
A Spectrum of MPSoC Models for Design Space
Exploration and Its Use

Carlos A. Petry, Eduardo W. Wächter, Guilherme M. de Castilhos, Fernando G. Moraes and Ney L. V. Calazans
FACIN-Faculdade de Informática, PUCRS-Pontificia Universidade Católica

Porto Alegre, RS - Brazil
{carlos.petry,eduardo.wachter,guilherme.castilhos}@acad.pucrs.br,

{fernando.moraes,ney.calazans}@pucrs.br

Abstract— Implementing on-chip multiprocessors is enabled by
the use of deep submicron technologies and constitutes today a
daunting task, due to the complexity of their design and
verification. The development of such devices can be facilitated
by the use of a carefully crafted set of models for each
implementation step. This paper proposes the use of such a set of
abstract models at several levels. These improve simulation speed
and observability in one sense and level of detail and precision in
the opposite sense. Initial development tasks such as software
development and functionality specification refinement can
evolve fast with very abstract models, while confidence in the
final implementation can be achieved with lower level models.
Our basic multi-processor system on a chip is configurable in
several parameters, including number of processors, type of
employed communication architecture and combination of
abstraction levels used in the description of the distinct modules
that compose the model.

Keywords — MPSoC, Verification, Abstract Model, NoCs.

I. INTRODUCTION
Multi-Processor Systems on a Chip (MPSoCs) are complex

architectures, composed by processors, memories and other
specialized intellectual property cores (IP cores, or just IPs).
Here, we call each of these isolated modules a processing
element or PE. PEs need to be interconnected by an intrachip
communication architecture, usually today in the form of a
network on chip or NoC [1][2]. Electronic design automation
(EDA) tools and frameworks to customize such architectures
are mandatorily used, given the huge design space to explore.

MPSoCs are increasingly popular in embedded systems.
Due to their complexity, a framework targeting MPSoC
customization must provide abstract models to enable fast
design space exploration, flexible application mapping
strategies, all coupled to features to evaluate the performance
of running applications.

While the number of PEs in an MPSoC is kept small, say
below a dozen, each PE may be individually designed or
chosen to fit performance and power requirements. However,
the cardinality of PEs is expected to grow fast in the next few
years and we already see commercial systems counting as
much as 100 PEs [3]. Thus, scalable MPSoC design
techniques are expected to be increasingly used.
Homogeneous multiprocessing, or at least locally
homogenous multiprocessing is expected to find larger

acceptance, encompassing embedded systems domains.
Processors are becoming parameterizable commodities, and
often a processor choice supersedes processor design during
product development. Each processor comes with a set of
models describing its behavior and performance figures at
several abstraction levels and system development is expected
to be able to use these models during design and verification
activities.

This work approaches the use of a set of models that
describe a whole MPSoC at several abstraction levels. Models
of processors, memories, network interfaces, NoCs and
software applications can be combined using an integration
framework, which is capable generating a complete
executable MPSoC model. Design elaboration, simulation of
real and synthetic applications and debugging may be
achieved directly from the integrating environment in most
cases. The spectrum of model choices lead to simulation times
that vary as much as several thousand times from the low end,
high precision models to the high end high speed models.

The rest of this work is divided into seven Sections. Section
II briefly explores some related work. Section III discusses the
reference MPSoC and its generation environment, while
Sections IV, V and VI cover the modeling of NoCs, PEs and
the whole MPSoC. Section VII discusses simulation results
for a subset of selected MPSoC models built using specific PE
components and NoC modules models. Finally, Section 0
presents a set of conclusions and direction for future work.

II. RELATED WORK
The amount of references in current literature on MPSoC

hardware and software modeling is far too large to allow an
encompassing view of the subject area here. Thus we keep the
focus here in some works that explore representative fields
where much research and development work is currently
produced. These fields are efficient software and hardware
modeling for achieving high performance executable
descriptions, generation of abstract transaction level models of
MPSoCs and techniques for accelerating the simulation of
executable MPSoC models.

