
NCL+: Return-to-One Null Convention Logic
Matheus T. Moreira, Carlos H. M. Oliveira, Ricardo C. Porto, Ney L. V. Calazans

Pontifical Catholic University of Rio Grande do Sul
GAPH – Faculty of Informatics

Porto Alegre, Brazil
{matheus.moreira, carlos.oliveira, ricardo.porto}@acad.pucrs.br, ney.calazans@pucrs.br

Abstract— Asynchronous paradigms are a way to deal with
hard problems in newer technologies. Among the templates
for ensuring efficient asynchronous design, Null Convention
Logic (NCL) appears as a fast and relatively low area and
power option, enabling semi-custom design. This work pro-
poses a new asynchronous logic template, NCL+, which is a
modification of NCL to support the return-to-one protocol. A
basic library of NCL+ standard-cells, with different driving
strengths enables comparison between NCL and NCL+. While
no significant differences in area arise, results suggest that a
trade-off of power versus forward propagation delay exists.
Accordingly, NCL+ provides more power efficiency and NCL
provides smaller forward propagation delays.

I. INTRODUCTION
As process variations get critical and integration scales

evolve to billions of transistors in a single chip, timing clo-
sure of high complexity synchronous integrated circuits
(ICs) becomes an increasingly complex task [1]. Thus,
asynchronous design techniques receive growing attention
from the VLSI community. Currently, the most used circuit
delay model for asynchronous design is the quasi-delay-
insensitive (QDI) [2], because it allows simpler timing clo-
sure and analysis and can be implemented using standard-
cell based approaches. Also, according to Martin [2], to de-
sign QDI circuits, 1-of-n delay insensitive (DI) codes [3]
coupled to a 4-phase handshake protocol [4] are mostly
used, due to their high power/area/speed efficiency and re-
duced complexity. For such circuits, different templates
support building sequential/combinational logic. Among
these, the null convention logic (NCL) [5] enables power-,
area- and speed-efficient standard-cell-based design.

NCL gates assume the use of return-to-zero (RTZ) hand-
shake protocols [5]. However, recent findings of the authors
demonstrated the potentials of using the return-to-one
(RTO) protocol for other QDI templates [6]. This paper
proposes and evaluates NCL+, a modification of NCL
where gates assume the use of the RTO protocol. Doing so,
the unavoidable series of n transistors in the pull-up network
of an NCL gate, where n is the number of inputs, is moved
to the pull-down network, classically preferred for its higher
electron mobility. A set of 70 NCL+ gates employing 14
different functionalities, each with 5 different driving
strengths, was designed to layout level and compared in a
practical design to a previously designed equivalent set of
NCL gates. Electrical simulation results point to a tradeoff
of power versus forward propagation delay, where NCL+
provides better power efficiency and NCL presents lower
propagation delay figures.

As far as the authors could verify, this is the first work to
propose the design and evaluate the performance of NCL
gates assuming the RTO protocol. Albeit other works like
references [7]-[10] discuss alternative implementations of
NCL gates, all previous proposals rely on the assumption of
an RTZ handshake protocol. In this way, this work stands
off by proposing a novel design style for asynchronous cir-
cuits, which enables more power efficient designs and better
design space exploration, while maintaining delay insensi-
tive and the support for standard-cell-based design.

II. THE RETURN-TO-ONE PROTOCOL
The asynchronous paradigm is, in fact, a class that en-

compasses several possible design templates. Each template
can employ a distinct combination of delay model, data en-
coding and handshake protocol [2] [3] [4] [11]. Further-
more, each may require different components to be imple-
mented in silicon. Yet, often used templates employ the QDI
design style using an m-of-n DI code coupled to the 4-phase
handshake protocol. One of the reasons behind the adoption
of these templates is the fact that they allow simple timing
closure and analysis, while maintaining the robustness inhe-
rent to QDI [11]. Also, due to the 4-phase protocol, comple-
tion can be easily computed and logic/arithmetic blocks are
easier to implement than with 2-phase protocols, which re-
duces design complexity and hardware overhead [2].

