is the gate threshold, and w1,w2, ...,wn are weights of

1This is a C-element with inverted output. When set=0, both inputs at 0 force output
to 1. Conversely, both inputs at 1 force the output to 0. Otherwise, the previous output
is kept unchanged. Of course, set=1 alone forces 1 to the output.
2In [11], authors refer to this C-element as "resettable", which is inaccurate. The SCL
template requests that all C-element outputs are 1 to maintain all pipeline stages in
sleep mode (sleep = 1).
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Figure 4: An example of SCL and NCL gate comparison us-
ing the TH23 gate: (a) transistor-level implementation of the
TH23 SCL gate; (b) the TH23 gate symbol and (c) transistor-
level implementation of the TH23 NCL gate. Note that both
SCL and NCL implementation use the same symbol, except
the fact that the SCL version has a additional input: the sleep
signal, not shown in the symbol.

HOLD-1

In
Q

S

S

S

SLEEP
LOGIC

S

In
S

Q

(a) (b)

Q
Q

Figure 5: A single-bit SCL register: (a) gate-level implemen-
tation; (b) transistor-level implementation. Note that the
NMOS gating uses the negated value of S (S), which implies
that an inverter must be added to the structure.

inputs if the weights are > 1. If the weight = 1, usually its value is
omitted from the classification. To illustrate this, Figure 4 shows
the transistor-level implementation of a TH23 SCL and a TH23
NCL gates, each with threshold=2, 3 inputs, and all input weights=1
(accordingly, weight information is omitted).

A completion detection block CD is responsible for detecting
valid data and spacers in its input data_i . Its implementation is sim-
ilar to completion detectors from NCL, except for the fact that SCL
completion detectors employ SCL gates, which allow incorporating
the sleep logic, further reducing static power consumption.

Figure 5 presents the structure of a single-bit SCL register. The
SCL register employs a two-level logic with sleep transistors and
an unconventional latch. Figure 5(a) shows the gate-level repre-
sentation of the register. Basically, the SCL register uses two NOR
gates, where the first NOR gate has an NMOS gating and the sec-
ond NOR gate partially implements the sleep logic. Note that the
first NOR receives the output Q as input, implementing the latch
feedback signal. In addition, Figure 5(b) brings the transistor-level
representation of the register, highlighting the sleep logic and the
feedback structure (HOLD-1).

4 THE SCL ISOCHRONIC FORK
Except for the fact that early completion improves the architecture
throughput, its implementation brings with it timing constraints.
The idea to acknowledge the previous pipeline stage before storing

Stage n+1

S S

S

Stage n

S S

S

Stage n-1

S S

S

Stage n

Rn

S

 CDnS

Cn

Stage n-1

Rn-1

S

Fn-1

S

 CDn-1S

Cn-1

WDsleep(n)

WDack(n-1)

WDsleep(n-1)

sleep_delay

wakeup_delay

WDdata(n-1)

Fork

Figure 6: Delay analysis of the SCL isochronic fork between
two pipeline stages.
data in a current pipeline stage may compromise the circuit QDI
functionality. This can happen if the previous pipeline stage resets
(i.e. produces NULL at its output) before the register of the current
pipeline stage stores valid data. This problem can be visualized in
Figure 6, which focuses on the two first stages of the SCL pipeline
presented in Figure 3. Suppose that Stage n receives valid data at its
input and CDn detects it. Consequently, the inverted C-element of
Stage n lowers its output. At this point, two concurrent events take
place, as the output of this gate forks to two paths: (1) The Stage
n sleep signal is disabled, awaking pipeline Stage n to store and
compute its input data, output of Stage n − 1; (2) The acknowledge
signal is sent to the previous pipeline stage (Stage n − 1), forcing
it to sleep and reset all its logic blocks to null. If Stage n awakes
faster than the reset process of Stage n − 1 completes, register Rn
should sample and store the valid data correctly, and the pipeline
will operate normally. However, if Stage n − 1 is able to sleep and
reset all its logic before the awaking of Stage n, register Rn may not
be able to correctly store the new data. This possible functionality
failure implies that the architecture must respect an isochronic fork
constraint that it is not entirely covered by previously published
works. From this analysis, it is possible to observe that there is a
timing assumption between the awakening of registers and the
sleeplessness of logic blocks. In fact, recalling Section 2, this as-
sumption relies on the isochronicity of the fork in the output of
the inverted C-element. To quantify this timing assumption, Fig-
ure 6 shows the two concurrent paths between Stage n − 1 and
Stage n: a continuous thick (red) path and a dashed (blue) path,
both comprised by a sequence of wires and logic components. The
continuous thick path represents the delay path to wake up Stage n
and incorporates three delay elements: a wire delayWDsleep (n),
the rise propagation delay of register Rn ↑ and the register hold
time Rn_hold . Hence, it is possible to indicate that the wake up
delay of Stage n amounts to:

