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ABSTRACT 
This work proposes a new design flow for rapid 

creation and characterization of standard cell sets 
for asynchronous design. The flow is fully auto-
mated except for the cell layout generation step. It 
has been applied to the design of a standard cell 
set supporting the Teak asynchronous synthesis 
tool. Cells use a 65 nm gate length commercial 
CMOS process. An asynchronous RSA cryptogra-
phy circuit provides the design flow validation. 

I. INTRODUCTION 
The interest in non-synchronous circuits is in-

creasing. The International Technology Roadmap 
for Semiconductors (ITRS) in its 2008 edition [1] 
describes a clear need for asynchronous commu-
nication protocols in integrated circuits (ICs) control 
and synchronization along the next decades. For 
example, the ITRS estimates that global clock-
based ICs, which comprised 93% of the chips sold 
worldwide in 2007, will have only 55% of the mar-
ket by 2022. The other 45% of the chips will be 
local handshaking circuits, including clockless or 
multi-clock ICs. However, the lack of adequate 
electronic design automation (EDA) tools imposes 
a barrier to the design of asynchronous circuits. 
Most commercial EDA tools focus currently on 
purely synchronous designs. 

A standard cell is an elementary device, such 
as a logic gate, defined at the chip layout level, 
with some predefined characteristics that usually 
comprise cell height and current driving strength. 
Chip vendors and associated enterprises provide 
designers with libraries of standard cells and sup-
port to define design methods based on them. 
Cells are characterized in detail, and their standar-
dization facilitates automation of IC design. Most 
current Application Specific Integrated Circuit (AS-
IC) System on Chip (SoC) designs use standard 
cells extensively, e. g. to meet time to market con-

straints. Indeed, these are the key to speed up the 
design of high performance ICs and are often re-
ferred as the main success factor for the rapid 
growth of integrated systems technologies [2]. 

The efficient implementation of asynchronous 
circuits often requires devices other than those 
available at current commercial standard cell sets. 
Moreover, asynchronous design is in fact not a 
single alternative to the synchronous paradigm, but 
a collection of methods, several assuming the exis-
tence of a specific set of basic devices. Thus, no 
single set of new cells may be useful for every 
asynchronous design technique. 

This work proposes a set of cells, along with 
an automated novel design and characterization 
flow. This enables the construction of asynchron-
ous standard cell based ASICs. The cell set is in-
tegrated with the Teak System [3], a synthesis tool 
for high level asynchronous circuit descriptions. 
Teak netlists are quasi delay insensitive (QDI) and 
employ four-phase dual rail protocols. They can be 
placed and routed with commercial tools. 

The rest of the paper is organized in six sec-
tions. Section II describes basic concepts. Section 
III presents related work, while Section IV explores 
asynchronous circuits related synthesis tools. Sec-
tion V presents the proposed cell set and the flow 
to design it. Section VI shows a case study built 
with the proposed cell set and the results of its si-
mulation. Finally, Section VII draws some conclu-
sions and directions for further work. 

II. ASYNCHRONOUS CIRCUITS 
A digital circuit is synchronous if its design im-

plies the use of a single clock signal controlling all 
events. Otherwise it is called non-synchronous. As 
a special case, a digital circuit is asynchronous 
when no clock signal is used to control any se-
quencing of events. They employ explicit hand-
shaking between its components to synchronize, 
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communicate and operate [4]. The resulting beha-
vior is similar to a synchronous system where reg-
isters are clocked only when and where necessary. 
Characterizing an asynchronous design style re-
quires (i) the choice of a delay model, (ii) a method 
to encode information and (iii) a set of basic devic-
es. Each item is explored in the rest of this Section. 

Asynchronous circuits can be classified ac-
cording to several criteria. One important criterion 
is based on the delays of wires and gates. The 
most robust and restrictive delay model is the de-
lay-insensitive (DI) model, which operates correctly 
regardless of gate and wire delay values. Unfortu-
nately, this class is too restricted. The addition of 
an assumption on wire delays in some carefully 
selected forks enables the quasi-delay-insensitive 
(QDI) circuit class. Here, signal transitions must 
occur at the same time only at each end point of 
the mentioned forks. QDI circuits are quite com-
mon, although other models, such as bundled-data 
[4] are still used in specific contexts. This work as-
sumes the use of QDI as target model. 

