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Abstract— Implementing on-chip multiprocessors is enabled by 
the use of deep submicron technologies and constitutes today a 
daunting task, due to the complexity of their design and 
verification. The development of such devices can be facilitated 
by the use of a carefully crafted set of models for each 
implementation step. This paper proposes the use of such a set of 
abstract models at several levels. These improve simulation speed 
and observability in one sense and level of detail and precision in 
the opposite sense. Initial development tasks such as software 
development and functionality specification refinement can 
evolve fast with very abstract models, while confidence in the 
final implementation can be achieved with lower level models. 
Our basic multi-processor system on a chip is configurable in 
several parameters, including number of processors, type of 
employed communication architecture and combination of 
abstraction levels used in the description of the distinct modules 
that compose the model. 
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I. INTRODUCTION 
Multi-Processor Systems on a Chip (MPSoCs) are complex 

architectures, composed by processors, memories and other 
specialized intellectual property cores (IP cores, or just IPs). 
Here, we call each of these isolated modules a processing 
element or PE. PEs need to be interconnected by an intrachip 
communication architecture, usually today in the form of a 
network on chip or NoC [1][2]. Electronic design automation 
(EDA) tools and frameworks to customize such architectures 
are mandatorily used, given the huge design space to explore. 

MPSoCs are increasingly popular in embedded systems. 
Due to their complexity, a framework targeting MPSoC 
customization must provide abstract models to enable fast 
design space exploration, flexible application mapping 
strategies, all coupled to features to evaluate the performance 
of running applications.  

While the number of PEs in an MPSoC is kept small, say 
below a dozen, each PE may be individually designed or 
chosen to fit performance and power requirements. However, 
the cardinality of PEs is expected to grow fast in the next few 
years and we already see commercial systems counting as 
much as 100 PEs [3]. Thus, scalable MPSoC design 
techniques are expected to be increasingly used. 
Homogeneous multiprocessing, or at least locally 
homogenous multiprocessing is expected to find larger 

acceptance, encompassing embedded systems domains. 
Processors are becoming parameterizable commodities, and 
often a processor choice supersedes processor design during 
product development. Each processor comes with a set of 
models describing its behavior and performance figures at 
several abstraction levels and system development is expected 
to be able to use these models during design and verification 
activities. 

This work approaches the use of a set of models that 
describe a whole MPSoC at several abstraction levels. Models 
of processors, memories, network interfaces, NoCs and 
software applications can be combined using an integration 
framework, which is capable generating a complete 
executable MPSoC model. Design elaboration, simulation of 
real and synthetic applications and debugging may be 
achieved directly from the integrating environment in most 
cases. The spectrum of model choices lead to simulation times 
that vary as much as several thousand times from the low end, 
high precision models to the high end high speed models. 

The rest of this work is divided into seven Sections. Section 
II briefly explores some related work. Section III discusses the 
reference MPSoC and its generation environment, while 
Sections IV, V and VI cover the modeling of NoCs, PEs and 
the whole MPSoC. Section VII discusses simulation results 
for a subset of selected MPSoC models built using specific PE 
components and NoC modules models. Finally, Section 0 
presents a set of conclusions and direction for future work. 

II. RELATED WORK 
The amount of references in current literature on MPSoC 

hardware and software modeling is far too large to allow an 
encompassing view of the subject area here. Thus we keep the 
focus here in some works that explore representative fields 
where much research and development work is currently 
produced. These fields are efficient software and hardware 
modeling for achieving high performance executable 
descriptions, generation of abstract transaction level models of 
MPSoCs and techniques for accelerating the simulation of 
executable MPSoC models. 

Pétrot et al. [4] explore a set of techniques to build 
executable models able to run software applications in 
transaction level models (TLM) of MPSoCs with variable 
degrees of efficiency. The explored techniques are mostly 
based on simulation of software and how to execute the 
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software on a given TLM model. The techniques are classified 
in three main groups: instruction-accurate interpretation (the 
slowest), dynamic binary translation and native code 
execution (the fastest). The faster the technique the higher is 
the overhead for producing the software execution 
environment. An interesting point of contact with the work 
described here is that our highest abstraction level descriptions 
employ the slowest technique (instruction-accurate 
interpretation using instruction set simulators). This ensures 
that our results may be enhanced according to these authors by 
orders of magnitude, if more sophisticated software execution 
schemes are employed. 