There are many ways to encode data in a DI manner.
Even though new codes (see e.g. [11]) are often suggested
for specific applications, the m-of-n class of codes and spe-
cifically 1-of-n codes, are widespread in VLSI design [2]. A
key factor for the success of 1-of-n data codes is the fact that
in such codes data validity tests are simple and completion
circuits require little hardware when compared to other DI
codes. In 1-of-n codes, data is represented using n wires.
Data validity is identified when exactly one of the n wires is
at a given logic value and data absence can be marked by
any of the 2n-n other code words. The data absence code
word is called spacer, as it always separates two successive
1-of-n codes in a data channel. Classically, the return-to-
zero (RTZ) protocol is used, where the spacer is a code
word formed by n zeroes and valid code words are all those
with exactly a single wire at logic ‘1’.

Figure 1(a) depicts the 1-of-2 code RTZ conventions,
which use two wires, called D.t and D.f, to represent a sin-
gle bit of information, a '0' bit is denoted by D.f at logic ‘1’
and a '1' bit by D.t at logic ‘1’. In 1-of-n RTZ conventions,
any code word with more than one wire at 1 cannot
represent valid data.

836978-1-4799-0066-4/13/$31.00 ©2013 IEEE

Wire Name Spacer Bit '0' Bit '1'
D.t 0 0 1
D.f 0 1 0

Wire Name Spacer Bit '0' Bit '1'
D.t 1 1 0
D.f 1 0 1

(a) (b)
Figure 1 – 4-phase 1-of-2 data encoding for (a) RTZ, (b) RTO protocols.

In a system using the RTZ protocol, data transmission
occurs as Figure 2(a) depicts. Communication starts with all
wires at logic ‘0’ (the all-0s spacer). Next, the sender puts
data in the channel (D.f, D.t), which is acknowledged by the
receiver with the ack signal. After the sender receives ack,
it produces a spacer to end communication. The receiver
then lowers ack, after which another communication can
take place.

(a) (b)

Figure 2 – Example of 4-phase (a) RTZ and (b) RTO 1-of-2 data transmis-
sion, where sp stands for the spacer.

The RTO protocol, described in [6] is similar to RTZ.
The only difference is that data wire values are reversed.
Figure 1(b) shows the conventions for the 1-of-2 RTO pro-
tocol. A spacer is represented by n wires at 1 (all-1s). Here,
a '1' bit is given by D.t at logic ‘0’ and a '0' bit by D.f at log-
ic ‘0’. As Figure 2 (b) shows, differently from RTZ, RTO
data transmission starts after the all-1s value is in the data
channel. As soon as the sender puts valid data in the channel
(D.f, D.t) the receiver may acknowledge it, by lowering
ack. Next, all data wires must return to logic ‘1’ to denote a
spacer, which ends the transmission. When the receiver de-
tects a spacer, it raises ack and new data can follow.

The idea behind the RTO protocol is very simple, and
albeit a 1-of-2 example is used here, any m-of-n code can
support both protocols. Also, an RTO-RTZ domain inter-
face for a same m-of-n code requires only n inverters. As a
generalization for m-of-n codes, an RTO-based D.x wire
logic value can be translated from RTZ by Equation (1):

).().(
}10|{

xDRTZxDRTO
mxx

¬=
−≤≤Ν∈ , (1)

where expressions RTO(D.x) and RTZ(D.x) correspond to
the wire logic values in the RTO and RTZ domains, respec-
tively. In this way, according to Martin [12], the conversion
of data from one domain to another is DI.

III. NCL+
In NCL design, basic components are sometimes called

threshold gates, but this is imprecise. In fact, NCL gates
couple a threshold 1 function [13] with positive integer
weights assigned to inputs to the use of a hysteresis mechan-
ism. This supports DI circuit design using dual rail or 1-of-4
data encoding [5]. Figure 3 shows the NCL gate symbol: N
is the number of inputs, and M is the gate threshold.

