
Semi-custom NCL Design with Commercial EDA
Frameworks: Is it Possible?

Matheus Moreira∗, Augusto Neutzling†, Mayler Martins†, André Reis†, Renato Ribas† and Ney Calazans∗
∗Pontifı́cia Universidade Católica do Rio Grande do Sul, †Universidade Federal do Rio Grande do Sul

{matheus.moreira, ney.calazans}@pucrs.br, {andreis, rpribas}@inf.ufrgs.br

Abstract—Quasi-Delay-Insensitive design is a promising solu-
tion for coping with contemporary silicon technology problems
such as aggressive process variation and tight power budgets.
However, one major barrier to its wider adoption is the lack of
support for automated optimization techniques in semi-custom
design flows. This paper proposes an innovative design flow that
relies on the use of consolidated commercial EDA frameworks for
synthesizing 1-of-n 4-phase Quasi-Delay-Insensitive circuits using
Null Convention Logic. Accordingly, asynchronous gates, which
are usually not supported by these frameworks, are modelled as
conventional logic gates, allowing synthesis tools to perform static
timing analysis and pre- and post- mapped design optimizations
that can be specified by the designer using conventional timing
constraints.

Index Terms—Null Convention Logic, NCL, asynchronous
design, technology mapping, automated synthesis

I. INTRODUCTION

Asynchronous design techniques are becoming an increas-
ingly important topic for the VLSI research community. The
abstraction provided by the synchronous paradigm starts to
no longer justify the efforts to meet the constraints imposed
by a global clock signal under aggressive process variations
faced by ultra-deep submicron silicon technologies. Also, cor-
rectly distributing the clock signal is becoming a prohibitively
expensive task, as the power dissipated by the clock tree
can reach 45% of total power of a high-speed processor [1].
Differently from synchronous designs, asynchronous circuits
can more easily tolerate process, voltage and temperature
variations. Additionally, asynchronous circuits are naturally
suited for low-power applications [2], [3]. By avoiding the
use of a clock signal, these can employ more relaxed timing
constraints, which allows to more efficiently cope with timing
discrepancies. Moreover, due to the use of local handshaking
[2] for control and sequencing of events, asynchronous logic
is only active when and where required. Parts of the circuit can
be quiescent while data flows only through the required path,
inherently providing power savings and more easily coping
with incoming dark silicon [4] related problems.

Albeit asynchronous circuits can be implemented using
many different templates, Martin and Nyström [3] cite that
practical circuits most often employ 1-of-n 4-phase Quasi-
Delay-Insensitive (QDI) templates, as they allow easier design
and timing closure and are more robust. In fact, the last
decades have witnessed substantial developments in QDI de-
sign techniques. Accordingly, different computer-aided design
(CAD) tools and design flows for automating QDI design,

or at least part of it, are available in current literature, such
as [5]–[16]. However, most of these tools perform logic
optimizations only before technology mapping, because QDI
circuits require specific gates rather than the ones available
in conventional standard-cell libraries and are not directly
compatible with consolidated synthesis tools. The drawback is
that technology mapping is precisely the first step in the syn-
thesis of a circuit that allows optimizations with realistic cost
parameters of the target technology [8]. The only work that
supports post-mapping optimizations [8] provides only basic
optimizations with custom CAD tools, rather than exploring
logic optimizations provided by consolidated commercial EDA
Frameworks from vendors like Cadence or Synopsys. In fact, it
is a common belief that commercial synchronous Frameworks
cannot support QDI circuits direct mapping to standard-cells.
In this way, efficient technology mapping of QDI circuits is
still a gap to be filled.

The class of Null Convention Logic (NCL) gates [17], [18]
allows efficient implementation of 1-of-n 4-phase QDI circuits
as demonstrated by the Theseus Logic company through the
design and fabrication of several chips [12]. In fact, all revised
works on QDI design automation rely on the usage of NCL
gates (consider that C-elements are special cases of NCL
gates), except for the approach presented in [7] that uses
dynamic logic templates. Here the authors consider the use
of NCL for QDI design and seek to answer to if and how
”it is possible to employ commercial EDA frameworks to
realize technology mapping and design optimization using
NCL gates”. To do so, Section II starts by introducing basic
concepts on QDI and NCL. Section III presents an overview
of a design flow that can be used with commercial EDA
frameworks for mapping logic functions using NCL gates and
prove the validity of the resulting circuit. Experimental results
are the target of Section IV, together with a discussion for
contextualizing this work in the state of the art. Finally, Section
V draws conclusions and directions for future work.

II. BACKGROUND

A. Quasi-Delay-Insensitive Design

The design of QDI circuits [2] [3] requires the choice of
two basic items: (i) a Delay-Insensitive (DI) code coupled to
a handshake-protocol and (ii) a logic style, which sometimes
can actually be a mixture of logic styles. There are many ways
to encode data in a DI manner. Even though new codes are

2014 20th IEEE International Symposium on Asynchronous Circuits and Systems

1522-8681/14 $31.00 © 2014 IEEE

DOI 10.1109/ASYNC.2014.15

53

Fig. 1. 4-phase 1-of-2 data encoding for (a) RTZ and (b) RTO protocols

often suggested, the m-of-n class of codes and specifically 1-
of-n codes, are widespread in VLSI design [3]. In 1-of-n codes,
data is represented using n wires. Data validity is identified
when exactly one of the n wires is at a given logic value and
data absence can be marked by any of the 2n − n other code
words. A code word that marks data absence is called a spacer,
as it separates two successive 1-of-n codes in data channels.
Classically, the Return-to-Zero (RTZ) protocol is used, where
n 0s are the spacer and valid code words are those with a
single 1.