There are different ways to encode data to 
adequately support delay models. The use of regu-
lar binary encoding of data implies the use of sepa-
rate request-acknowledge control signals. While 
this makes design straightforward for those used to 
synchronous techniques, the timing relationship 
between control and data signals need to be guar-
anteed at every handshake point, making design of 
large asynchronous modules unfeasible. As an 
alternative, DI encodings are robust to wire delay 
variations, because request signals are embedded 
within data signals. An example is dual-rail encod-
ing, that uses two wires to represent each bit, and 
can represent bit values as well as the absence of 
data. The request signal is computed from the data 
and therefore demands extra hardware. Clearly, 
wire overhead of such encodings exceeds Boolean 
encoding. More efficient DI encodings exist [5]. 

One fundamental device in asynchronous de-
sign that is not available in conventional standard 
cell libraries is the Muller C-element. Its importance 
derives from the fact that C-elements operate as 
event synchronizers. Its output only switches when 
all inputs are at the same logical value. Its truth 
table and usual symbols are represented in Figure 
1. When inputs (A and B) have the same value, the 
output (Q) assumes this same value. When inputs 
are different, the output keeps its previous logic 

value. Input-asymmetric behavior versions exist as 
well. With C-elements and standard logic gates it is 
possible to build other asynchronous primitives as 
macro blocks such as fork, join and merge [4]. 

 

A B Qi

 

0 0 0 
0 1 Qi-1 
1 0 Qi-1 
1 1 1 

Figure 1 – Muller C-element truth table and used symbols. 

III. RELATED WORK 
Some works propose methods to design asyn-

chronous circuits with conventional IC design tools 
and standard cell libraries. For example, Chong et 
al. [6] suggest a method that enables creating 
latch-based pipelines and an asynchronous latch 
controller for stage synchronization. As example 
design the work proposes an asynchronous FIR 
filter in a 0.35µm CMOS process. Cortadella et al. 
present the desynchronization paradigm [7] for au-
tomating the design of asynchronous circuits from 
synchronous specifications using synchronous 
tools. The design flow consists in exchanging each 
pipeline edge-triggered register by two level-
sensitive latches with local handshake units for 
local synchronization, eliminating the need for a 
global clock. Combinational logic delays need to be 
matched in control lines. Validation occurs through 
desynchronized versions of a DES cryptography 
core and a DLX processor. The two works do not 
fully exploit the asynchronous paradigm capabili-
ties, limiting themselves to bundled data protocols, 
which prevent the use of more robust and perform-
ing DI approaches [4]. Moreover, the need to ad-
just combinational logic delays by hand results in 
circuits that are hard to reuse in other contexts. 
Additionally, both works assume the use of con-
ventional standard cell libraries, which may lead to 
designs that spend more area and/or power. 

The asynchronous literature proposes a few 
standard cell libraries. Ferretti and Beerel suggest 
the single-track full-buffer (STFB) template library, 
designed to support high-speed area-efficient 
asynchronous nonlinear pipeline designs [8]. It 
employs the TSMC 0.25µm technology and con-
tains cells to support dual-rail and 1-of-3 data en-
coding circuits, being available through the MOSIS 
prototyping service. Ozdag and Beerel propose the 
QDI pre-charged half-buffer (PCHB) template li-
brary for asynchronous low-power high perfor-
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mance circuits [9]. It also uses TSMC 0.25µm and 
is available through MOSIS. This library counts 40 
dynamic cells to implement function blocks and 10 
cells to implement control logic. Gulati and Brun-
vand describe a specific macro cell library to sup-
port the design of asynchronous microengines [10]. 
The library employs AMI 0.5µm technology, con-
tains 66 cells and was validated through a test chip 
that implements a differential equation solver mi-
croengine. Most cells in the three discussed libra-
ries display a short range of output load capacit-
ance, due to the fact that they deem to validate a 
template-based design technique or support spe-
cific applications. Thus, no fine grain optimization 
occurs in the design of the libraries themselves. 
Besides, they limit the design of asynchronous cir-
cuits to specific templates. Other asynchronous 
design styles may require different sets of devices. 