Pétrot et al. [4] explore a set of techniques to build
executable models able to run software applications in
transaction level models (TLM) of MPSoCs with variable
degrees of efficiency. The explored techniques are mostly
based on simulation of software and how to execute the

978-1-4673-2789-3/12/$31.00 c©2012 IEEE

30

software on a given TLM model. The techniques are classified
in three main groups: instruction-accurate interpretation (the
slowest), dynamic binary translation and native code
execution (the fastest). The faster the technique the higher is
the overhead for producing the software execution
environment. An interesting point of contact with the work
described here is that our highest abstraction level descriptions
employ the slowest technique (instruction-accurate
interpretation using instruction set simulators). This ensures
that our results may be enhanced according to these authors by
orders of magnitude, if more sophisticated software execution
schemes are employed.

Abdi et al. [5] propose an environment able to generate
TLMs from a task level specification of applications.
Although automatic generation is interesting for specific
contexts, we see this as less important than smoothly
combining pre-existing models of various modules at distinct
abstraction levels. Their TLM generation is naturally limited
in what models it produces. The imposed restrictions are that
only homogenous multiprocessing is supported and only static
mapping of tasks is possible, which is quite restraining, even
for current MPSoCs.

 Chen et al. [6] focus on the use of multicore host systems
to validate MPSoCs and propose to accelerate simulation of
TLMs by optimizing simulation kernels to operate using
multiple simulation threads. The use of such multiple threads
requires the solution of complex TLM module
synchronization issues. This complexity accounts for only
moderate gains in simulation performance. For example, for a
4-core host the theoretical maximum speedup is 2.05 and in
practical experiments the maximum achieved speedup was
only 1.74.

III. THE HEMPS MPSOC AND ITS GENERATION ENVIRONMENT
Our reference MPSoC, called HeMPS [7], is currently a

heterogeneous multiprocessing NoC-based MPSoC platform.
Figure 1 presents a HeMPS homogeneous multiprocessing
instance using a 2x3 2D mesh NoC. The main hardware
components are an instance of a HERMES NoC family
member router [8] and a PE built around the mostly-MIPS
processor Plasma [10]. Plasma-IP is the name of the
processing element, which wraps each Plasma processor and
attaches it to the NoC. The PE also contains a private memory
(RAM), a network interface (NI), and a DMA module.

Typical applications running in MPSoCs, such as
multimedia and networking, often present a dynamic
workload. This implies a varying number of tasks running
simultaneously, and their number or load often exceeds the
available resources. To tackle this issue, HeMPS assumes that:
(i) applications are modeled using task graphs; (ii) only a
subset of tasks is initially loaded into the system.

Remaining tasks are stored in an external memory, named
task repository. This memory keeps all task codes necessary at
any moment of the applications’ execution.

The network interface (NI) adapts the processor
communication protocol to the communication protocol
expected by the NoC. For example, if we instantiate a NoC
with 16-bit flits, since the Plasma processor deals with 32-bit
words, it is necessary to serialize and de-serialize data passing
between the processor and the NoC.

One of the processors is defined as Master, while all other
are slaves. Application tasks run only on slaves. The Master
performs task allocation (dynamic and/or static) and interacts
with an external Task Repository and with peripherals (not
shown in Figure 1).

Figure 1 – MPSoC HeMPS platform topology [7].

To produce instance of HeMPs, we developed a tool called
HeMPS Generator. The main GUI window of this tool appears
in Figure 2. This tool allows performing a set of integrating
tasks, including:

• Define the target MPSoC dimension by choosing the
number and disposition of PEs;

• Select among the available processors one for each PE;
• Position of the Master Processor inside the topology;
• Select parameters of the PE internal memory, like page

size and total memory size;
• Select a set of applications to run on the MPSoC. In

Figure 2 two applications (MPEG4 and communication)
are defined by multiple tasks;

• Select a static, dynamic or mixed mapping schedule for
tasks. In Figure 2, drag and drop operations to specific
PEs or to each of the processor external repositories
define initial static and dynamically mapped tasks,
respectively. Dynamically mapped tasks are loaded on
demand, when some communication with them is
requested by some task running on some PEs;

• Select among several NoC interconnects. In Figure 2 it
is possible to see the current support to the Hermes
NoC and two versions of the Hermes-GLP [9]. This is
a low power version of Hermes, supporting the GALS
paradigm and where communication flows may be
attached priorities;

• Select the abstraction level of description for the
processor and NoC.