Figure 1(a) shows the RTZ 1-of-2 code, which uses two
wires, called D.1 and D.0, to carry a single bit of information.
A 0 value is denoted by D.0 at 1, and a 1 value by D.1 at 1. In
1-of-n RTZ conventions, any code word with more than a wire
at 1 represents invalid data. Figure 2(a) shows data transmis-
sion in a system using the RTZ protocol. Communication starts
with all wires at 0. Next, the sender puts data in the channel
(D.0, D.1) which is acknowledged by the receiver with the
ack signal. After the sender receives the acknowledgement, it
produces a spacer to end communication by putting all wires
in the channel to 0. The receiver then lowers the ack signal,
after which another communication can take place.

The Return-to-One (RTO) protocol [19] is similar to RTZ.
The only difference is that data wire values are reversed. Fig-
ure 1(b) shows the conventions for the 1-of-2 RTO protocol. A
spacer is represented by n wires in 1 (all-1s). Here, a 1 value
is given by D.1 at 0 and a 0 value by D.0 at 0. As Figure 2(b)
shows, differently from RTZ, RTO data transmission starts
after the all-1s value is in the data channel. As soon as the
sender puts valid data in the channel (D.0, D.1) the receiver
may acknowledge it, by lowering the ack signal. Next, all
data wires must return to 1 to denote a spacer, ending the
transmission. When the spacer is detected by the receiver,
it raises the ack signal and new data can follow. The idea
behind the RTO protocol is simple, and albeit a 1-of-2 example
is used here, any m-of-n code can support both protocols.
Furthermore, an RTO-RTZ domain interface for a same m-
of-n code requires exactly n inverters. As a generalization for
m-of-n codes, an RTO D.x wire logic value can be translated
from RTZ by:

{x ∈ N |0 ≤ x ≤ m− 1}, RTO(D.x) = RTZ(D.x) (1)

Here, expressions RTO(D.x) and RTZ(D.x) correspond to the
logical values of each wire in the RTO and RTZ domains, re-
spectively. In this way, according to Martin [3], the conversion
of data from one domain to another is DI.

B. Null Convention Logic

A threshold logic function (TLF) t is a n-variable unate
function that implements a Boolean function defined by a

Fig. 2. 4-phase (a) RTZ and (b) RTO 1-of-2 data transmission where sp
stands for the spacer

(a) (b) (c) (d)

Fig. 3. Symbols for: (a) basic NCL gate, (b) 2 of 3 NCL gate, (c) 3 of 3
with weights (2, 1, 1) NCL gate and (d) basic NCL+ gate

threshold value T and a specific weight wi assigned to each
variable xi such that:

t =

 1,
n∑

i=1

wixi ≥ T

0, otherwise
(2)

In NCL design, basic components are sometimes called
threshold gates, but this is imprecise. In fact, NCL gates
couple a TLF [20] with positive integer weights assigned to
inputs to the use of a hysteresis mechanism to guarantee a
QDI compatible behavior. Figure 3(a) shows the NCL gate
symbol: N is the number of gate inputs, M is either the gate
threshold or a threshold function, and each input has weight
wi. Wherever no weight is specified, wi=1 is assumed. Weights
always come after the w specifier. The output switches to 0
when all N inputs are 0 and to 1 when the sum of weights
for inputs at 1 reaches threshold M, or satisfies the threshold
function. Otherwise, the previous output value is maintained.
This enables QDI circuit design using 1-of-n data encoding
and 4-phase handshaking, based on RTZ, as discussed in [17],
[18]. In fact, the ON-set of an NCL gate is defined by the
ON-set of a TLF and the OFF-set consists of the minterm
corresponding to all inputs at 0.

For instance, say that the threshold of a 3-input NCL gate
is 2 and all inputs have weight 1. In such a gate, showed in
Figure 3(b), the output will only switch to 0 when all inputs
are at 0 and to 1 when at least 2 of the inputs is at 1. Now,
consider a 3-input (A, B, C) NCL gate with threshold 3, where
the weight of the inputs is (2, 1, 1) respectively. In this gate,
shown in Figure 3(c), the output will only switch to 0 when all
inputs are at 0. However to switch to 1, input A necessarily
needs to be at logic 1, together with any of the remaining
inputs, B or C, to reach the function threshold. Note that for
such gate only weights bigger than 1 are made explicit in the
symbol.

The recently proposed NCL+ design style [21], is similar
to NCL. However the assumption here is the use of RTO
rather than RTZ. In fact, NCL+ gates also have a threshold
M (written inside each gate symbol). However, as defined in
Equation (1), the assumption of the RTO protocol mandates

54

the switching function of an NCL+ gate to be the reverse of
its NCL counterpart: the output will only switch to 1 when all
inputs are at 1 and will only switch to 0 when threshold M
is reached by the inputs at logic 0. For other combinations of
inputs, the output keeps the previous value. The symbol that
represents NCL+ gates appears in Figure 3(d). It is identical
to that used for NCL, except for the “+” symbol on the top
right corner. Note that NCL and NCL+ gates have the same
functionality when the threshold is identical to the number
of inputs. This special case implements the functionality of a
C-Element [2], [17], [18]. Therefore the class of NCL gates
comprises C-Element, required by several state-of-the-art QDI
synthesis methods and tools as those mentioned in Section I.

Several ways to design NCL gates exist, like those explored
by Parsan and Smith [22]. All can be employed to design
NCL+ gates, mutatis mutandis. Yet, the classic static imple-
mentation is the most employed, due to power, area and speed
characteristics. Therefore, throughout this work we assume the
use of static implementations.

III. PROPOSED DESIGN FLOW

Technology mapping is the process of translating a generic
logic network into a technology-specific logic network. In
other words, it is the task of transforming a netlist composed
by generic logic functions into a netlist composed only by
gates of a given technology library. However, conventional
CAD tools cannot explicitly handle NCL and NCL+ gates,
as these present sequential behavior. This Section proposes
a design flow to overcome that and enable CAD tools to use
NCL and NCL+ for synthesizing 1-of-n, 4-phase QDI circuits.
Figure 4 provides an overview of the proposed design flow.
The following subsections scrutinize the flow details.

