
Knowledge Representation for Argumentation in
Agent-Oriented Programming Languages

Alison R. Panisson, and Rafael H. Bordini
Postgraduate Programme in Computer Science — School of Informatics (FACIN)

Pontifical Catholic University of Rio Grande do Sul (PUCRS) – Porto Alegre – Brazil
Emails: alison.panisson@acad.pucrs.br, rafael.bordini@pucrs.br

Abstract—Argumentation in multi-agent systems provides both
a mechanism for agent reasoning under uncertainty and conflict-
ing information as well as for communication in a more elaborate
way, allowing agents to understand each other through the ex-
change of additional information when compared to other forms
of agent communication. Even though argumentation techniques
can play an important role in multi-agent systems, little research
has been carried out on the issues in integrating argumentation
techniques and agent-oriented programming languages, which
would allow the development of practical applications taking
advantage of such combined techniques. In this work, we present
an argumentation framework developed on the basis of an agent-
oriented programming language. We cover mainly the practical
aspects of such integration, focusing on the knowledge represen-
tation expressivity resulting from it. Our approach allows the
development of multi-agent applications where agents are able
to use arguments in their decision-making processes as well as
for communication. The framework has been successfully used
as part of the development of a healthcare multi-agent prototype
application.

I. INTRODUCTION

Argumentation in multi-agent system, according to [1],
can be used for (i) agents reasoning over incomplete, con-
flicting, and uncertain information/beliefs, resolving conflicts
among different arguments and arriving at consistent and well-
supported standpoints [2], [3], [4], [5], and (ii) agent communi-
cation, allowing the exchange of additional information in dia-
logues for negotiation, deliberation, and many other important
aspects of multi-agent systems [6], [7], [8]. Furthermore, this
exchange of additional (compared to alternative approaches)
information allows agents to understand each other and to
communicate in a more informed way. It also, frequently,
changes the mental attitudes of the agents who receive such
extra information. All these characteristics just mentioned are
important aspects of argumentation-based approaches to multi-
agent systems, because of the inherent uncertainty and lack of
information present in such distributed systems [9].

Argumentation-based reasoning has been recently brought
to the context of agent-oriented programming languages [10],
[4]. The integration of argumentation techniques and multi-
agent systems by means of an agent-oriented programming
language is an important problem to be addressed, as it allows
the development of multi-agent applications, composed by
agents able to reason about the acceptability of arguments con-
structed on the face of uncertainty and conflicting information
in order to make decisions and to communicate. We argue that

some of the major challenges in the integration of argumen-
tation techniques and agent-oriented programming languages
are: (i) the means for knowledge representation containing
uncertain and conflicting information, (ii) the adaptation/de-
velopment of the argumentation-based reasoning mechanism
to work with such knowledge representation (inferring and
defining the acceptability of such inferences), and (iii) how
this all is integrated into already existing agent reasoning
mechanism underlying the interpreters of agent programming
languages.

In this work, we present an argumentation framework
developed on the basis of an agent-oriented programming
language, focusing in the practical aspects of the integration.
The main contribution of this work is the argumentation
framework we have developed and in this paper in particular
we address: (i) the knowledge representation language we use
in order to specify beliefs representing facts/predicates, strict
and defeasible inference; and (ii) the argumentation-based
reasoning mechanism integrated with the agent’s reasoning
mechanism, and how it uses the knowledge representation in
order to infer and define the acceptability of arguments;

II. BACKGROUND

A. Defeasible Logic

Defeasible logic [11] is a particular formalisation of defeasi-
ble reasoning, which is a simple and efficient approach to non-
monotonic reasoning. The idea is to formalise nonmonotonic
inferences of the type “birds generally fly”. Such inferences
hold only if there are no inferences to contrary information.
Knowledge in defeasible logic is organised as facts, rules
that are separated into strict rules and defeasible rules, and
a “superiority” relation between rules. Therefore, conclusions
can be inferred strictly or defeasibly. As defeasible rules
represent disputable knowledge, defeasible inferences can be
defeated by contrary evidence (provided by other inferences).