1 The authors reinforce that this use of the term threshold has no relation-
ship with the term threshold applied to define the voltage at which a tran-
sistor starts switching.

Figure 3 – Symbol of an NCL gate.

In NCL gates, the output will switch to logic ‘0’ when
all N inputs are at logic ‘0’ and to logic ‘1’ when at least M
of its N inputs are at logic ‘1’. Otherwise, it keeps its output
state. There are different ways to design NCL gates in
CMOS, such as the six approaches that Parsan and Smith
discuss in [9]. Among these, classical static implementations
are of particular interest, as they are simpler and constitute a
good area and power compromise. Accordingly, this work
assumes the use of static implementations of NCL gates.

In NCL+, gates also implement a threshold function, a
subset of which appears in Figure 4, where M is the defined
gate threshold (written inside each gate). However, the as-
sumption of the RTO protocol mandates the switching func-
tion of an NCL+ gate to be the reverse of its NCL counter-
part: the output will only switch to logic ‘1’ when all inputs
are at logic ‘1’ and will only switch to logic ‘0’ when at
least M of its inputs is at logic ‘0’. For other combinations
of inputs, the output keeps the previous value. Figure 5(a)
shows the CMOS schematic of a 3-input, M=2 NCL thre-
shold gate, and Figure 5(b) shows the schematic of an
equivalent NCL+ gate. Note that the gate drawn with dotted
lines in Figure 4 is the 2-of-3 gate described in Figure 5.

Figure 4 - Basic set of 14 NCL+ gates.

Figure 5 – Transistor topology for the 3-input M=2 threshold gate in NCL

(a) and NCL+ (b).

Authors designed a set of 70 NCL+ threshold gates at
the layout level as standard-cells in the STMicroelectronics
65nm technology, according to the flow proposed in [14].
The fourteen distinct threshold functions described in Figure
4 were designed, each being implemented in five different

837

driving strengths: X2, X4, X7, X9 and X18. This set effec-
tively supports a wide variety of functionalities. Note that
the shadowed gates, where the threshold is the same as the
number of inputs. These have exactly the same implementa-
tion in either NCL or NCL+, as the threshold for the output
to switch to logic ‘1’ or to logic ‘0’ is the same. In terms of
standard-cell area, NCL and NCL+ are typically equivalent,
because they require the same number of transistors and
have similar topology.

IV. NCL VERSUS NCL+
To compare the NCL and NCL+ templates a 32-bit rip-

ple carry adder described in SPICE, corresponding to the
block diagram of Figure 6(a) was used. The circuit writes
the sum of X and Y to the S output and produces carry sig-
nal C. The internal carry signals are represented by Ci. For
simplicity the adder assumes the use of dual-rail (or 1-of-2)
encoding. Thus, each data bit takes two wires, false (f) and
true (t). Figure 6(b) and Figure 6(c) describe the NCL+ gate
level implementation of the blocks that compose the circuit.
Five versions of the adder exist, one for each of the driving
strengths.

(a)

(b) (c)

Figure 6 –32-bit ripple carry adder: (a) block diagram; gate level schemat-
ics of the NCL+ (b) half adder and (c) full adder.

For comparison, the adder was also implemented using
the NCL template for the same five driving strengths. Pre-
viously designed NCL gates [15] were employed. The gate
level schematics for the NCL implementations are the same
as those of NCL+ in Figure 6(a) and (b), where NCL+ gates
are replaced by NCL gates of the same threshold.

The choice for this case study circuit is due to the fact
that it employs a series connection of a half adder to a series
of 31 full adders, resulting in long gate level combinational
paths. This is a good case study for evaluating the efficiency
of threshold gates in each template in terms of delay and
power. Also, it provides a fixed fan-out of 4 (FO4) for gates
that generate internal carry signals, avoiding unrealistic
power and timing analysis.