Mapped
Xnetlist

Fix Netlist

Tune
Timing/Power

.vhd / .v Logic Synthesis Tool

NCL
Library

Inverters
Library

Mapped
netlist

TuneNCL
Timing/Power

TuneNCL+
Timing/Power

Power/Timing
Constraints

Virt. NCL+
Library

Virt.

To Physical
Synthesis

Fig. 4. Proposed Design Flow

A. Definitions

First, a basic set of definitions helps understanding the
proposed flow.

Definiton 1 (Boolean virtual function): A Boolean virtual
function (BVF) is a completely specified function f that
implements a TLF with:

f : {0, 1}n → {0, 1} (3)

Definiton 2 (Boolean virtual functions library): A BVF
library (BVFL) is a 5-tuple

BV FL =< G,Z,O, g, h > (4)

where G is a set of BVFs, Z is a set of NCL gates, O is a set
of NCL+ gates and g and h are completely specified functions
such that g : G→ Z and h : G→ O.

In practice, a BVF library is split in two standard-cell
libraries: NCL Virtual Library and NCL+ Virtual Library.
These contain the physical implementation of Z and O, re-
spectively. To enable the use of these libraries in conventional
CAD tools, masking of the cells sequential behavior occurs by
defining the equivalent BVF for each NCL and NCL+ gate.
This is done by modifying the Liberty (.lib) file of the library,
editing the logic functions of gates and replacing them by the
correspondig BVFs. In this way, the physical implementation
at the standard-cell level of specific NCL and NCL+ gates
must be available for each BVF.

B. NCL Gate Identification

To define the NCL gate that implements a specific BVF, we
start with a typical logic function that is understood by CAD
tools. Next, we use the method proposed by Neutzling et al.
in [23] to identify the TLF. For instance, assume the example
function used in [23]: Q = A(B + C). Table I shows the
associated truth table. First, we verify if the function is a TLF
and can be represented as a BVF, as specified in Definition 1.
Next, inequalities are computed from the relationship between
input weights and the gate threshold to a TLF, as defined in
Equation (2). Input weights and the threshold value can be
computed from these inequalities. The relationship between
input weights and the gate threshold to a TLF for BVF Q =
A(B+C) is shown in the rightmost column of Table I. Each
sum of input weights greater than the threshold belongs to the
greater side set of inequalities and each sum of weights which
is less than the threshold belongs to the lower side set. Table
II shows the sets for the BVF of Table I.

TABLE I
INPUT WEIGHTS AND THRESHOLD

RELATIONSHIP TO Q=A(B+C).

A B C Q
0 0 0 0 0 < T
0 0 1 0 wC < T
0 1 0 0 wB < T
0 1 1 0 wB + wC < T
1 0 0 0 wA < T
1 0 1 1 wA + wC ≥ T
1 1 0 1 wA + wB ≥ T
1 1 1 1 wA + wB + wC ≥ T

TABLE II
GREATER AND SMALLER SETS OF

INEQUALITIES FROM TABLE I.

greater side lower side
wA + wC > T > 0
wA + wB > T > wC

wA + wB + wC > T > wB

T > wB + wC

T > wA

Since greater side set elements are greater than the threshold
value, and lower side set elements are smaller than such
threshold, each greater side element is greater than each
lower side element. Accordingly, the inequalities system are
generated by performing the Cartesian product of the greater
side set and the lower side set, as showed in Table III. Some
relationships in Table II are not useful. For instance, since
we have the relation wA + wB ≥ T and the input weights
are always positive, the relation wA + wB + wC ≥ T is
redundant, since is contained in the former. In the method
of Neutzling et al. [23], these redundancies are avoided. In
fact for the example Q = A(B + C) the algorithm creates
only the inequalities 4, 5, 9 and 10 from Table III. Moreover,
besides generating only irredundant inequalities, the algorithm
simplifies each of them when possible. The simplification
occurs when the variable weight appears on both sides of the

55

same inequality. When this happens, the variable is removed
from such inequality. Considering for instance inequality 4.
It is simplified removing C, resulting on a new inequality
wA > wB . Since all input weights are positive, the algorithm
also discards the inequalities having no weight (or 0) in the
smaller side as these inequalities are not useful.

TABLE III
GENERATED INEQUALITIES FROM TABLE II

Cartesian product: greater side × lower side
1 wA + wC > 0 9 wA + wB > wB + wC

2 wA + wC > wC 10 wA + wB > wA

3 wA + wC > wB 11 wA + wB + wC > 0
4 wA + wC > wB + wC 12 wA + wB + wC > wC

5 wA + wC > wA 13 wA + wB + wC > wB

6 wA + wB > 0 14 wA + wB + wC > wB + wC

7 wA + wB > wC 15 wA + wB + wC > wA

8 wA + wB > wB

After simplification, input weights are computed by select-
ing inequalities with only one input in the greater side. A
single input in the greater side denotes that this input must
have larger weight than all inputs in the lower side. From
example Q = A(B + C), the selected inequalities are only
wA > wB and wA > wC . Therefore, the weight from the
greater side (input A in both cases) is defined as the key of
the inequality. Next, a temporary variable is created, which
controls the value assigned to the weights. Such temporary
variable is initialized with a minimum value (being initially set
to 1) and is increased by one during the iterations. The order
of weight assignment starts from variables that have the lowest
weight, and continues in ascending order. Each time a weight
is assigned, the consistency of the corresponding inequalities is
checked. If the current value of the temporary variable satisfies
the inequalities, this value is indeed the weight of the variable.
Otherwise, the value is increased to satisfy the inequalities or
until an upper limit is reached. This procedure is repeated for
each variable.