Given the user parameterization, the environment may then
be used to produce an executable model of the MPSoC,
compile all application tasks, insert an SO microkernel in each
processor and elaborating the whole hardware-software
structure of the executable model.

After compilation and elaboration, still inside the
environment it is possible to run a simulation of the system
and use processor windows to receive debugging information.
Note that the environment assumes PEs, NoCs and their
interfaces were already validated.

31

Figure 2 – The main GUI window of the HeMPS Generator integrating tool. Two applications are partially mapped in the 3x4, 12 processor platform.
The top three PEs employ an MBLite processor, while the other PEs employ the Plasma processor. Highlighted tasks belong to the MPEG4 application,
while the others belong to the communication application. Three tasks are selected for dynamic mapping in Plasma processors from both applications.

A. Synthesizable VHDL

The first version of the HeMPS MPSoC was prototyped in
Xilinx FPGAs. Currently, FPGA and ASIC versions are
available. The ASIC version has been implemented in
STMicroelectronis 65nm technology and is currently being
prepared for ASIC prototyping. Irrespective of the target
implementation technology, all modules were described at the
register transfer level (RTL) in VHDL. Memory blocks for
example need to be personalized for the target technology. In
Xilinx FPGAs we use multiples Block RAMs for efficiency,
and for ASIC we employ automated memory generators.

Looking for faster simulation time, memory arrays can be
modeled in a clock cycle accurate bit accurate (CABA)
SystemC description. Processors were modeled using
instruction cycle accurate instruction set simulators (ISSs) in
C and embedded in SystemC wrappers to interact with the
hardware models. Compared to an approach with all modules
described in VHDL RTL, the speed up using ISS/memory
models reduced the total simulation time up to 91%.

B. Validation
The validation process at the RTL level is performed using

a commercial RTL simulator, such as Mentor Modelsim or
Cadence Incisive coupled to adequate verifications models
such as the U-model and/or assertion-based verification.

IV. NOC MODELING

A. Synthesizable VHDL
The Hermes NoC is a minimalist NoC using conventional

2D Mesh topology, packet switching, input buffering and
wormhole mode. Centralized arbitration and routing allow the
implementation of a low area overhead router in VHDL. The
router overhead is dominated by the input buffers whose size
has a strong impact on performance and power. More details
on the structure of the Hermes router and NoC and its RTL
implementation can be found in [8].

B. RTL SystemC
This model has the same structure as the VHDL RTL

model. Each one of the VHDL modules is simply rewritten in
RTL SystemC. This way, the two approaches (the VHDL and
SystemC) are CABA models. This approach does not take
advantage for example of SystemC language structures such
as sc_fifo, for example. The code in Figure 3 shows one
example code of the RTL SystemC.

Figure 3 - Example of an RTL SystemC FIFO of the NoC buffer.

32

The debugging process at this level can proceed in two
ways: (i) generating a pre-compiled executable file of HeMPS
or (ii) using a commercial RTL simulator, such as Modelsim.
Using Modelsim implies higher simulation times, compared to
the executable file approach.

C. Untimed SystemC
This version of the NoC module was developed using the

Synopsys System Studio high level modeling environment, as
illustrated in Figure 4. This is simply a functionally equivalent
description of the previous models, fully described in untimed
SystemC. Routers are modeled by two types of external
hierarchical channels: (i) those used among routers,
interconnecting neighboring routers or a router to a PE and (ii)
those inside the router, to perform arbitration and routing
between ports within the router.

Figure 4 - Schematic view of the Hermes NoC router module.

Inside each router there are 4 ports, as Figure 5 shows, for
communication with ports of neighbor routers and one for the
local module. There is also the intraRouter module that
performs the arbitration and routing between router ports.

Figure 5 - Ports of communications inside of a Router module.

The debugging process can be made in two ways: (i)
evaluating logs generated by the executable file of the NoC
module or (ii) stepping the execution using simple debugger
software, such as GNU gdb. With gdb, the source code can be
traced step by step along the executable code, providing a way
to evaluate the behavior and correctness of the NoC code.

V. PE MODELING

A. RTL VHDL
All modules are described in synthesizable VHDL.

B. SystemC ISS + RTL VHDL
Processors are modeled using cycle accurate instruction set

simulators (ISSs) wrapped in SystemC modules. Compared to
an approach with all modules described in VHDL RTL, the
speed up using ISS/RAM models reduced the total simulation
time up to 91% [7].