wakeup_delay(n) =WDsleep (n) + Rn ↑ +Rn_hold (1)

The dashed path represents the delay path to put to sleep Stage n−1
and incorporates five delay elements: (i) the wire delayWDack (n −
1); (ii) the propagation delay of the inverted C-element of Stage
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n−1; (iii) the wire delayWDsleep (n−1); (iv) the fall delay of combi-
national logic block Fn−1 ↓; and (v) the wire delayWDdatapath (n).
Note that in this case the propagation delay of Rn need not be
considered. As both register and combinational logic are reset dur-
ing the sleep process, the combinational logic will reset its output
independently of the delay of the register. In that way, the sleep
delay of a Stage n can be equated to:

sleep_delay(n) =WDack (n) +Cn +WDsleep (n)+
Fn ↓ +WDdatapath (n)

(2)

Consequently, the timing constraint between two contiguous pipeline
stages is given by the following inequation:

wakeup_delay(n) ≤ sleep_delay(n − 1) (3)

This Inequation states that the wake up delay of pipeline Stage n
must be less than or equal to the sleep delay of pipeline Stage n − 1.
In words, Equations 1 and 2 combine to determine which delay
element of a delay path is to be manipulated to satisfy the timing
constraint in Inequation 3.

In case the circuit does not respect the timing constraint, it is nec-
essary to manipulate the delay elements of the fork, increasing (or
decreasing) delay values. This can be done by establishing timing
constraints to an EDA tool to add (optimize) delay elements of the
fork. However, it is important to understand the trade-offs that could
come to play as delay is added (or reduced) in the fork paths. Hence,
each delay element must be analyzed individually to point the neg-
ative and positive aspects of increasing (decreasing) its values. We
analyze two alternatives to satisfy the timing constraint proposed
by Inequation 3: (i) increasing delay values of the sleep_delay(n−1);
and (ii) decreasing delay values ofwakeup_delay(n).

Focusing on sleep_delay(n − 1), consider increasing the wire
delayWDack (n − 1), which connects the C-elements. This can be
a valid option at the cost of a higher ack propagation delay. This
same trade-off occurs whether the delay propagation of the Stage
n − 1 C-element is increased. Another option is to increase the
sleep delay of the combinational block Fn−1 to reset its output.
Fn−1 is out of the ack path and will not affect the ack propaga-
tion delay. However, this implies that the sleep logic in the SCL
gates should be resized and, consequently, will affect the datapath
delay. Note that the same effect happens whetherWDdatapath
is increased. As a last resort, the WDsleep (n − 1) could be in-
creased and the ack propagation delay would not be affected, nei-
ther the datapath’s delay. Unfortunately,WDsleep (n) composes the
(wakeup_delay(n−1)) and its increasemay also affect the isochronic
forks of previous stages. For instance, ifWDsleep (n−1) is increased
to satisfywakeup_delay(n) ≤ sleep_delay(n − 1), it also increases
wakeup_delay(n − 1). This increase may affect the previous isocro-
honic fork constraint wakeup_delay(n − 1) ≤ sleep_delay(n − 2),
requiring more delay manipulations in previous isochronic forks.
This may cause a ripple performance degradation effect on previous
stages. All these points suggest that manipulating sleep_delay(n−1)
brings performance trade-offs, specially when interdependent delay
elements between fork paths are manipulated.