In the example Q = A(B + C), the assignment is first
done to the weights of inputs B and C. Since there are no
inequalities constrains for these keys, value 1 is assigned. The
temporary variable increases to 2. Then, the weight of A must
be assigned. For this key there are two identical inequalities:
wA > 1. The method assigns the temporary value 2 and checks
the inequalities. The inequalities are true since 2 > 1. As all
weights are already assigned, this step finishes. Therefore, the
weights assigned for the BVF Q = A(B + C) are wA = 2,
wB = 1 and wC = 1. According to the authors of [23], this
bottom-up approach ensures that the weights assigned by the
algorithm are always the minimum possible, allowing the gate
implementation be synthesized using minimum circuit area.
The threshold value is defined as the sum of weights of the
smallest value of the greater side. For Q = A(B + C), the
calculated threshold is 3, from wA + wB or wA + wC (refer
to Table III). Accordingly, this defines an NCL3W2-of-3 gate.

As Table IV shows, the selected NCL gate for the example
BVF has the same ON-set (in red). On the other hand, the
OFF-set, in blue for the BVF, is not the same. In NCL gates,
the output will switch to 0 only when all inputs are at 0, as the
table shows in green. In fact, the ON-set of NCL gates signals

valid data, which generates varying logic values in the inputs
of such gates. However, because we target 1-of-n 4-phase QDI
circuits, it is guaranteed that between each valid data there will
be a spacer, i.e. all wires will go to 0. Therefore, the OFF-set
of NCL gates synchronizes spacers, guaranteeing that there
is no early spacer generation. This ensures that the 1-of-n 4-
phase QDI properties are respected. For instance, assume that
the NCL3W2-of-3 gate signals 1 in its output, which indicates
valid data to the next gate. This output may only switch back
to 0 when a spacer is detected, i.e. when all its inputs are at
0.

BVFs can also be inverted logic functions and can be
mapped to an equivalent NCL gate. However, in this case,
the algorithm proposed by Neutzling et al. must be applied
searching for the OFF-set of the BVF. Take for example a 2-
input NAND (Q = AB). By applying the algorithm, we find
the threshold (T=2) and the weight of the inputs (wA=1 and
wB=1), which corresponds to an inverted NCL2-of-2 gate. The
truth table of the BVF and the NCL gate are shown in Table
V. As the table shows, the gate also respects QDI definitions
and will only switch its output to 1 when a spacer is detected
(all inputs at 0) and the OFF-set is the same as that of the
BVF, ensuring that valid data will propagate correctly. Note
that this gate has an inverted output.

TABLE IV
EQUIVALENT NCL AND NCL+
GATES FOR BVF Q=A(B+C).

A B C QBV F QNCL QNCL+

0 0 0 0 0 0
0 0 1 0 - 0
0 1 0 0 - 0
0 1 1 0 - 0
1 0 0 0 - 0
1 0 1 1 1 -
1 1 0 1 1 -
1 1 1 1 1 1

TABLE V
EQUIVALENT NCL AND NCL+

GATES FOR A NAND BVF.

A B QBV F QNCL QNCL+

0 0 1 1 1
0 1 1 - 1
1 0 1 - 1
1 1 0 0 0

C. Technology Mapping using NCL Gates

Using a defined set of BVFs and generating the equivalent
NCL gates, an NCL Virtual Library can be generated. Note
that an automated flow exists for generating NCL gates in the
standard-cell level, with automatic electrical characterization,
as presented in [24]. The generated NCL Virtual Library is
compatible with commercial IC design frameworks. In fact, the
input of the proposed design flow is an NCL Virtual Library
together with a library containing inverters and buffers (as
these gates do not jeopardize QDI properties) and a behavioral
Verilog or VHDL description of a 1-of-n 4-phase QDI circuit,
as showed in Figure 4. Such descriptions can be output of
some state-of-the-art asynchronous synthesis framework like
the ones listed in Section I with little modifications, like
replacing NCL gates for their respective BVF, so that the
tool will be able to perform optimizations. Additionally, albeit
the presented design flow can be employed in similar tools,
throughout this work we assume the use of RTL Compiler.

So far, the proposed design flow is not exactly a novelty.
Many works on the state-of-the-art perform template-based
mapping, as presented in [11]. However, what kept designers

56

from using commercial CAD optimization algorithms was the
fact that for some logic optimizations, the resulting netlist after
being mapped to an NCL Virtual Library can be corrupted.
Take for example the following behavioral Verilog description
of a 1-of-2 4-phase QDI 2-input half adder:

1 module HA (A.1, A.0, B.1, B.0, C.1, C.0, S.1, S.0);
2 input A.1, A.0, B.1, B.0;
3 output C.1, C.0, S.1, S.0;
4 wire C.1, C.0, S.1, S.0;
5 assign S.1=(A.1 & B.0)|(A.0 & B.1);
6 assign S.0=(A.1 & B.1)|(A.0 & B.0);
7 assign C.1=(A.1 & B.1);
8 assign C.0=(A.1 & B.0)|(A.0 & B.0)|(A.0 & B.1);
9 endmodule

Now, assume that we feed the synthesis tool only with an
NCL Virtual Library containing only two-inputs NANDs, to-
gether with a library containing only inverters the minimum set
of gates. Applying de Morgan and other Boolean equivalence
laws, synthesis tools can convert the sums of products of lines
5, 6 and 8 to a set of NANDs. In fact, this is the result we
obtained for the example source code, as showed in Figure
5(a). Note that in this step, the netlist is already mapped to
NCL gates of the target technology. Also note that NCL Virtual
Library gates will always have a ncl suffix to denote that
they implement NCL logic. Recalling Figure 4, at this point,
the designer can already provide timing and power constraints
to the tool so it can optimize the design accordingly. Note
that this can be done because static timing analysis (STA) is
enabled by the use of functionalities known by the tool. To do
so, the designer can use conventional timing constraints such
as set max delay. However, it is important to keep in mind that
this netlist may have corrupted the correct functionality of the
circuit. For this reason, at this stage, we call it Xnetlist. For
instance, analyzing the circuit of Figure 5(a), assume that all
inputs are at 0 (spacer), making all outputs also go to 0. Now,
assume that inputs A.1 and B.1 switch to 1, signaling a 1 value
in A and B. Accordingly, C.1 will switch to 1, signaling a 1
value in the carry out signal (C). However S.0 will not switch
to 1, which denotes that the circuit functionality has been
corrupted. This is because the BVF of the gate that generates
this output, a NAND, has an OFF-set that is not covered by
its corresponding NCL gate, the actually mapped gate. This
problem arises when inverted logic is used. In fact, unless
no inverters are provided for the tool, one cannot guarantee
that the functionality will not be compromised. As classically
there was no way to guarantee the coverage of BVFs ON-set
of inverted functions using NCL gates, because such functions
alter the domain from RTZ to RTO as defined in Equation (1),
this was one of the major barriers that prevented designers to
use conventional CAD tools to map QDI circuits.