To overcome specificity issues, the French 
labs TIMA and LETI developed a library with cells 
to support more generic QDI circuit design. Mau-
rine et al. present an STM 130nm technology ver-
sion of such library [11]. A private communication 
to authors of this paper informs that this library is 
currently available in the STM 65nm CMOS 
process and several chip designs use it. The work 
proposed here is based on the STM 65nm AS-
CEnD library, which contains over 250 cells and 
can be rather easily ported to similar CMOS tech-
nologies. It is fully integrated with back-end com-
mercial EDA tools and some front-end asynchron-
ous tools. ASCEnD targets semi custom design of 
a large range of asynchronous circuits. The cell 
subset this work addresses enables automatic 
generation of circuits from high level descriptions 
and allows designers to experiment with different 
asynchronous templates and styles like bundled 
data and dual-rail DI. The cell design flow is fully 
automated, except for the physical cell layout gen-
eration and technology specific requirements. 

IV. ASYNCHRONOUS CIRCUITS SYNTHESIS 
In the last years, different tools have been pro-

posed to support asynchronous design, testifying 
the growing interest in asynchronous circuits. 
Among these, Balsa [4] [12] stands as a compre-
hensive open source environment. It has been un-
der development at the University of Manchester 
for a long time. Balsa is both a language to de-
scribe asynchronous circuits and a framework to 

synthesize them. It was first developed in response 
to a need of a language to replace the Philips Tan-
gram system [13]. The Balsa language can be 
viewed as an extension of the Tangram language. 
The system approach is syntax-directed compila-
tion into handshake components. The compilation 
of a Balsa description is transparent, since lan-
guage constructs are directly mapped into hand-
shake circuits. The advantage is that it is relatively 
easy for the user to visualize the circuit-level archi-
tecture of a Balsa description. Balsa description 
changes reflect in predictable changes in the re-
sulting circuit. Additionally, different technologies 
can be used to synthesize Balsa circuit descrip-
tions, from FPGA to ASICs. Back-end generated 
gate level netlists can be imported into commercial 
EDA systems. Recently, another synthesis tool for 
asynchronous design appeared, Teak [14]. Teak 
has a new target parameterizable component set 
and a synthesis scheme that aims at the improve-
ment of circuits described in Balsa. It optimizes 
Balsa by replacing data-less activation channels 
with separate control channels. Albeit Balsa allows 
different data encodings over 2-phase and 4-phase 
protocols, Teak results are typically 4-phase QDI 
dual rail asynchronous circuits. 

V. CELL SET DESIGN FLOW 
To enable implementing netlists generated by 

Teak in real processes, a very small specific set of 
standard cells is required. Table 1 show this cell 
set. All cells are variations of the basic C-element. 
The proposed flow for each cell appears in Figure 
2 and comprises three main steps: specification, 
design and validation. To synthesize Balsa de-
scriptions, Teak also needs conventional standard 
cells like ANDs, ORs and AND-OR-INVERTERs. 

 

Table 1 – Proposed cell set logic functions. 
Cell Logic Function 
C2 )()()(1 BQBAQAQ iii ∧∨∧∨∧=+  

C3 )()()()(1 iiii QCQBQACBAQ ∧∨∧∨∧∨∧∧=+

C2R1 ))()()((1 BQBAQARSTQ iii ∧∨∧∨∧∧=+

C1U1 ))()((1 BQBABQ ii ∧∨∧∧=+  
 

ASCEnD is fully compatible with the basic STM 
65nm standard cell library, making use of both li-
braries in designs a seamless process. The first 
step of the proposed flow to design a standard cell 
is to specify its functionality and electrical require-
ments. 

101



 
Figure 2 – Standard cell proposed design flow. The three main steps are: (a) Specification, (b) Design and (c) Validation. Actions are 

represented by boxes, decisions by diamonds, descriptions as rounded corners boxes and the repository as a cylinder. 
 

Functionality is given as an expression defining 
the output(s) as a function of the circuit input(s), as 
in Table 1. The electrical requirements consist in 
the speed for a cell to charge or discharge its out-
put(s). The electrical specification of a standard 
cell is a tradeoff between area, power and speed. 
High performance gates require larger transistors 
and consequently consume more power and de-
mand more silicon area. Usually, different cells 
with a same logical function support different out-
put driving strengths. In the proposed flow, the de-
signer defines the required cell speed to meet con-
straints or for compatibility with another gate set. 