Abdi et al. [5] propose an environment able to generate 
TLMs from a task level specification of applications. 
Although automatic generation is interesting for specific 
contexts, we see this as less important than smoothly 
combining pre-existing models of various modules at distinct 
abstraction levels. Their TLM generation is naturally limited 
in what models it produces. The imposed restrictions are that 
only homogenous multiprocessing is supported and only static 
mapping of tasks is possible, which is quite restraining, even 
for current MPSoCs. 

 Chen et al. [6] focus on the use of multicore host systems 
to validate MPSoCs and propose to accelerate simulation of 
TLMs by optimizing simulation kernels to operate using 
multiple simulation threads. The use of such multiple threads 
requires the solution of complex TLM module 
synchronization issues. This complexity accounts for only 
moderate gains in simulation performance. For example, for a 
4-core host the theoretical maximum speedup is 2.05 and in 
practical experiments the maximum achieved speedup was 
only 1.74. 

III. THE HEMPS MPSOC AND ITS GENERATION ENVIRONMENT 
Our reference MPSoC, called HeMPS [7], is currently a 

heterogeneous multiprocessing NoC-based MPSoC platform. 
Figure 1 presents a HeMPS homogeneous multiprocessing 
instance using a 2x3 2D mesh NoC. The main hardware 
components are an instance of a HERMES NoC family 
member router [8] and a PE built around the mostly-MIPS 
processor Plasma [10]. Plasma-IP is the name of the 
processing element, which wraps each Plasma processor and 
attaches it to the NoC. The PE also contains a private memory 
(RAM), a network interface (NI), and a DMA module.  

Typical applications running in MPSoCs, such as 
multimedia and networking, often present a dynamic 
workload. This implies a varying number of tasks running 
simultaneously, and their number or load often exceeds the 
available resources. To tackle this issue, HeMPS assumes that: 
(i) applications are modeled using task graphs; (ii) only a 
subset of tasks is initially loaded into the system.  

Remaining tasks are stored in an external memory, named 
task repository. This memory keeps all task codes necessary at 
any moment of the applications’ execution.  

The network interface (NI) adapts the processor 
communication protocol to the communication protocol 
expected by the NoC. For example, if we instantiate a NoC 
with 16-bit flits, since the Plasma processor deals with 32-bit 
words, it is necessary to serialize and de-serialize data passing 
between the processor and the NoC. 

One of the processors is defined as Master, while all other 
are slaves. Application tasks run only on slaves. The Master 
performs task allocation (dynamic and/or static) and interacts 
with an external Task Repository and with peripherals (not 
shown in Figure 1). 

 
Figure 1 – MPSoC HeMPS platform topology [7]. 

To produce instance of HeMPs, we developed a tool called 
HeMPS Generator. The main GUI window of this tool appears 
in Figure 2. This tool allows performing a set of integrating 
tasks, including: 

• Define the target MPSoC dimension by choosing the 
number and disposition of PEs; 

• Select among the available processors one for each PE; 
• Position of the Master Processor inside the topology; 
• Select parameters of the PE internal memory, like page 

size and total memory size; 
• Select a set of applications to run on the MPSoC. In 

Figure 2 two applications (MPEG4 and communication) 
are defined by multiple tasks; 

• Select a static, dynamic or mixed mapping schedule for 
tasks. In Figure 2, drag and drop operations to specific 
PEs or to each of the processor external repositories 
define initial static and dynamically mapped tasks, 
respectively. Dynamically mapped tasks are loaded on 
demand, when some communication with them is 
requested by some task running on some PEs; 

• Select among several NoC interconnects. In Figure 2 it 
is possible to see the current support to the Hermes 
NoC and two versions of the Hermes-GLP [9]. This is 
a low power version of Hermes, supporting the GALS 
paradigm and where communication flows may be 
attached priorities; 

• Select the abstraction level of description for the 
processor and NoC. 

Given the user parameterization, the environment may then 
be used to produce an executable model of the MPSoC, 
compile all application tasks, insert an SO microkernel in each 
processor and elaborating the whole hardware-software 
structure of the executable model. 

After compilation and elaboration, still inside the 
environment it is possible to run a simulation of the system 
and use processor windows to receive debugging information. 
Note that the environment assumes PEs, NoCs and their 
interfaces were already validated. 
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Figure 2 – The main GUI window of the HeMPS Generator integrating tool. Two applications are partially mapped in the 3x4, 12 processor platform. 
The top three PEs employ an MBLite processor, while the other PEs employ the Plasma processor. Highlighted tasks belong to the MPEG4 application, 
while the others belong to the communication application. Three tasks are selected for dynamic mapping in Plasma processors from both applications. 
 