D. Netlist Fixing using NCL+ Gates

This was true until recently, with the proposition of NCL+
[21]. In fact, NCL+ gates can be employed for covering
the OFF-set and ON-set of non-inverted and inverted BVFs,
respectively. Also, recalling Definition 2, together with an NCL
Virtual Library (Z), a BVF library also requires an NCL+
Virtual Library (O). For generating the latter, the same method

A. .1

A.0

B.1

B.0

C.1

C.0

S.1

S.0
NAND2X2_ncl

A

B
Q

NAND2X2_nclA

B
Q

NAND2X2_ncl
A

B
Q

NAND2X2_ncl

A

B
Q

INVX2

A Z

NAND2X2_ncl

A

B
Q

NAND2X2_ncl

A

B
Q

INVX2

A Z

NAND2X2_ncl

A

B
Q

(a)

NAND2X2_nclpA

B
Q

NAND2X2_nclp

A

B
Q NAND2X2_nclp

A

B
Q

INVX2

A Z

INVX2

A Z

NAND2X2_ncl

A

B
Q

NAND2X2_ncl
A

B
Q

NAND2X2_nclA

B
Q

NAND2X2_nclA

B
Q

C.1

C.0

S.1

S.0

A.1

B.1

A.0

B.0

(b)

Fig. 5. Example of Xnetlist with only two inputs NAND BVFs and inverters
(a) and the netlist after fix steps (b).

of Neutzling et al. can be employed, but searching for inputs
that are at 0 when defining the input weights and gate threshold
relationships. This means that for BVF Q = A(B+C) we can
obtain the greater and lower side sets of inequalities showed
in Table VI.

TABLE VI
NCL+ GREATER AND SMALLER SETS OF INEQUALITIES FROM TABLE II

greater side lower side
A+B+C > T > B
A+B > T > C
A+C > T > 0
A > T
B+C > T

Employing the algorithm, this leads to a threshold T=2 and
weights wA=2, wB=1 and wC=1. In this way, the NCL+ gate
for BVF Q = A(B+C) (complementary for an NCL3W2-of-
3) is the NCL+2W2-of-2. Accordingly, the truth table of such
a gate appears in Table IV. As it can be seen, this gate presents
the same OFF-set of the BVF. Moreover, it guarantees that the
output will only switch to 1 when all inputs are at 1, allowing
synchronization of RTO spacers. Similarly, NCL+ gates can
be defined for inverted BVFs, like the two inputs NAND. For
this function, the corresponding gate is an inverted NCL+1-
of-2 (T=1, weights wA=1 and wB=1). This covers the ON-set
of the BVF, as Table V shows. Therefore, taking for instance
the two-input NAND BVF of a given BVF library, one must
guarantee the availability of an NCL2-of-2 and an NCL+1-of-
2 gates, as specified in Definition 2.

Because NCL and NCL+ gates can be complementary for
a same BVF, together the correct gates cover both the ON-set
and the OFF-set of the BVF, as Tables IV and V show. In
fact, in the definition of NCL gates for a given BVF we look
for 1s in the inputs for generating the inequalities, while in
the definition of NCL+ gates, we look for 0s in the inputs.
Accordingly, if an NCL gate presents the same ON-set of a

57

BVF, there is an NCL+ gate that presents the same OFF-set
and vice-versa.

Using an NCL+ Virtual Library, a corrupted Xnetlist can
be fixed. From Equation (1), whenever a signal from an
RTZ domain is inverted, it becomes an RTO signal and
vice-versa. Furthermore, by definition, NCL gates assume the
usage of RTZ, while NCL+ gates assume the usage of RTO.
Therefore the inputs of NCL gates must always belong to the
RTZ domain and the ones of NCL+ from the RTO domain.
Therefore, because NCL+ gates provide the complementary
BVF functionality of NCL gates, if an NCL gate of an Xnetlist,
has inputs from the RTO domain, it must be replaced by its
complementary NCL+ gate from a NCL+ Virtual Library. In
this way, valid data will always be correctly computed through
either the OFF-set or the ON-set of each BVF (refer to Tables
IV and V). Fixing an Xnetlist can be done using a very simple
algorithm:

1 for each gate of the Xnetlist:
2 if current gate is NCL and # of inversions is odd:
3 replace by complementary NCL+

For each NCL gate of the Xnetlist, the algorithm verifies
if the number of inverted gates from an input is odd. If
the condition is true, this means that the gate has RTO
inputs and it must be replaced by the respective NCL+ gate.
Note that any input can be used for this verification, as the
result will always be the same. This is guaranteed by the
implementation, given that 1-of-n 4-phase QDI design will
always be implemented based on the propagation of valid data,
because spacers synchronization is guaranteed by the gates that
implement the circuit. This algorithm was implemented using
TCL scripts and integrated in the RTL Compiler environment
for automatically fixing Xnetlists, given that a NCL+ Virtual
Library is provided, as showed in Figure 4. The result of this
fix is a functional mapped netlist. For instance, the Xnetlists
of Figure 5(a), after being fixed using the algorithm, would
generate the correct netlist, as showed in Figure 5(b). Note
that incorrectly placed NCL gates were changed by their
complementary NCL+ gates, denoted by an nclp suffix. That
said, depending of the specified constraints, different driving
strengths may have been selected for generating an Xnetlist.
Our automation scripts select similar driving strengths for the
corresponding NCL+ gates that will substitute incorrect NCL
ones. Even though, this can change performance figures.