C. SystemC ISS + VHDL behavioral
Looking for faster simulation time, the PE memory was

modeled using a behavioral SystemC description.

D. SystemC ISS + SystemC cycle accurate
In this model, the NI and the DMA are modeled as a

SystemC clock cycle accurate description. The processor
remains modeled by the ISS and the PE memory in behavioral
SystemC.

E. Untimed SystemC
The PE is a module composed by: (i) Plasma processor

(MLite); (ii) DMA controller; (iii) NI network interface; (iv)
CP0 co-processor, which has registers used to control memory
paging and system exceptions; (v) UART message handler - a
serial interface used to handle messages sent by slave
processors; (vi) RAM – the local memory and (vii) MemExt
module that contains all tasks binary codes, statically
allocated, present only at the master processor. Figure 6 shows
the schematic view of the whole PE. All modules are written
in untimed functional SystemC.

Figure 6 - Schematic view of Plasma PE module.

The communication between modules is provided by
CommChl, a SystemC channel that acts as interface between
all PE modules. Communication occurs by means of method
calls. The communication mechanism uses memory-mapped
addresses. Figure 7 shows part of the communication
mechanism code between the Plasma e NI modules. The NI is
accessible by address WRAPPER_SEND (0x20000130).

Figure 7 - Example of communication mechanism between PEs.

VI. MPSOC MODELING
Table 1 presents the different models available for

describing each PE and NoC, together with the specification
of readily available model combinations allowed by our
platform. Note that PEs are in fact formed by four distinct
modules, for which different combinations of abstract
descriptions are available, producing the five rows of Table 1.
The hard to obtain models derive from the use of a specific
tool to produce untimed models (Synopsys System Studio),
making models thus obtained not easily exportable to other
vendor’s environments.

33

Table 1 – Levels of abstraction implemented for NoC and PE. √ stands
for readily available models, while Easy corresponds to combinations
that are straightforward to produce and Hard stands for combinations

that today require significant modeling effort.

NOC→ VHDL
SC Cycle
Accurate

SC
UntimedPE↓

VHDL √ (M1) Easy Hard
ISS + VHDL Synthesizable √ (M2) Easy Hard

ISS + VHDL Behavioral √ (M3) Easy Hard
ISS + Cycle Accurate SystemC Easy √ (M4) Hard

SC ISS Untimed Hard Hard √ (M5)

Table 2 presents a brief comparison of the available models.

The main advantages of a VHDL model (M1) is that it is
synthesizable and from it accurate measurements of area,
operating frequency and power dissipation can be obtained.
The main disadvantage is obviously its prohibitively long
simulation times. The ISS+VHDL models (M2 and M3)
reduce simulation time, showing the same results (for
debugging and latency), without the results of area, frequency
and power consumption. SystemC cycle accurate models (M4)
produce improvements compared to the VHDL model. The
main advantage of this model is the reduction of the
simulation time, with the same results that VHDL+ISS model.
The SystemC untimed model (M5) shows the best results in
terms of simulation time.
Table 2 – Qualitative comparison of models. Mx stands for a given model

presented in Table 1.

Model→
Parameter↓ M1 M2/M3 M4 M5

Synthesizable Yes No No No
Precise Area,
Frequency,

Power
Yes No No No

Simulation
Time

VERY
HIGH HIGH MEDIUM FAST

Latency
Values Yes Approximate Approximate None

Accuracy
Real, in

clock
cycles

Approximate Real, in clock
cycles

Functionality
only

Precision CABA Locally CABA CABA Transaction
Level

A. The SystemC untimed MPSoC modeling case study
This Section describes the integration of the NoC Hermes

with Plasma PE to generate the MPSoC HeMPS using the
SystemC untimed model (M5). Figure 8 shows the
hierarchical organization of the modules that compose the
HeMPS MPSoC.

Figure 8 - Hierarchical organization of HeMPS.

Each of three main modules of Figure 8, plasmaP processor,
Hermes NoC and interRouterChl, are used to generate the

HeMPS MPSoC. Figure 9 shows the interconnection of these
three modules, where the upper boxes of each module
represent routers of the NoC.