The second alternative is to decrease the delay value of the
amountwakeup_delay(n). In this case, there are only two options:
decreaseWDsleep (n) or/andRn . As before, manipulating the amount
WDsleep (n) may be a complex option, due to the interdependence

between interacting fork paths. DecreasingWDsleep (n) will not
only decrease wakeup_delay(n) but also sleep_delay(n), wherein
the latter must be a higher value thanwakeup_delay(n + 1). This
manipulation forces the next pipeline stage timing constraint to
have lower delay values and may not be achievable, if the next fork
paths cannot be optimized. Register Rn could be optimized whether
multiple drive strengths are available to decrease the register delay.

4.1 An Analysis of Process Variation Effects
Another possible set of problems while operating with the SCL
isochronic fork are the issues caused by current variations, which
imply that only guaranteeing that

wakeup_delay(n) ≈≤ sleep_delay(n − 1) (4)

may not be enough. Delays inside the circuit can change arbitrarily
due to current variations, and the isochronic fork may not always
respect the timing constraint defined by Equation 3, if delay vari-
ations are too significant. This determines the need to consider
margins on delay paths to guarantee circuit functionality, even
with a certain amount of delay variations on its logic and wires. In
order to support current variations, Equation 5 modifies Inequa-
tion 3, adding a marginVarmarдin to thewakeup_delay(n) branch.

wakeup_delay(n) +Varmarдin ≤ sleep_delay(n − 1) (5)

In super-threshold operation, the current variation of transistors
can be translated to a Gaussian distribution N (µ,σ ), where µ repre-
sents the mean value of the distribution and σ the standard devia-
tion. Often, the confidence interval is defined by a n × σ distance
from µ, which can defineVarmarдin in Equation 5. According to [3],
using µ±3σ as endpoints defines an internal confidence that covers
all samples with a 99.7% probability. For subthreshold operation,
however, the relation of endpoints with the standard deviation is
not straightforward. As subthreshold currents display an exponen-
tial dependency on the threshold voltage, the subthreshold current
variation translates to a log-normal distribution [7]. Thus, it would
be inaccurate the usage of a confidence interval such as µ ± 3σ to
determine the endpoints. Fortunately, it is possible to overcome
this issue by transforming a log-normal distribution to a Gaussian
distribution, allowing correlation between n × σ with a log-normal
confidence interval. Considering the approach demonstrated in [3]
and a confidence interval of 3σ , Varmarдin can be defined as:

Varmarдin = µ ± 3σ , for nominal operation

Varmarдin = 10µ±3σ , for subthreshold operation
(6)

4.2 The Influence of Wire Delays
It has been shown that wire delays cannot be disregarded as tran-
sistor sizes shrink [5]. There are two kinds of wires: local ones,
which dominate implementations, and global ones. Local wires in
recent technologies can either track the gate delay or be larger than
gate delays [5]. These wires are short and often used to route, for
instance, internal signals of standard cells. Global wires, in turn,
are a bigger problem. These wires are used to route among logic
blocks, and usually require optimizations, such as the addition of
intermediate repeaters [5].
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Figure 7: An analysis of the delay variation behavior for an
SCL register cell: (a) the propagation delay variation of the
SCL register; All distributions are normalized to the mean,
three process corners are considered (FF, TT, SS) together
with two supply voltages (nominal and subthreshold); (b)
the interval 3σ distance for the distributions in (a).
5 EXPERIMENTS
The experiments described here examine the SCL isochronic fork
timing constraint fulfillment in practice. Experiments are based on
the formal definition expressed by Inequation 3, derived in Section 4.
The objective of the experiments is to highlight the feasibility and
overheads associated with implementing SCL circuits while respect-
ing its timing constrains, subject to different conditions of voltage
supply, circuit structures and technology nodes. Moreover, the ex-
periments employ Monte Carlo simulations to consider within-die
variations (process corner mismatches).