E. Post-fix Optimizations

The post-fix netlist may also need to be optimized. To
do so, the designer must optimize NCL and NCL+ gates
separately, because they all share the same BVF in their .lib
file and the synthesis tool may end up replacing NCL gates
by NCL+ or vice-versa in wrong places. In this way, the
designer needs to disable either the NCL Virtual Library or
the NCL+ Virtual Library. In RTL Compiler this is done by
defining the attribute preserve to true to all gates of the library.
With that, the tool is able to perform STA and optimize the
design to meet the specified constraints without compromising
the correct functionality of the design. As Figure 4 shows,

tuning NCL and NCL+ gates can be done iteratively until
required constraints are met. Next, formal verification can be
performed as usual, as all BVFs are known by conventional
tools. For simulation, the employed behavioral models must
reflect the functionality of the actual NCL and NCL+ gates,
rather than BVFs. In this way it is possible to verify that QDI
properties were not compromised. After the logic synthesis is
completed and verified, the mapped netlist can be employed
by physical synthesis tools for generating the layout of the
circuit. Note that all libraries employed in the logic synthesis
must be provided for the physical synthesis tools. However
optimizations in the design must be done separately for NCL
and NCL+ gates, like in the logic synthesis. Layout verification
steps can be performed as usual. Therefore, given a behavioral
Verilog or VHDL description of a 1-of-n 4-phase QDI circuit,
the adoption of the design flow described herein produces a
mapped netlist functionally equivalent to the provided input
description that respects 1-of-n 4-phase QDI definitions.

IV. EXPERIMENTS AND DISCUSSION

A. Experimental Setup and Results

A set of case study circuits was synthesized using the
proposed design flow: an 8-bit ripple carry adder (8bRC),
an 8-bit Kogge Stone adder (8bKS), a 32-bit Kogge Stone
adder (32bKS), a 32-bit Arithmetic Logic Unit (32bALU) and
a 16-bit shift and sum multiplier (16bMULT). The choice
for such case studies was due to the fact that they present
different gate counts and, more importantly, different numbers
of gates in series in the critical path, which allows displaying
the functionality of the proposed design flow for different
logic depths. Synthesis targeted the STMicroelectronics 65nm
bulk CMOS process and all models were based on typical
corners. For simplicity, apart from the library of inverters, with
tens of different driving strengths, we employed a minimum
BVFL, containing only the NAND BVF. NCL and NCL+
Virtual libraries had gates with 6 different driving strengths,
for allowing timing optimizations, and are a subset of the
ASCEnD library [24]. A library containing only the NAND
BVF is useful at this stage as it will generate long logic paths,
stressing the proposed design flow.

After synthesis, we exported the netlist and the annotated
delay to perform timing simulation. Simulation allowed us
to evaluate the correctness of the design and to perform
performance measurements in terms of forward propagation
delay, the time it takes for valid data to propagate from the
inputs to the outputs, and transmission delay, the time it takes
for both data and spacer to propagate through the circuit.
Simulations were performed for 5 scenarios, all simulated for
1ms: (i) the circuit was filled of spacers and there was no
data injection (0%) and (ii), (iii), (iv) and (v) the circuit was
operating with random data being injected 25%, 50%, 75% and
100% of the time. During simulation internal signals activity
was annotated and used as the source to conduct static power
analysis. In this way, (i) allowed us to measure quiescent
power and the remaining scenarios provided results on how
the power of the case studies increased as activity increased.

58

TABLE VII
CASE STUDIES SYNTHESIS, SIMULATION AND POWER ANALYSIS RESULTS.

Gates % NCL % NCL+ % INV # CP DTrans. DFwd. Pwr.0% Pwr.25% Pwr.50% Pwr.75% Pwr.100%

8bRC 247 41 27 32 60 7.71 ns 3.9 ns 0.014 mW 2.926 mW 5.835 mW 8.744 mW 11.649 mW
Fast 8bRC 282 35 28 37 48 2.72 ns 1.41 ns 0.021 mW 4.261 mW 8.496 mW 12.736 mW 16.964 mW

Improvement -14% 15% -4% -16% 20% 65% 64% -50% -46% -46% -46% -46%
8bKS 422 49 27 24 24 4.41 ns 2.33 ns 0.030 mW 5.436 mW 10.837 mW 16.239 mW 21.631 mW

Fast 8bKS 521 41 24 35 18 3.07 ns 1.55 ns 0.041 mW 11.002 mW 21.957 mW 32.903 mW 43.840 mW
Improvement -23% 16% 11% -46% 25% 30% 33% -37% -103% -103% -103% -103%

32bKS 2942 48 26 26 36 5.13 ns 2.74 ns 0.124 mW 21.392 mW 42.641 mW 63.892 mW 85.104 mW
Fast 32bKS 3446 42 22 36 26 3.84 ns 1.96 ns 0.249 mW 59.503 mW 118.700 mW 177.897 mW 237.009 mW

Improvement -17% 13% 15% -38% 28% 25% 28% -101% -178% -178% -178% -178%
32bALU 4924 45 23 32 44 2.27 ns 1.23 ns 0.334 mW 36.577 mW 72.794 mW 109.077 mW 145.143 mW

Fast 32bALU 5141 40 22 38 34 1.56 ns 0.84 ns 0.371 mW 63.171 mW 125.770 mW 188.358 mW 250.870 mW
Improvement -4% 11% 4% -19% 23% 31% 32% -11% -73% -73% -73% -73%