Figure 9 – Partial schematic view of the HeMPS MPSoC 5x5.

Inside the plasmaP module, the NI module is the interface
responsible for communications between NoC and PE. The
interconnection of NI and Router occur through SystemC
ports using a FIFO queue for data coming from NoC and a
register to send data to the NoC. Figure 10 shows the structure
used to implement the communication between both modules.
The depth of the FIFO is configurable.

Figure 10 - Structure of the network interface (NI), used to implement

communication between NoC and PE.

VII. EXPERIMENTS AND RESULTS
We build a test scenario that exercises and compares four

model combinations. The abstraction characteristics of each of
these models appear in Table 3.

Table 3 – Characteristics of the four chosen models.

Model→
Module↓

Synthesizable
VHDL (M1)

ISS + VHDL
(M2)

Cycle-accurate
SystemC (M4)

Untimed
SystemC

(M5)

Router RTL VHDL RTL VHDL RTL SystemC Untimed
SytemC

NI RTL VHDL RTL VHDL RTL SystemC Untimed
SytemC

DMA RTL VHDL RTL VHDL RTL SystemC Untimed
SytemC

RAM RTL VHDL RTL SystemC RTL SystemC Untimed
SytemC

PE RTL VHDL SystemC+ISS SystemC+ISS SytemC+ISS

For several combinations of MPSoC sizes we run

simulations of multiple combinations of a single synthetic
application composed by six tasks, depicted in Figure 11.

Figure 11- Group of 6 tasks used as application in the test scenario. 34

We run experiments in a HeMPS MPSoC with four distinct
sizes: 4x4, 5x5, 7x7 and 10x10, on which the application
shown in Figure 11 is statically mapped. Each PE is
configured to have its internal memory divided into three
pages, one containing the OS microkernel and the two other
reserved for application tasks. The MPSoC was modeled in
the four different abstract level combinations mentioned
previously. Each line of Table 4 is identified by the size of
the experiment and one suffix. When this suffix is _1, this
means that only one instance of the application was present in
the MPSoC during simulation. When the suffix is _25, _50,
_75 or _100, this corresponds to a certain number of instances
of the task such that near 25%, 50%, 75% or 100% of the
MPSoC application pages of all processors are occupied by
tasks of some instance of the Figure 11 application.

Table 4 shows the simulation time results obtained, in
seconds, and the speedup obtained. The untimed model is not
yet coupled to the environment capable to generate the
random number of copies of the application. Thus, its runs are
limited to versions of the MPSoC running only a single
application.

Table 4 – Simulation time (in seconds), considering various levels of
abstraction. Speedup compares the fastest untimed simulation to the

slowest feasible simulation. NA=Not Available, due to excessive runtime,
or no time to produce the results. Simulations run on a 6-core, 64 bits

Xeon architecture with 12 Gbytes of RAM, running Linux OS.

Model
Scenario VHDL ISS + VHDL

Cycle-
accurate
SystemC

Untimed
SystemC

Untimed
Speedup

4x4_1 3852.34 217.35 34.99 3.27 1178.1
4x4_25 4219.99 220.17 35.26 3.46 1219.7
4x4_50 4701.47 231.67 37.97 NA NA
4x4_75 5162.13 245.78 40.56 NA NA
4x4_100 7288.23 291.73 46.86 NA NA
5x5_1 7742.04 336.25 53.22 3.85 2010.9
5x5_25 8134.28 359.32 60.83 4.18 1946.0
5x5_50 9087.88 423.85 65.76 NA NA
5x5_75 12205.26 429.10 82.84 NA NA
5x5_100 12460.31 466.63 85.45 NA NA
7x7_1 19765.50 682.96 114.18 8.96 2206.0
7x7_25 21797.14 724.61 129.06 11.04 1974.4
7x7_50 32153.21 1049.32 179.42 NA NA
7x7_75 41211.06 1272.44 226.46 NA NA
7x7_100 50557.62 1538.20 274.07 NA NA
10x10_1 50862.91 2344.64 289.52 39.92 1274.1
10x10_25 NA 4319.71 508.97 NA NA
10x10_50 NA 5686.91 668.76 NA NA
10x10_75 NA 7435.22 945.25 NA NA
10x10_100 NA 9897.06 1122.85 NA NA