To scrutinize the effects of each design style, a mixed-
signal simulation environment was set up for each of the 10
adders. It consists of a VHDL testbench that instantiates an
adder described in SPICE and a verification block, de-
scribed in SystemC. A VHDL-AMS description was used
for converting analog to digital signals and vice-versa. All
SPICE descriptions employed post-layout extracted gates, in
order to account for parasitics. The employed simulators for

digital and analog parts were Cadence Incisive and Spectre,
respectively. Simulation scenarios assumed typical fabrica-
tion process and typical operating conditions (25o C and
1 Volt). Also, the adder inputs slope was fixed at 50ps and
output loads varied depending on the cells´ driving strength,
to obtain a load equivalent to FO4 in the last full-adder and
in the S outputs as well.

The SystemC verification block consists of a random da-
ta generator that feeds the adder inputs, and a data checker
that verifies its correct behaviour. Also, this block measures
average, best and worst case delays to perform the sum of
two values for forward delay and transmission delay, as well
as the module throughput, measured in millions of opera-
tions per second (MOPS). Precise dynamic and idle power
values were measured using the analog simulator. The for-
mer is given as the average power of the adder when operat-
ing, while the latter is the average power when idle (quies-
cent and filled with spacer data, i.e. all-0s for NCL and all-
1s for NCL+). As dual-rail data values are always balanced
for both logic values '1' and '0', random data can be used
without compromising the generality of the obtained results.

TABLE I summarizes the measured values for through-
put (MOPS), forward propagation delay (fwd. delay), total
computation delay (tot. delay), dynamic power (dyn. pwr.)
and idle power (idle pwr.). Area results are omitted, because
the observed areas for the same driving strength circuits are
always equivalent.

TABLE I – Simulation results for NCL and NCL+ adders.

 NCL
X2 X4 X7 X9 X18

MOPS 536 622 691 694 835
fwd. delay (ps) 564 485 444 488 424
tot. delay (ps) 1866 1608 1446 1440 1197
dyn. pwr (mW) 0.370 0.530 0.845 1.164 1.748
idle pwr. (µW) 2.785 3.898 6.032 8.002 10.343

 NCL+
X2 X4 X7 X9 X18

MOPS 600 657 673 744 820
fwd. delay (ps) 692 673 602 549 473
tot. delay (ps) 1668 1521 1484 1344 1219
dyn. pwr (mW) 0.409 0.549 0.711 0.901 1.745
idle pwr. (µW) 2.245 3.131 4.069 5.159 9.587

As TABLE I shows, circuits with similar driving

strength have similar MOPS. However some of them
present considerable deviations, like X2, for instance, which
presents almost 12% higher MOPS for NCL+. These devia-
tions are due to parasitic and gate capacitance effects, given
that the delay of the standard-cells depends not only on its
driving strength but also on factors such as input slope and
output load, which are directly related to these effects. Also,
deviations were expected, given the differences in NCL and
NCL+ gate design processes.

Figure 7 gives another perspective on the results. First,
Figure 7(a) presents the average energy consumption per
operation for each NCL and NCL+ design. These results
were obtained from the measured dynamic power and
MOPS of each design. Similarly, Figure 7(b) presents the

838

results for idle power and Figure 7(c) the percentage of for-
ward propagation delay in total delay. Note that only the
intersection between similar MOPS intervals appears in the
graphs.

(a)

(b)

(c)

Figure 7 – Energy, power and delay comparison between NCL and NCL+:
(a) energy consumption per operation; (b) idle power; (c) percentage of

the total delay represented by forward propagation delay.

The obtained results suggest that NCL+ is more energy
efficient when compared to NCL. As Figure 7(a) shows, its
energy consumption per operation is typically lower for
equivalent MOPS designs. Also, as Figure 7(b) shows, the
total idle power is lower in all cases, presenting significant
savings and suggesting lower leakage currents at the stan-
dard-cell level for NCL+. This is particularly interesting for
asynchronous designs, as some parts of these circuits are
usually quiescent while others are operating. In this way,
NCL+ potentially leads to systematic total power savings.
However, for forward propagation delay, results show that
NCL+ presents worse results in all cases. In this way, the
obtained results point to a power and forward propagation
delay trade-off for NCL and NCL+.