A. Synthesizable VHDL  

The first version of the HeMPS MPSoC was prototyped in 
Xilinx FPGAs. Currently, FPGA and ASIC versions are 
available. The ASIC version has been implemented in 
STMicroelectronis 65nm technology and is currently being 
prepared for ASIC prototyping. Irrespective of the target 
implementation technology, all modules were described at the 
register transfer level (RTL) in VHDL. Memory blocks for 
example need to be personalized for the target technology. In 
Xilinx FPGAs we use multiples Block RAMs for efficiency, 
and for ASIC we employ automated memory generators.  

Looking for faster simulation time, memory arrays can be 
modeled in a clock cycle accurate bit accurate (CABA) 
SystemC description. Processors were modeled using 
instruction cycle accurate instruction set simulators (ISSs) in 
C and embedded in SystemC wrappers to interact with the 
hardware models. Compared to an approach with all modules 
described in VHDL RTL, the speed up using ISS/memory 
models reduced the total simulation time up to 91%. 

B. Validation 
The validation process at the RTL level is performed using 

a commercial RTL simulator, such as Mentor Modelsim or 
Cadence Incisive coupled to adequate verifications models 
such as the U-model and/or assertion-based verification. 

IV. NOC MODELING 

A.  Synthesizable VHDL 
The Hermes NoC is a minimalist NoC using conventional 

2D Mesh topology, packet switching, input buffering and 
wormhole mode. Centralized arbitration and routing allow the 
implementation of a low area overhead router in VHDL. The 
router overhead is dominated by the input buffers whose size 
has a strong impact on performance and power. More details 
on the structure of the Hermes router and NoC and its RTL 
implementation can be found in [8]. 

B. RTL SystemC 
This model has the same structure as the VHDL RTL 

model. Each one of the VHDL modules is simply rewritten in 
RTL SystemC. This way, the two approaches (the VHDL and 
SystemC) are CABA models. This approach does not take 
advantage for example of SystemC language structures such 
as sc_fifo, for example. The code in Figure 3 shows one 
example code of the RTL SystemC. 

 
Figure 3 - Example of an RTL SystemC FIFO of the NoC buffer. 
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The debugging process at this level can proceed in two 
ways: (i) generating a pre-compiled executable file of HeMPS 
or (ii) using a commercial RTL simulator, such as Modelsim. 
Using Modelsim implies higher simulation times, compared to 
the executable file approach. 

C. Untimed SystemC  
This version of the NoC module was developed using the 

Synopsys System Studio high level modeling environment, as 
illustrated in Figure 4. This is simply a functionally equivalent 
description of the previous models, fully described in untimed 
SystemC. Routers are modeled by two types of external 
hierarchical channels: (i) those used among routers, 
interconnecting neighboring routers or a router to a PE and (ii) 
those inside the router, to perform arbitration and routing 
between ports within the router. 

 
Figure 4 - Schematic view of the Hermes NoC router module. 

Inside each router there are 4 ports, as Figure 5 shows, for 
communication with ports of neighbor routers and one for the 
local module. There is also the intraRouter module that 
performs the arbitration and routing between router ports. 

 
Figure 5 - Ports of communications inside of a Router module. 

The debugging process can be made in two ways: (i) 
evaluating logs generated by the executable file of the NoC 
module or (ii) stepping the execution using simple debugger 
software, such as GNU gdb. With gdb, the source code can be 
traced step by step along the executable code, providing a way 
to evaluate the behavior and correctness of the NoC code.  

V. PE MODELING 

A. RTL VHDL 
All modules are described in synthesizable VHDL. 

B. SystemC ISS + RTL VHDL 
Processors are modeled using cycle accurate instruction set 

simulators (ISSs) wrapped in SystemC modules. Compared to 
an approach with all modules described in VHDL RTL, the 
speed up using ISS/RAM models reduced the total simulation 
time up to 91% [7]. 

C. SystemC ISS + VHDL behavioral 
Looking for faster simulation time, the PE memory was 

modeled using a behavioral SystemC description. 

D. SystemC ISS + SystemC cycle accurate 
In this model, the NI and the DMA are modeled as a 

SystemC clock cycle accurate description. The processor 
remains modeled by the ISS and the PE memory in behavioral 
SystemC. 

E. Untimed SystemC  
The PE is a module composed by: (i) Plasma processor 

(MLite); (ii) DMA controller; (iii) NI network interface; (iv) 
CP0 co-processor, which has registers used to control memory 
paging and system exceptions; (v) UART message handler - a 
serial interface used to handle messages sent by slave 
processors; (vi) RAM – the local memory and (vii) MemExt 
module that contains all tasks binary codes, statically 
allocated, present only at the master processor. Figure 6 shows 
the schematic view of the whole PE. All modules are written 
in untimed functional SystemC. 