16bMUL 18371 42 25 33 432 53.68 ns 27.02 ns 1.188 mW 10.345 mW 19.474 mW 28.646 mW 37.791 mW
Fast 16bMUL 21041 39 22 39 216 40.73 ns 20.53 ns 1.529 mW 18.315 mW 35.087 mW 51.862 mW 68.569 mW
Improvement -15% 7% 12% -18% 50% 24% 24% -29% -77% -80% -80% -81%

Table VII provides an overview of the obtained results for a
synthesis with relaxed timing constraints and strict timing con-
straints (lines with the word Fast before the name of the case
study). Note that the latter employed constraints iteratively
defined in order to achieve maximum speed possible with
the provided BVFL. Definitions of the constraints were done
defining max delay attributes. Also, case studies presented
different gates count: from 247 to 18371 for relaxed con-
straints. From these, always more than 40% were NCL gates
and less than 30% NCL+ gates. The remaining were inverters
required by the logic. Note that the increased percentage of
inverters in the design is a consequence of providing only a
NAND BVF. As constraints were strict, gate count increased
up to 23% and the percentage of NCL and NCL+ gates
decayed, a consequence of the logical optimizations that the
tool performed and the possible insertion of extra inverters.
The table also shows the number of gates in the critical path
(# CP), which varied from 24 to 432 for the relaxed timing
designs. Note that as timing constraints were strict, substantial
reductions on the critical path were observed, up to 50% in
the case of 16bMUL. This demonstrated that the design flow
is capable of allowing the synthesis tool to perform logic
optimizations according to the specified constraints.

A direct consequence of that is observed in the DTrans. col-
umn of the table. Accordingly, as we strict timing constraints,
is substantially reduced, up to 65%. Another interesting result
was that forward propagation delay (DFwd.) always kept around
50% of transmission delay for all designs. This is a very
important aspect for asynchronous circuits, as a short DFwd.

allows starting communication with interconnected modules
earlier. Moreover, if one desires to reduce forward propagation
delay, is just a matter of tuning the NCL and NCL+ gates
that compose the employed libraries, unbalancing low to
high and high to low delays. Finally, power results help
demonstrating how QDI circuits are very well suited for low
power applications. As the table shows, power scales as the
activity in the circuit is increased. This is due to a natural
characteristic of such circuits: modules are active only when
and where required. Also, note that as timing constraints were
strict, the case studies presented increase in power. In this
way, the proposed design flow allows designers to trade-off

performance figures in a 1-of-n 4-phase QDI design.
For verification sake, we also picked the 16bMUL circuit

and introduced all combinations of valid data and spacer in
the inputs. This allowed us to validate that the circuit would
only generate valid data/spacers in the output after all inputs
had valid data/spacers, respecting QDI principles.

B. Contributions of this Work

Related works either employ custom made tools that map
the design using template-based approaches or impose severe
restrictions to the synthesis tool that avoids taking advantage
of logic optimization algorithms. Albeit many articles about
asynchronous circuits synthesis are available on current liter-
ature, we selected a set that supports the same class as our
design flow. A common problem with most of these [8]–
[10], [12]–[14], is the fact that they focus on pre-mapping
synthesis optimizations and then translate the generic netlist to
a mapped netlist using a template-based approach that relies on
the usage of NCL gates, which is not effective. An important
issue raised by Cheoljoo and Nowick in [8] is the fact that
optimizations during synthesis may introduce orphans in QDI
circuits. Fortunately, this can be solved by our design flow
by employing an initial DIMS-like circuit description [8] and
avoiding optimizations of multi-input C-elements. Designing
scripts for automating this task is ongoing work.

Another flow, presented by Kondratyev and Lwin in [11]
presents an optimization of template-based methods that allow
some post-mapping optimization. In fact, the approach is
quite similar to the one proposed in this manuscript. For the
synthesis steps, NCL gates are represented by their set Boolean
functions so that the synthesis tool can use them. The draw-
back is that because the authors employ only NCL gates, they
are able to optimize only the set phase of functions. Thus, these
authors assume that all functions are non-inverted and use only
the ON-sets for performing logic optimizations. This clearly
avoids taking advantage of more efficient optimizations, which
are supported by our design flow through the use of NCL+
gates. In addition, it is not clear how the authors cope with
inverted logic that can be inserted in the design, which as
we demonstrated here can jeopardize correct functionality. In
fact, the possibility of having the complement of an NCL gate,
defined as an NCL+ gate by Definition 2, is the core of the

59

proposed design flow. This explains why it was not possible to
use commercial tools for mapping NCL gates until the advent
of NCL+. Also, note that basic functions like AND, NAND,
OR and NOR can all be implemented as TLFs and can be used
to implement any logic circuit. Therefore, having only one of
these basic functions as a BVF guarantees the possibility of
implementing any 1-of-n 4-phase QDI circuit description.

This paper stands off by proposing a design flow for 1-of-n
4-phase QDI synthesis based on NCL that for the first time
uses IC design commercial frameworks features extensively.
This allows taking advantage of well defined optimization
algorithms rather than relying in template-based approaches
and optimizations. Salient features of the method include to
enable the exploration of STA and pre- and post-mapping
optimizations. Furthermore, the flow is capable of mapping
behavioral HDL into inverted and/or non-inverted NCL and
NCL+ gates, which allows generating shorter logic paths
than the ones generated when using only non-inverted NCL
gates. Another important aspect is that it allows exploring
timing/power/area optimizations with conventional constraints
descriptions and allows post-synthesis optimizations. It also al-
lows handling arbitrary networks with high fanin and complex
gate types. Moreover, albeit in this work we employed static
NCL implementations, the proposed flow allows automatic
choice for different NCL topologies when these are available
in the BVFL. In fact, the synthesis tool decides the best
trade-offs based on power/timing/area models and constraints.
Another major contribution is the definition of a systematic
approach for implementing NCL and NCL+ Virtual Libraries
to use in the proposed design flow. Finally, a very important
aspect of the proposed flow is that it can be used together
with previously proposed design flows, allowing post mapping
optimizations for QDI circuits generated with them. Hence, the
flow can be a complement for existing synthesis environments.