Defeasible reasoning/logic has a strong connection to ar-
gumentation systems [12], specially given the work presented
in [13], where this link is established through giving a Dung-
like argumentation semantics for defeasible logic [14]. The
argumentation semantics proposed is for classical defeasible
logic [11] and provides an ambiguity-blocking argumentation
system.

2016 5th Brazilian Conference on Intelligent Systems

978-1-5090-3566-3/16 $31.00 © 2016 IEEE

DOI 10.1109/BRACIS.2016.93

13

B. Agent-Oriented Programming Languages

Among the many agent-oriented programming languages
and platforms, such as Jason, Jadex, Jack, AgentFactory,
2APL, GOAL, Golog, and MetateM, as discussed in [15],
we chose the Jason platform [16] for our work. Jason ex-
tends AgentSpeak(L), an abstract logic-based agent-oriented
programming language introduced by Rao [17], which is one
of the best-known languages inspired by the BDI (Beliefs-
Desires-Intentions) architecture, one of the most studied archi-
tectures for cognitive agents. In Jason, the agents are equipped
with a library of pre-compiled plans that have the following
components: (i) a goal — the post-condition of the plan (the
thing that it achieves); (ii) a context — the pre-condition for
the plan, defining what must be true of the environment in
order for the plan to be successful; and (iii) a body — i.e, the
‘recipe’ part of the plan which contains a sequence of actions
and sub-goals in order to achieve the goal for which the plan
was written. In particular, plans in Jason have the following
syntax:

triggering_event : context <- body.

where the triggering_event represents a new agent goal
(or belief in case the plan is to be triggered by reaction to
perceived changes in the world) to be pursued and has the
format +!goal(Parameter), the context has preconditions
for the plan to be applicable for achieving that goal, and the
body is a sequence of actions and sub-goals (which trigger
others events and the use of other plans) to achieve the goal.
Among the various features of the Jason platform [16], it
has some features that are particularly interesting for our
argumentation framework, for example: strong negation, belief
annotations, and speech-act based communication. [16]

III. ARGUMENTATION-BASED REASONING IN
AGENT-ORIENTED PROGRAMMING LANGUAGES

In this section, we describe the argumentation-based rea-
soning approach we developed. We focus on both the formal
specification of the argumentation framework as well as the
knowledge representation and argumentation-based reasoning
implementation on an agent-oriented programming language.
Our framework is constructed on top of the Jason plat-
form [16], and also based on the defeasible logic formal-
ism [11] and its practical implementation called defeasible-
Prolog (d-Prolog for short) [18].

In order to present the argumentation-based reasoning mech-
anism, we divide this section into two parts. First we describe
the way we represent defeasible logic [11] and defeasible-
Prolog [18] in AgentSpeak (in particular the AgentSpeak
dialect available in the Jason platform [16]), including the
adaptation of representation and additional possibilities for
knowledge representation available in the Jason platform.
Second, we describe the argumentation-based reasoning mech-
anism we developed in order to work with the new knowledge
representation internally to the agent reasoning.

A. Defeasible Knowledge Representation

Defeasible logic [11] and defeasible-Prolog [18] have a
particular representation in the form of facts, rules, and a
“superiority” relation. In order to adequately represent this
in AgentSpeak, we represent facts, inference rules, and the
superiority relation as belief predicates that are treated sim-
ilarly to other information in the agent’s belief base. As we
are working with BDI agents, we use a belief base rather than
a knowledge base, assuming that all the agent’s knowledge
is stored as beliefs in its belief base. So the knowledge
representation in our framework is organised as follow: (i)
facts: are represented as predicates, so for example “Bob
is a graduate student” is represented as a simple predicate
such as grad_student(bob); (ii) strict rules: are rep-
resented as a special predicate strict_inf(Head,Body),
so for example “graduate students are students” is repre-
sented as strict_inf(student(X),grad_student(X));
the body can also be a list of predicates to repre-
sent conjunction; (iii) defeasible rules: are represented as
a special predicate def_inf(Head,Body), so for exam-
ple “graduate students usually study hard” is represented
as def_inf(studies_hard(X),grad_student(X)); as
above, the body can also be a list rather than a single pred-
icate; and (iv) superiority relation: the superiority relation
is represented as sup(Rule1,Rule2) stating that Rule1 is
superior to Rule2. Further, in order to maintain the coherence
when we construct inference rules using first-order predicates,
as is our case, we allow formulæ such as X\==Y into body
of rules (i.e., the term instantiated to X is different from the
one with which Y is instantiated), X==Y (i.e., equality), and
X>Y etc. into the list, allowing us to constrain the instantiated
variables (within the same predicate or not).