The next step is to design an initial schematic 
of the cell. Figure 3 presents this schematic im-
plementation for the logic function of the C2 cell 
from Table 1, a two input C-element.  

A

A

B

B

Vdd

Vdd Vdd

Q

(1) (2) (3)

 
Figure 3 – Example of schematic for the C2 cell, a two input C-

element. 
 

The schematic is then exported to a SPICE 
description. The basic structure of the example C-
element (in fact, of any similar cell) can be 
represented by blocks (1), (2) and (3) of Figure 3. 
In [15] a similar approach is used to implement C-
elements in CMOS technologies. Here, (3) 
represents the state keeper, (2) is the output driv-
ing inverter and (1) is the inverted logic function. 
The former is usually set to minimum transistor 
sizes, since it does not influence the switching per-
formance of the output and is used only to keep a 
static state. Block (2) is responsible for driving 
(charging/discharging) the output load of the cell. 

Its transistors size is obtained by simulating an in-
verter with varying transistor sizing until the re-
quired output driving strength is obtained (as de-
fined by the electrical specification). Once the di-
mensions of the driving inverter are fixed, a specif-
ically tool designed in the context of this work, 
called Ring Oscillator Generator (ROGen) auto-
matically produces a circuit to simulate for defining 
the size of the transistors that compose block (1). 

The circuit generated by ROGen is the ring os-
cillator represented in Figure 4, composed by a 
NAND and 10 of the cells to be sized. The NAND 
at the left is required to control oscillation. 

 

N
AN

D

 
Figure 4 – Example of the gate level view of a simulation circuit 

generated by ROGen. 
 

Next, extensive simulation defines the number 
of cell instances in the ring (10) as an amount suf-
ficient to normalize the effect of the NAND in the 
circuit and allow correct evaluation of the C-
elements. The circuit is described in SPICE and 
variations on the size of the inverted logic transis-
tors are achieved through the use of the SPICE 
.alter function from minimum size transistors to 
three-finger transistors with maximum size. A fin-
ger is the maximum transistor size that can be 
drawn without using layout folding. 

Simulating the SPICE circuit description, in-
formation about electrical behavior of each transis-
tor sizing is obtained through the SPICE .measure 
function. This information comprises: dynamic and 
leakage power of the whole ring, rise and fall prop-
agation times and transition delay of each cell, and 
operating frequency of the whole ring. Leakage 
power is the average power consumed from the 
power source while the circuit is in a static state 
(IN=0) and the dynamic power is the average pow-
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er consumption from the source when the ring is 
oscillating (IN=1). A second tool designed in the 
context of this work is the Cell Specifier (CeS). It is 
used to analyze the results obtained through simu-
lation and choose the PMOS transistors size that 
best drives the cell for each NMOS transistor size 
variation. The result is the set of the best PMOS- 
NMOS combination for each NMOS size variation. 
The fastest combination from this set is the best 
size set and results are presented in a chart. 

Once the size of the transistors is defined, step 
(b) of the Figure 2 flow may occur. From the circuit 
schematic, the physical characteristics of the stan-
dard cell can be designed with the use of a layout 
editor. The layout must respect design rule check 
(DRC) and design for manufacturability (DFM) 
rules along with a layout versus schematic (LVS) 
check. Once the layout is designed and fully veri-
fied, the parasitic effects must be extracted and 
electrically characterized for the specific process. 
The electrical characterization is a crucial step in 
the generation of standard cells, since it defines 
the behavior of the circuit for different operating 
conditions and generates information required by 
EDA tools. After characterization, a cell must be 
properly verified. 

The last flow step consists in the validation of 
the cell by checking if the information generated 
during characterization is equivalent to that defined 
in the specification. Moreover, timing simulation 
must be carried out for a design composed by a 
single cell to check if the delay obtained during 
characterization is correctly annotated and the be-
havioral description is followed. If the cell passes 
this verification step, it can be used in a design. 