V. CONCLUSIONS

This paper demonstrated that usual synchronous commercial
EDA Frameworks can indeed be employed for mapping logic
functions into NCL gates and performing logic optimizations.
We have introduced a design flow that automates the task of
implementing 1-of-n 4-phase QDI circuits using commercial
Frameworks intended for synchronous designs. The results we
obtained using the flow demonstrate that conventional tools
can indeed be efficiently used to optimize circuits composed
of NCL gates. As future work, we will explore the automatic
translation from conventional combinational circuits to 1-of-
n 4-phase QDI and also submit a test-chip for fabrication to
validate the result of our flow on silicon. Finally, it is also
future work the development of scripts for enabling STA for
sequential designs. To do so, the method proposed here can
be performed iteratively disabling feedback loops.

VI. ACKNOWLEDGEMENTS

Authors acknowledge the support of CNPq under grants
401839/2013-3, 200147/2014-5 and 310864/2011-9 and the
support of FAPERGS under grant 11/1445-0.

REFERENCES

[1] V. Tiwari, D. Singh, and S. Rajgopal, “Reducing power in high-
performance microprocessors,” Proceedings of the 35th Design Automa-
tion Conference, pp. 732–737, 1998.

[2] P. A. Beerel, R. O. Ozdag, and M. Ferretti, A Designer’s Guide to
Asynchronous VLSI. Cambridge University Press, 2010.

[3] A. J. Martin and M. Nystrom, “Asynchronous techniques for system-on-
chip design,” Proceedings of the IEEE, vol. 94, no. 6, pp. 1089–1120,
2006.

[4] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and
D. Burger, “Dark silicon and the end of multicore scaling,” in Proceeding
of the 38th annual international symposium on Computer architecture.
ACM Press, 2011, p. 365.

[5] A. Bardsley, “Balsa: An asynchronous circuit synthesis System,” Ph.D.
dissertation, University of Manchester, 1998.

[6] A. Bardsley, L. Tarazona, and D. Edwards, “Teak: A token-flow im-
plementation for the balsa language,” in Application of Concurrency to
System Design, 2009. ACSD ’09. Ninth International Conference on,
2009, pp. 23–31.

[7] P. A. Beerel, G. D. Dimou, and A. M. Lines, “Proteus: An asic flow for
ghz asynchronous designs,” IEEE Design & Test of Computers, vol. 28,
no. 5, pp. 36–51, 2011.

[8] J. Cheoljoo and S. Nowick, “Technology mapping and cell merger for
asynchronous threshold networks,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 27, no. 4, pp.
659–672, 2008.

[9] I. David, R. Ginosar, and M. Yoeli, “An efficient implementation of
boolean functions as self-timed circuits,” Computers, IEEE Transactions
on, vol. 41, no. 1, pp. 2–11, 1992.

[10] B. Folco, V. Brégier, L. Fesquet, and M. Renaudin, “Technology
mapping for area optimized quasi delay insensitive circuits,” in IFIP
Conference on Very Large Scale Integration Systems, 2005, pp. 55–69.

[11] A. Kondratyev and K. Lwin, “Design of asynchronous circuits using
synchronous cad tools,” IEEE Design Test of Computers, vol. 19, no. 4,
pp. 107–117, 2002.

[12] M. Ligthart, K. Fant, R. Smith, A. Taubin, and A. Kondratyev, “Asyn-
chronous design using commercial HDL synthesis tools,” in Interna-
tional Symposium on Advanced Research in Asynchronous Circuits and
Systems, 2000, pp. 114–125.

[13] F. A. Parsan, W. K. Al-assadi, and S. C. Smith, “Gate mapping automa-
tion for asynchronous null convention logic circuits,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, p. 14, 2013.

[14] R. Reese, S. Smith, and M. Thornton, “Uncle - an rtl approach to asyn-
chronous design,” in International Symposium on Advanced Research in
Asynchronous Circuits and Systems, 2012, pp. 65–72.

[15] N. P. Singh, “A design methodology for self-time systems,” Cambridge,
MA, USA, Tech. Rep., 1981.

[16] K. Van Berkel, J. Kessels, M. Roncken, R. Saeijs, and F. Schalij, “The
vlsi-programming language tangram and its translation into handshake
circuits,” in Proceedings of the European Conference on Design Au-
tomation, 1991, pp. 384–389.

[17] K. Fant and S. Brandt, “Null convention logicTM: a complete and consis-
tent logic for asynchronous digital circuit synthesis,” in Proceedings of
International Conference on Application Specific Systems, Architectures
and Processors, 1996, pp. 261–273.

[18] K. M. Fant, Logically Determined Design. Hoboken, NJ: Wiley, 2005.
[19] M. Moreira, R. Guazzelli, and N. Calazans, “Return-to-one protocol for

reducing static power in qdi circuits employing m-of-n codes,” in 25th
Symposium on Integrated Circuit and Systems Design, 2012.

[20] S. L. Hurst, “An introduction to threshold logic: A survey of present
theory and practice,” pp. 339–351, 1969.

[21] M. Moreira, C. Oliveira, R. Porto, and N. Calazans, “Ncl+: Return-to-
one null convention logic,” in IEEE International Midwest Symposium
on Circuits and Systems, 2013, pp. 836–839.

[22] F. Parsan and S. Smith, “Cmos implementation comparison of ncl gates,”
in Int. Midwest Symp. on Circ. and Systems, 2012, pp. 394–397.

[23] A. Neutzling, M. G. Martins, R. P. Ribas, and A. I. Reis, “Synthesis
of threshold logic gates to nanoelectronics,” in 26th Symposium on
Integrated Circuits and Systems Design, 2013, pp. 1–6.

[24] M. Moreira, C. Oliveira, R. Porto, and N. Calazans, “Design of ncl gates
with the ascend flow,” in IEEE Latin American Symposium on Circuits
and Systems, 2013, pp. 1–4.

60