In argumentation-based reasoning, as well as in any argu-
mentation system, an important issue related to knowledge
representation is the representation of conflicting information.
Regarding conflicting information, we can consider different
types of opposition, the most common being negation where
the negation of a proposition is its opposite in a strong sense
of opposition — they are in direct contradiction, for example,
“This pen is black” and “This pen is not black”. Besides,
there is also a weaker sense of opposition, called contraries,
for example, “This pen is black” and “This pen is green” [19].
In our argumentation framework, we consider both types of
opposition. The strong type, negation, is represented using
the usual symbol “¬”, so “Bob is not a graduate student”
is represented as ¬grad_student(bob). While the weak
type of opposition is represented using a special predicate
comp(good,bad), meaning that “good” is contrary to “bad”.
Therefore, considering the two types of opposition, the notion
of conflicting information in our framework can be defined.

Definition 1 (Conflicting Information): Two pieces of in-
formation ϕ and ψ are said to be in conflict if ϕ ≡ ¬ψ or
there is comp(ϕ,ψ) fact in the belief base. Both cases are
represented in our formalisations using a general operator for
contradictory information, being ϕ contradictory to ϕ.

14

Having described how we represent individual pieces of
information in our framework, we are now able to describe
how arguments are created on top of those. Although the
construction of arguments is related to the argumentation-
based reasoning mechanism that we will describe in the next
section, we describe here the representation of arguments
themselves. It is important to note that our argumentation-
based reasoning mechanism constructs an argument looking
for the inference rules and facts available in the agent’s belief
base at that particular time in order to derive a specific
conclusion from them. Therefore, arguments are composed
of a set beliefs — representing the facts and inference rules
that can be used as support — and that particular conclusion
supported/derived from that set of beliefs.

Definition 2 (Argument): An argument is a tuple 〈S, c〉,
where S is a set of beliefs representing facts and inference
rules which supports a conclusion c.

For example, the classical defeasible argument called argu-
ment from perception, introduced by Pollock [20], says that:

“When an object looks red, then (normally, but
subject to exceptions) it is red, and this object looks
red to me, therefore this object is red.”

This argument, concluding that some particular object is red,
is represented as 〈S, color(obj, red)〉 where S is the set of
beliefs representing facts/predicates and inferences rules used
to draw that conclusion, as follows:
[def_inf(color(obj,red), looks(obj,red)),

looks(obj,red)]

meaning that the agent believes, through its sensing ca-
pabilities, that the object looks red — it has a belief
looks(obj,red) in its belief base — and the agent has a de-
feasible rule def_inf(color(X,Y),looks(X,Y)) whereby
it can infer that any object/thing that looks like being of some
particular color, can be, at least tentatively, inferred to have that
particular color, i.e., in that instance the agent can presumably
conclude that object to be red (given also that there is no
contrary information to conclude so).

B. Argumentation-based Reasoning Mechanism

The argumentation-based reasoning mechanism, as men-
tioned before, is used by agents to query the acceptability
of conclusions (and their supporting arguments) in their belief
bases; such queries are executed internally during the reason-
ing process. When a conclusion is queried internally by an
agent, as is usually the case, its reasoning mechanism searches
for that information in their belief base, including acceptable
inferences through the extensions we developed.