 
Figure 6 - Schematic view of Plasma PE module. 

The communication between modules is provided by 
CommChl, a SystemC channel that acts as interface between 
all PE modules. Communication occurs by means of method 
calls. The communication mechanism uses memory-mapped 
addresses. Figure 7 shows part of the communication 
mechanism code between the Plasma e NI modules. The NI is 
accessible by address WRAPPER_SEND (0x20000130). 

 
Figure 7 - Example of communication mechanism between PEs. 

VI. MPSOC MODELING 
Table 1 presents the different models available for 

describing each PE and NoC, together with the specification 
of readily available model combinations allowed by our 
platform. Note that PEs are in fact formed by four distinct 
modules, for which different combinations of abstract 
descriptions are available, producing the five rows of Table 1. 
The hard to obtain models derive from the use of a specific 
tool to produce untimed models (Synopsys System Studio), 
making models thus obtained not easily exportable to other 
vendor’s environments. 
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Table 1 – Levels of abstraction implemented for NoC and PE. √ stands 
for readily available models, while Easy corresponds to combinations 
that are straightforward to produce and Hard stands for combinations 

that today require significant modeling effort. 

NOC→ VHDL 
SC Cycle 
Accurate

SC 
UntimedPE↓ 

VHDL √ (M1) Easy Hard 
ISS + VHDL Synthesizable √ (M2) Easy Hard 

ISS + VHDL Behavioral √ (M3) Easy Hard 
ISS + Cycle Accurate SystemC Easy √ (M4) Hard 

SC ISS Untimed Hard Hard √ (M5)
 
Table 2 presents a brief comparison of the available models. 

The main advantages of a VHDL model (M1) is that it is 
synthesizable and from it accurate measurements of area, 
operating frequency and power dissipation can be obtained. 
The main disadvantage is obviously its prohibitively long 
simulation times. The ISS+VHDL models (M2 and M3) 
reduce simulation time, showing the same results (for 
debugging and latency), without the results of area, frequency 
and power consumption. SystemC cycle accurate models (M4) 
produce improvements compared to the VHDL model. The 
main advantage of this model is the reduction of the 
simulation time, with the same results that VHDL+ISS model. 
The SystemC untimed model (M5) shows the best results in 
terms of simulation time. 
Table 2 – Qualitative comparison of models. Mx stands for a given model 

presented in Table 1. 

Model→ 
Parameter↓ M1  M2/M3 M4  M5 

Synthesizable Yes No No No
Precise Area, 
Frequency, 

Power 
Yes No No No 

Simulation 
Time 

VERY 
HIGH HIGH MEDIUM FAST 

Latency 
Values Yes Approximate Approximate None 

Accuracy 
Real, in 

clock 
cycles 

Approximate Real, in clock 
cycles 

Functionality 
only 

Precision CABA Locally CABA CABA Transaction 
Level 

A. The SystemC untimed MPSoC modeling case study 
This Section describes the integration of the NoC Hermes 

with Plasma PE to generate the MPSoC HeMPS using the 
SystemC untimed model (M5). Figure 8 shows the 
hierarchical organization of the modules that compose the 
HeMPS MPSoC. 

 
Figure 8 - Hierarchical organization of HeMPS. 

Each of three main modules of Figure 8, plasmaP processor, 
Hermes NoC and interRouterChl, are used to generate the 

HeMPS MPSoC. Figure 9 shows the interconnection of these 
three modules, where the upper boxes of each module 
represent routers of the NoC.  

 
Figure 9 – Partial schematic view of the HeMPS MPSoC 5x5. 

Inside the plasmaP module, the NI module is the interface 
responsible for communications between NoC and PE. The 
interconnection of NI and Router occur through SystemC 
ports using a FIFO queue for data coming from NoC and a 
register to send data to the NoC. Figure 10 shows the structure 
used to implement the communication between both modules. 
The depth of the FIFO is configurable. 

 
Figure 10 - Structure of the network interface (NI), used to implement 

communication between NoC and PE. 

VII. EXPERIMENTS AND RESULTS 
We build a test scenario that exercises and compares four 

model combinations. The abstraction characteristics of each of 
these models appear in Table 3. 

Table 3 – Characteristics of the four chosen models. 