In the analysis, only regular two-stage SCL pipelines are consid-
ered. These are sequentially connected as highlighted in Figure 6.
As the fork comprises several delay components, additional assump-
tions were set to simplify the analysis. First, all existing wire delays
in the fork are assumed equal (WDsleep (n) = WDack (n − 1) =
WDsleep (n − 1) =WDdatapath (n − 1)). Second, all delays in the
fork are normalized to the delay of the SCL sleep logic, which
is always implemented as a NOR gate in the output of all SCL
logic (see Figures 5 and 4). The normalization allows to relate all
fork delays, including gates and wires. As this analysis considers
different technology nodes, Fn−1 ↓, Rn ↑ and C-elements are imple-
mented in three different technology nodes: 180nm Bulk CMOS,
65nm Bulk CMOS and 28nm FDSOI-CMOS. Nominal and subthresh-
old operation (30% of the nominal supply voltage) are examined.
Besides, delay variations due to process corner mismatch are inves-
tigated. Considering nominal and subthreshold operation allows
determining the delay relations among logic gates (Rnorm and the
C-elements) and the delay variation Varmarдin in both supply
regimes.

Figure 7(a) illustrates the propagation delay variations for an
SCL register cell implemented in 65nm bulk CMOS technology. Re-
sults were obtained after 1000 Monte Carlo simulations using three
different process corners (SS, TT and FF) and two supply voltages
(1V and 0.3V). As expected, the SCL register displays larger delay
variations in the subthreshold regime when compared to variations
under nominal operation. Corners within a same supply voltage
had small normalized differences among themselves. This latter
observation can be better observed in Figure 7(b), which shows the
confidence distance 3σ of the distributions in Figure 7(a). While the
three process corners under nominal operation show a maximum

distance of around 10% from the mean value, in subthreshold this
maximum distance is around 35 to 40%. This higher delay variation
implies that if an SCL circuit is targeted to subthreshold operation,
higher values of Varmarдin must be considered.

Having established the delay variation parameters of each target
technology and the relation among all logic delays, Figures 8(a) and
(b) indicate when a Delay Element (DE) is required in nominal and
subthreshold regimes, respectively, depending of the wire delay
contribution versus the logic delay contribution in the isochronic
fork timing constraint. Note that both axis are normalized to the
SCL sleep logic delay. The "DE required" region covers positive
values of the delay element, while "No DE required" region covers
negative values. If the DE value is negative, the fork itself already
guarantees its isochronicity. Otherwise, a DE must be inserted
according to the normalized DE value. For 180nm, the fork has a
significant margin to respect its isochronic fork timing constraint
in nominal operation. If wires reach 40% or more of the delay of
the SCL sleep logic, no DE is required. Now, an insignificant wire
delay contribution (≤ 40%) in the fork implies the need to add a
DE. Fortunately, the overhead seems low as the normalized DE
value only reaches until 1. In other words, adding one or a couple of
buffers in the fork could fullfil the isochronic fork timing constraint.
Regarding 65nm and 28nm technology nodes in nominal operation,
the required margin increases slightly. In these cases, no DE is
required only if wires have a delay that is the same as the SCL
sleep logic or if this delay is larger than that. This type of scenario
is feasible, since the delay of wires has not decreased as much as
the delay of gates along the evolution of technology nodes. In fact,
Huang & Ercegovac [6] point out that wire delays can exceed the
gate delays in several critical paths and that these can also increase
depending the circuit size. However, if the fork comprises only
small wires, a DE is required and its implementation may require
several buffers.

As supply voltages reach the subthreshold region (see Figure 8 (b))
significantly higher margins are required to guarantee the fork
isochronicity. Consider again the 180nm technology node. The
isochronic fork timing constraint requires the insertion of a DE if
wire delays are 3× or less the SCL sleep logic delay. For 65nm and
28nm, wire delays must be, respectively around 4× and 5× larger
than the logic delay or more, to avoid the need for DEs. This pin-
points that the SCL template will face difficulties in respecting the
isochronic fork timing constraint without insertion of extra DEs.
In addition, the implementation of a DE in subthreshold operation
can require a large number of buffers, increasing area and power
overheads.