Before we introduce acceptable arguments (i.e., a conclu-
sion supported by acceptable inferences given the state of
an agent’s belief base) we need to discuss a few issues.
Intuitively, in our argumentation framework we have two kinds
of arguments, where arguments that use only strict rules are
stronger than arguments that use any defeasible rules: (i)
strict arguments are formed only by facts and strict rules
(i.e., indisputable knowledge). It is assumed that the strict
part of any knowledge base (in practice the agent’s belief

base) is consistent (i.e., contradictions cannot be derived); (ii)
defeasible arguments are created using at least one defeasible
rule (corresponding to the points of weakness of the argument).

An important aspect of this argumentation framework is that
the strict part of the knowledge in the belief base of agents is
assumed to be consistent. This is because the strict knowledge
is composed by beliefs that can be determined as factual and
strict inference rules which are all indisputable knowledge
(i.e., they correspond to an agent’s knowledge rather than its
beliefs), therefore strict knowledge can be naturally assumed
to be consistent.

Definition 3 (Consistency of Strict Knowledge): Let ∆strict

be the strict part of an agent’s belief base ∆. A belief base is
said to be consistent if there is no contradictory information
derivable from ∆strict , i.e., ∆strict |= ϕ and ∆strict |= ϕ do
not hold simultaneously at any given time.

Whenever an agent queries the acceptability of a partic-
ular conclusion, the internal argumentation-based reasoning
mechanism developed (extending the normal agent reasoning
mechanism) tries to find a rule for that particular queried
conclusion and then it attempts to prove the premises of that
rule as usual in backwards chaining. In summary, the reasoning
mechanism tries recursively to find a prove for that particular
conclusion from the beliefs in the belief base, including rules,
facts, and assumptions.

In this process, the reasoning mechanism considers con-
flicting arguments (inferences) in runtime, therefore, in order
to define the acceptability of an argument (and the respective
queried conclusion) we need to consider conflicting arguments.
Conflict between arguments are of two kinds:

Definition 4 (Attack Between Arguments): Let 〈S1, c1〉 and
〈S2, c2〉 be two arguments. Attacks between arguments can
be generalised into two types:

• The argument 〈S1, c1〉 rebuts the argument 〈S2, c2〉 iff
c1 ≡ c2.

• The argument 〈S1, c1〉 undercuts the argument 〈S2, c2〉
iff c1 ≡ c3 for some 〈S3, c3〉, where S3 ⊆ S2.

When two arguments are in conflict, i.e., the arguments
attack each other, this does not necessarily mean that one
argument defeats the other. Defeat is a “successful” attack,
and it considers the set of arguments that defend each other,
including preferences between the conflicting arguments [19].
In our framework, the set of acceptable arguments from
an agent’s belief base is defined in terms of the defeasible
semantics introduced in [13]. The defeasible semantics is
similar to the grounded semantics from Dung’s work [14],
and it is based on the so-called preempting defeaters [18].
The preempting defeaters of [18] are called ambiguity blocking
(in regards to the argumentation system) in [13]. This means
that defeasible arguments that are rebutted by as strong as, or
stronger, arguments (defined through some sort of preference
that will be explained below) are no longer available to rebut
other arguments. An example of preempting defeaters is the
knowledge base represented by ∆ below, where we use ⇒ to

15

refer to defeasible inferences:

∆ =

 a a⇒ b b⇒ c
x x⇒ e e⇒ ¬c
y y ⇒ ¬e c⇒ d

In this example, considering ∆ as the belief base of some
agent, the agent may conclude d using {a, a⇒ b, b⇒ c, c⇒
d} as support. Although there is an argument to ¬c supported
by {x, x ⇒ e, e ⇒ ¬c} which rebuts the sub-argument
for d that concludes c (undercutting the first argument), this
argument (the argument that derives ¬c) is defeated (by
undercut) by an argument with support {y, y ⇒ ¬e} which
prevents the use of that argument to rebut the argument for d.