The results in Table 4 show how a wide spectrum of

models may help during the development of complex
MPSoCs. Roughly each time we follow the path to more
abstract models we gain an order of magnitude improvement
in simulation time. Let us take for example the 10x10_1 case,
where a pure VHDL model needs around 14 hours to simulate.
The ISS+VHDL model, reduces this duration 21 times. Going
up to the Cycle-accurate SystemC model we get an additional

speedup of 8, while the use of the Untimed SystemC model
furnishes another speedup of 7.5. The overall speedup appears
in the last column of Table 4 and amounts to exactly 1274.1.

VIII. CONCLUSION AND FUTURE WORKS
This paper presented an environment and set of abstract

models for developing MPSoCs. The spectrum of models
enables to trade-off efficiency of simulation and precision of
results producing enhancements of more than 2,000 times in
some cases. Further work comprises the integration of other
models of processors and NoCs to the environment, the
increase of choices in selecting different combinations of
models and improvement of simulation performance for
untimed models using e.g. some techniques proposed in [4].

ACKNOWLEDGMENTS
Fernando Moraes is supported by CNPq, FAPERGS, and

CAPES, projects 301599/2009-2, 10/0814-9, 708/11,
respectively. Ney Calazans also acknowledges the support of
the CNPq and FAPERGS under grants 310864/2011-9 and
11/1445-0, respectively. All authors acknowledge the support
granted by CNPq to the INCT-SEC (National Institute of
Science and Technology – Critical Embedded Systems –
Brazil), process no. 573963/2008-8.

REFERENCES
[1] L. Benini, G. De Micheli. Networks on chips: a new SoC paradigm,

IEEE Computer. 35 (1), 2002, pp. 70–78.
[2] W. Dally, B. Towles, Route packets, not wires: on-chip

interconnection networks, in: 38th Design Automation Conference
(DAC’01), June 2001, pp. 684–689.

[3] Tilera, Inc. TILE-Gx Processor Family. Captured at
http://www.tilera.com/products/processors/TILE-Gx_Family, 2012.

[4] F. Petrot; M, Gligor; M.-M. Hamayun; Shen Hao; N. Fournel; P. Gerin.
On MPSoC Software Execution at the Transaction Level, IEEE Design
& Test of Computers, 28(3), May/June 2011, pp. 32-43.

[5] S. Abdi; G. Schirner; H. Yonghyun; D. D. Gajski; Y. Lochi. Automatic
TLM Generation for Early Validation of Multicore Systems, IEEE
Design & Test of Computers, 28(3), May/June 2011, pp. 10-19.

[6] W. Chen; X. Han; R. Dömer. Multicore Simulation of Transaction-
Level Models Using the SoC Environment, IEEE Design & Test of
Computers, 28(3), May/June 2011, pp. 20-31.

[7] Carara, E.; Oliveira, R.; Calazans, N. L. V., Moraes, F. G. HeMPS - a
Framework for NoC-based MPSoC Generation. In: 2013 IEEE
International Symposium on Circuits and Systems (ISCAS’09), 2009,
pp.1345-1348.

[8] Moraes, F. G; Calazans, N. L. V.; Mello, A. V. de; Möller, L. H.; Ost,
L. C. HERMES: an Infrastructure for Low Area Overhead Packet-
switching Networks on Chip. Integration the VLSI Journal, 38(1), Oct.
2004, pp. 69-93.

[9] J. J. H. Pontes, M. T. Moreira; R. I, Soares; N'. L. V. Calazans.
Hermes-GLP: A GALS Network on Chip Router with Power Control
Techniques, In: IEEE Computer Society Annual Symposium on VLSI
Design (ISVLSI'08), Montpellier, April 2008, pp. 347-352.

[10] OpenCores. Plasma-most MIPS I (TM) opcodes: overview. Captured
on: http://opencores.org/project,plasma, Jul. 2010.

[11] T. Kranenburg; R. van Leuken. MB-LITE: A robust, light-weight soft-
core implementation of the MicroBlaze architecture. In: Design,
Automation, and Test in Europe Conference (DATE’10), 2010, pp.
997-1000.

35