6 DISCUSSIONS AND CONCLUSIONS
The analysis presented in this work shows that delay variations
and wire delay contributions play a significant role in isochronic
fork timing constraints fulfillment for the SCL QDI asynchronous
design template. This was showed for SCL, but the work can easily
be generalized to be applicable to other QDI design templates. Op-
erating under both nominal and subthreshold regimes, the paper
showed a large wire delay at specific points in an SCL circuit can
guarantee the respect of the timing constraint, even in worst-case
delay variations scenarios.
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Figure 8: An analysis of the requirement for delay ele-
ments (DEs) considering three technology nodes: 180nm
bulk CMOS, 65nm bulk CMOS and 28nm FDSOI CMOS.
Axis X represents the delay value of all wires in the fork
(WDsleep ,WDack ,WDsleep ,WDdatapath ) and axis Y indicates
the required number of DEs: (a) nominal operation data and
(b) subthreshold operation data. Note that both axis are nor-
malized to the SCL sleep logic delay.

Obviously, wire delay contributions are directly tied to how far
from each other logic stages are. More specifically, consider the fork
branches from Figure 6. It is possible to claim that internal wires in
pipeline stages such asWDsleep most often connect to nearby logic
and, thus contribute with relatively small delays. However, when
wires establish connection between pipeline stages, wire delays
depend on how far the stages are from each other. In Figure 6,
the wires that connect pipeline stages are related toWDdata and
WDack , whereWDdata typically stands for a datapath that may
contain several bits (related to a chosen data width) andWDack
indicates a single wire acknowledgement control signal.

For example, if stage n − 1 and n implement the logic in the
communication interface of neighbor routers of a Network-on-
Chip (NoC), WDdata and WDack are probably long wires and
correspond to larger delay contributions. On the other hand, if stage
n − 1 and n implement physically neighbor logic stages, such as in
a pair of contiguous positions of a FIFO,WDdata andWDack will
probably correspond to short wires. As Section 5 indicates, a larger
wire delay contribution to the fork branches helps an SCL circuit
to respect its timing constraint, despite the fact that it also brings
higher propagation delay during the acknowledgement process
as a side effect. This implies that communication between distant
stages are more likely to respect the timing constraint without the
need of additional DEs, whereas communication between neighbor
stages can lead to requirements of DE(s) insertion. If the latter
scenario is true, the required DE(s) affects the circuit according to
the adopted supply voltage. For nominal operation, the required
delay element is usually small and can impact only lightly the circuit
characteristics. However, the addition of DEs under subthreshold
regimes is expected to cause a more important impact on circuit
features.

Considering the work conducted here, it is possible to devise two
mains aspects for ongoing and future work. First, the experiments
in Section 6 present a straightforward approach to model the wire
delays and relate them with logic gates. Despite its simplicity, this
approach does not provide a clear notion of howwire delays change
and how these same delays behave under supply voltage scaling sit-
uations. This has motivated the analysis of the distribution of wires

in case-study circuits and model their respective delays, according
to variables such as capacitance, wire length, fan-in and supply volt-
age. These collected data have as target to provide a statistical view
of wires in a given circuit and enable more sophisticated analysis
on complex constraints arising during asynchronous circuit design.
The second aspect is the proposition of improvements in the SCL
architecture to avoid or reduce the timing constraints identified
in this work. The early completion detection scheme used in the
current SCL specification can be easily replaced by a traditional
completion detection scheme, drastically reducing the magnitude
of the timing constraints associated to SCL, while keeping the SCL
qualities compared e.g. with NCL. In addition of that, the authors
have already evaluated the performance issues caused by the SCL
completion detection scheme in [4]. This work reinforces the need
for improvement on the original SCL template.
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