V. CONCLUSION
This paper proposes a new asynchronous design tem-

plate, named NCL+, which furnishes an alternative to NCL.
It provides a new trade-off of power and forward propaga-
tion delay. The area occupied by equivalent circuits in both
templates is roughly the same. Accordingly, the proposed
template is promising for coping with power requirements
in current and future technologies. In this way, NCL+
enables a new approach for asynchronous design, providing
better design space exploration capability.

Finally, reducing idle power and increasing energy effi-
ciency is of great importance for contemporary challenges
like battery-based systems low power budgets and green
computing challenges. Asynchronous techniques are already
an appealing solution for such challenges. In this context,
the proposed NCL+ can lead to further improvements for
these techniques.

ACKNOWLEDGEMENTS
This work is partially supported by the CAPES-

PROSUP (under grant 11/0455-5). Ney Calazans acknowl-
edges CNPq support under grant 310864/2011-9. Authors
acknowledge support granted by the INCT-SEC, process no.
573963/2008-8.

REFERENCES
[1] ITRS, “Design Section”, 2011, available at http://www.itrs.net.
[2] A. J. Martin and M. Nyström. Asynchronous Techniques for System-

on-Chip Design. Proceedings of the IEEE, June 2006, 94(6), pp.
1089-1020.

[3] T. Verhoeff. “Delay-insensitive codes- an overview”. Distributed
Computing, 3(1), 1988, pp. 1-8.

[4] P. Beerel, R. Ozdag M. Ferretti. “A Designer’s Guide to
Asynchronous VLSI”. Cambridge University Press, 2010, 337 p.

[5] K. M. Fant, S. A. Brandt. “NULL convention logic: a complete and
consistent logic for asynchronous digital circuit synthesis”. In
ASAP’96, 1996, pp. 261-273.

[6] M. Moreira, R. Guazzelli and N. Calazans, “Return-to-One
Protocol for Reducing Static Power in C-elements of QDI
Circuits Employing m-of-n Codes”. In: SBCCI’12, Brasilia,
Brazil, 2012. 6 p.

[7] L. Zhou. “Bit-Wise MTNCL: An ultra-low power bit-wise
pipelined asynchronous circuit design methodology”. In:
MWSCAS’10, 2010, pp. 217-220.

[8] S. Yancey, S. C. Smith. “A differential design for C-elements
and NCL gates”. In: MWSCAS’10, 2010, pp. 632-635.

[9] F. A. Parsan and S. C. Smith. “CMOS implementation comparison
of NCL gates”. In: MWSCAS’12, 2012, pp. 394-397.

[10] J. F. Pons. “State-holding free NULL Convention LogicTM”. In:
MWSCAS’12, 2012, pp. 322-325.

[11] W. J. Bainbridge, W. B. Toms, D. A. Edwards, and S. B. Furber.
“Delay-insensitive, point-to-point interconnect using m-of-n codes”.
In: ASYNC´03, 2003, pp. 132- 140.

[12] A. J. Martin. “The limitations to delay-insensitivity in asynchronous
circuits”. In: AUSCRYPT’90, 1990, pp. 263-278.

[13] S. L. Hurst. “An Introduction to Threshold Logic: A Survey of
Present Theory and Practice”. The Radio and Electronic Engineer,
37(6), June 1969, pp. 339-351.

[14] M. Moreira, B. Oliveira, J. Pontes, N. Calazans. “A 65nm Standard
Cell Set and Flow Dedicated to Automated Asynchronous Circuits
Design”. In: SOCC’11, 2011, pp. 99-104.

[15] M. Moreira, C. Oliveira, R. Porto and N. Calazans. “Design of NCL
Gates with the ASCEnD Flow”. In LASCAS’13, 2013, 4p.

839