Besides the layout/schematic views, two other 
views are needed: an abstract one, used by place 
and route tools and to assemble the circuit on a 
chip; and a behavioral view, for use in high level 
simulations. The abstract view is usually generated 
automatically by a layout tool. Its format is a de-
signer choice. The behavioral view can be cap-
tured by some HDL code, like Verilog or VHDL. In 
Verilog for instance, cell behavior can be imple-
mented through user defined primitives (UDPs) 
defined as truth tables, and a Verilog module as-
sociates the UDP to a cell behavioral view and  
defines the cell pins. Once the cell is fully de-
signed, all the views are generated and specifica-
tion is met, it may follow to the cell set repository. 

With this repository, the designer is able to imple-
ment QDI dual rail asynchronous circuits. 

VI. CASE STUDY 
The cell set specified in Section V was de-

signed using the proposed flow for the STMicroe-
lectronics 65nm, general purpose, standard Vt 
technology process. A 32-bit public key crypto-
graphic circuit running the RSA algorithm was de-
scribed in Balsa and implemented using the cells. 
The circuit was synthesized with Teak, obtaining a 
netlist. This netlist was automatically exported by 
Teak to a Verilog netlist composed of a set of 
components in the target library, in this case, the 
combination of the conventional STM standard cell 
library and our asynchronous cell set. 

The Verilog netlist was simulated with a VHDL 
testbench, running multiple encryption and decryp-
tion operations. After verifying functional circuit 
correctness through simulation, the netlist was 
placed and routed using the abstract views pro-
vided by STM and those designed within our cell 
set. The design uses a total of 132,274 standard 
cells, for a total area of 0.41 mm2. The circuit em-
ploys five metal layers to route, giving a total wire 
length of 843,668.855 µm. 

To compare results, a synchronous version of 
this circuit was also implemented. Its area was 
roughly 15 times smaller than the asynchronous 
circuit obtained through Teak synthesis, as de-
tailed in Table 2.  

 

Table 2 – A comparison of standard cell area and wire length for 
asynchronous and synchronous implementations of RSA in the 

STMicroelectronics 65nm technology. 
Asynchronous RSA Synchronous RSA

Standard Cells 132,274 7,712 
Total cell area 0.41mm2 0.027mm2 

Total wire length 843,668.855µm 57,691.770µm 
 

 

This overhead is not unexpected, not only be-
cause asynchronous logic takes more area, but 
mostly because asynchronous synthesis tech-
niques are still largely undeveloped. Also, the total 
power consumption proved to be 3.5 times higher 
in the asynchronous circuit, as detailed in Table 3. 
This is due to the elevated leakage and switching 
power consumption, consequences of such a large 
area overhead. Internal power increase however, 
was not so significant, just 1.5 times higher. 

After place and route, the delay of each path of 
the circuit was annotated, using the electrical cha-
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racteristics provided by STM and those of the pro-
posed cell set. Next, the post placed and routed 
netlist was generated and timing simulations for 
different encryption and decryption operations 
were conducted to verify the functionality of the 
mapped circuit. The correct operation of the circuit 
proved the successful integration of Teak, the ST 
conventional library and the proposed cell set. 

 

Table 3 – A comparison of power consumption for asynchron-
ous and synchronous implementation of RSA in STMicroelec-

tronics 65nm technology. 
 Asynchronous RSA Synchronous RSA

Internal Power 2.625mW 1.816mW 
Switching Power 4.834mW 0.515mW 
Leakage Power 2.201mW 0.411mW 

Total Power 9.66mW 2.742mW 

VII. CONCLUSIONS AND FUTURE WORK 
The proposed cell set and the validation design 

showed a successful vertical integration of front-
end (Balsa-Teak) back-end (Cadence) and stan-
dard cell libraries for achieving asynchronous de-
signs. Current work includes prototyping the test 
chip to validate the cell set on silicon. 