Model→
Module↓

Synthesizable 
VHDL (M1) 

ISS + VHDL 
(M2) 

Cycle-accurate 
SystemC (M4) 

Untimed 
SystemC 

(M5) 

Router RTL VHDL RTL VHDL RTL SystemC Untimed 
SytemC 

NI RTL VHDL RTL VHDL RTL SystemC Untimed 
SytemC

DMA RTL VHDL RTL VHDL RTL SystemC Untimed 
SytemC

RAM RTL VHDL RTL SystemC RTL SystemC Untimed 
SytemC

PE RTL VHDL SystemC+ISS SystemC+ISS SytemC+ISS
 
For several combinations of MPSoC sizes we run 

simulations of multiple combinations of a single synthetic 
application composed by six tasks, depicted in Figure 11. 

 
Figure 11- Group of 6 tasks used as application in the test scenario. 34



We run experiments in a HeMPS MPSoC with four distinct 
sizes: 4x4, 5x5, 7x7 and 10x10, on which the application 
shown in Figure 11 is statically mapped. Each PE is 
configured to have its internal memory divided into three 
pages, one containing the OS microkernel and the two other 
reserved for application tasks. The MPSoC was modeled in 
the four different abstract level combinations mentioned 
previously.  Each line of Table 4 is identified by the size of 
the experiment and one suffix. When this suffix is _1, this 
means that only one instance of the application was present in 
the MPSoC during simulation. When the suffix is _25, _50, 
_75 or _100, this corresponds to a certain number of instances 
of the task such that near 25%, 50%, 75% or 100% of the 
MPSoC application pages of all processors are occupied by 
tasks of some instance of the Figure 11 application. 

Table 4 shows the simulation time results obtained, in 
seconds, and the speedup obtained. The untimed model is not 
yet coupled to the environment capable to generate the 
random number of copies of the application. Thus, its runs are 
limited to versions of the MPSoC running only a single 
application.  

Table 4 – Simulation time (in seconds), considering various levels of 
abstraction. Speedup compares the fastest untimed simulation to the 

slowest feasible simulation. NA=Not Available, due to excessive runtime, 
or no time to produce the results. Simulations run on a 6-core, 64 bits 

Xeon architecture with 12 Gbytes of RAM, running Linux OS. 

Model 
Scenario VHDL ISS + VHDL 

Cycle-
accurate 
SystemC 

Untimed 
SystemC 

Untimed
Speedup

4x4_1   3852.34 217.35 34.99 3.27 1178.1 
4x4_25   4219.99 220.17 35.26 3.46 1219.7 
4x4_50   4701.47 231.67 37.97 NA NA 
4x4_75   5162.13 245.78 40.56 NA NA 
4x4_100   7288.23 291.73 46.86 NA NA 
5x5_1   7742.04 336.25 53.22 3.85 2010.9 
5x5_25   8134.28 359.32 60.83 4.18 1946.0 
5x5_50   9087.88 423.85 65.76 NA NA 
5x5_75   12205.26 429.10 82.84 NA NA 
5x5_100   12460.31 466.63 85.45 NA NA 
7x7_1   19765.50 682.96 114.18 8.96 2206.0 
7x7_25   21797.14 724.61 129.06 11.04 1974.4 
7x7_50   32153.21 1049.32 179.42 NA NA 
7x7_75   41211.06 1272.44 226.46 NA NA 
7x7_100   50557.62 1538.20 274.07 NA NA 
10x10_1   50862.91 2344.64 289.52 39.92 1274.1 
10x10_25  NA 4319.71 508.97 NA NA 
10x10_50  NA 5686.91 668.76 NA NA 
10x10_75  NA 7435.22 945.25 NA NA 
10x10_100 NA 9897.06 1122.85 NA NA 

 
The results in Table 4 show how a wide spectrum of 

models may help during the development of complex 
MPSoCs. Roughly each time we follow the path to more 
abstract models we gain an order of magnitude improvement 
in simulation time. Let us take for example the 10x10_1 case, 
where a pure VHDL model needs around 14 hours to simulate. 
The ISS+VHDL model, reduces this duration 21 times. Going 
up to the Cycle-accurate SystemC model we get an additional 

speedup of 8, while the use of the Untimed SystemC model 
furnishes another speedup of 7.5. The overall speedup appears 
in the last column of  Table 4 and amounts to exactly 1274.1. 

VIII. CONCLUSION AND FUTURE WORKS 
This paper presented an environment and set of abstract 

models for developing MPSoCs. The spectrum of models 
enables to trade-off efficiency of simulation and precision of 
results producing enhancements of more than 2,000 times in 
some cases. Further work comprises the integration of other 
models of processors and NoCs to the environment, the 
increase of choices in selecting different combinations of 
models and improvement of simulation performance for 
untimed models using e.g. some techniques proposed in [4]. 
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