The elevated area consumption revealed in the 
case study is a consequence of a clear lack of de-
velopment in asynchronous EDA tool technology. 
These results are certainly worse if techniques like 
utilizing conventional logic gates to implement 
asynchronous logic were employed. For example, 
a 3-input C-element cell in a 65nm technology has 
an area of 7.80µm2, while the required convention-
al cells to implement the same logic would require 
16.64 µm2, counting cell area alone. In the asyn-
chronous RSA circuit case study, roughly 20% of 
the standard cells were 3-input C-elements. Im-
plementing this circuit with conventional cells 
would result in an area overhead of 0.240mm2, 
even not taking into account other C-element varia-
tions used in the design. Such increase in the area 
would dramatically affect static power consumption 
and average latency, easily leading to depletion of 
the advantages of using asynchronous circuits. 

As future work, the authors are undertaking a 
study to identify components and circuit construc-
tions that cause the immoderate area overhead. 
This can be achieved by comparing manually im-
plemented asynchronous circuits with those gen-
erated by automated tools. By reducing the area 
overhead of automatically generated circuits, im-
provement in performance and power consumption 

can be obtained. Improving EDA tools and specific 
cells to design asynchronous circuits can present a 
solution to deal with some of the emerging con-
straints of deep submicron (DSM) technologies. 

ACKNOWLEDGEMENTS 
This work is partially supported by the CNPq 

(under grants PNM 551473/2010-0 and 301599/ 
2009-2), by the CAPES-PROSUP and the CNPq-
PIBIC Program. Authors would also like to ac-
knowledge the National Science and Technology 
Institute on Embedded Critical Systems (INCT-
SEC) for the support to this research. 

REFERENCES 
1. Semiconductor Industry Association. “The International 

Technology Roadmap for Semiconductors” ITRS 2008 Edi-
tion. 

2. H. Eriksson et al. “Full-Custom vs Standard-Cell Design 
Flow – an Adder Case Study”. In: ASPDAC, pp. 507-510, 
Jan 2003. 

3. A. Bardsley et al. “Teak: A Token-Flow Implementation for 
the Balsa Language”. In: ACSD, pp. 23-31, Jul 2009. 

4. J. Sparsø and S. Furber. “Principles of Asynchronous Cir-
cuit Design – A Systems Perspective”. Kluwer Academic 
Publishers, Boston, 354 p., 2001. 

5. M. Agyekum and S. Nowick. “An error-correcting unordered 
code and hardware support for robust asynchronous global 
communication”. In: DATE, pp 765-770, 2010. 

6. K. Chong et al. “A Simple Methodology of Designing Asyn-
chronous Circuits Using Commercial IC Design Tools and 
Standard Library Cells” In: ISIC, pp. 176-179, Jan 2007. 

7. J. Cortadella et al. “Desynchronization: Synthesis of Asyn-
chronous Circuits from Synchronous Specifications”. IEEE 
Transactions on Computer Aided Design of Integrated Cir-
cuits and Systems, 25(10), pp. 1904-1921, Oct 2006. 

8. M. Ferretti and P. Beerel. “High Performance Asynchronous 
Design Using Single-Track Full-Buffer Standard Cells”. 
IEEE Journal of Solid-State Circuits, 41(6), pp. 1444-1454, 
Jun 2006. 

9. R. Ozdag and P. Beerel, “An Asynchronous Low-Power 
High-Performance Sequential Decoder Implemented with 
QDI Templates”. IEEE Transactions on Very Large Scale In-
tegration (VLSI) Systems, 14(9), pp. 975-985, Sep 2006. 

10. G. Gulati and E. Brunvand, “Design of a Cell Library for 
Asynchronous Microengines”. In: GLVLSI, pp. 385-389, Apr 
2005. 

11. P. Maurine et al. “Static Implementation of QDI Asynchron-
ous Primitives”. In: PATMOS, pp. 181-191, 2003. 

12. D. Edwards et al. “Balsa: A Tutorial Guide”. 157 p., 2006. 
13. K. van Berkel et al. “The VLSI programming language Tan-

gram and its translation into handshake circuits”. In: EU-
RODAC, pp. 384-389, Feb 1991. 

14. A. Bardsley et al., “Teak: A Token-Flow Implementation for 
the Balsa Language”. In: ACSD, pp. 23-31, Jul 2009. 

15. M. Shams et al. “Modeling and comparing CMOS imple-
mentations of the C-element” IEEE Transactions on Very 
Large Scale Integration (VLSI) Systems, 6(4), pp. 563-567, 
Dec. 1998. 

104