Although in the example above we have an acceptable
argument for d, the arguments with support {y, y ⇒ ¬e}
and {x, x ⇒ e} (which is a sub-argument for c in the ex-
ample) are in conflict, and the argumentation-based reasoning
mechanism1 is not able to decide which one is acceptable, i.e.,
both are treated as unacceptable. A way to deal with undecided
conflicts is to use preferences over the arguments.

Clearly, strict arguments are stronger than defeasible ar-
guments and they have priority, i.e., when arguments are
in conflict, strict arguments always defeat defeasible ones.
Considering only defeasible arguments, in our framework
we have two types of priority: (i) priority by specificity,
which is originally defined in defeasible logic [11], and (ii)
the explicit declaration of priority between defeasible rules,
using a special predicate in the knowledge representation of
our argumentation framework. In priority by specificity, more
specific conclusions have priority over more general ones. To
exemplify this idea, consider the well-known Tweety example:
def_inf(flies(X),bird(X)).
def_inf(¬flies(X),penguin(X)).
def_inf(bird(X),penguin(X)).
penguin(tweety).

All clauses in the example are defeasible rules. Considering
the knowledge above, we have two conflicting arguments, one
supporting that Tweety flies: “Tweety flies, because it is a
penguin, penguins are birds, and birds fly”, and one supporting
that Tweety does not fly: “Tweety does not fly, because it
is a penguin and penguins do not fly”. Our argumentation-
based reasoning mechanism (as well as defeasible-Prolog [18]
on which our reasoning mechanism is based) concludes, in
this case, that Tweety does not fly, because the rule for
penguins def_inf(¬flies(X),penguin(X)) is more spe-
cific than a rule for birds def_inf(flies(X),bird(X)),
given that penguin is a subclass of birds, represented by
def_inf(bird(X),penguin(X)). In this manner, the argu-
ment for Tweety does not fly, ¬flies(tweety), has priority
over the other one and so defeats it.

Furthermore, when there exist two rules deriving con-
tradictory information, the language used in our approach,
as described before, allows us to declare, in an explicit
way, priority between these rules, using a special predicate

1This characteristic is from the original implementation of defeasible
Prolog [18], and it is what gave rise for the name ambiguity blocking in [13].

sup(Rule1,Rule2), indicating that inferences using Rule1

have priority over inferences using Rule2. Therefore, when
two conflicting arguments are constructed using these con-
flicting rules, this declaration is used in order to decide which
conclusion will actually be derived. Therefore, we can define
the acceptability of an argument as follows (based on [13]):

Definition 5 (Acceptable Arguments): An argument 〈S, c〉
is acceptable to an agent ag (where ∆ag is its belief base)
if 〈S, c〉 is finite, and: (a) 〈S, c〉 is strictly inferred, or (b)
every argument attacking 〈S, c〉 is defeated by some argument
〈Sn, cn〉 ∈ ∆ag (i.e., all arguments that attack 〈S, c〉 cannot
be inferred from ∆ag because they are attacked by as strong
as, or stronger, arguments in ∆ag so they are not acceptable
in ∆ag).

The reasoning mechanism extending the usual agent reason-
ing mechanism in Jason in accordance with the argumentation-
based reasoning mechanism that we proposed was imple-
mented by adapting d-Prolog [18], using the Prolog-like rules
which are interpreted by Jason with some limitations (e.g., the
“cut” operator is not available). The implementation is based
on logic programming and the formal semantic and syntax of
the AgentSpeak language extension that can be found in [16].
A part of that reasoning mechanism is presented below:
strict_der(Content):- Content.
strict_der([Content]):- strict_der(Content).
strict_der([First|Rest]):- strict_der(First)

& strict_der(Rest).
strict_der(Content):- strict_inf(Content,Cond)

& strict_der(Cond).

In this part of the implementation we demonstrate the
derivation of strict inferences, where first we check if the
queried content is a belief or a formula (i.e., X\==Y, X==Y,
etc.), then if it is a list of a single element, then if it is a list
of more than one element, and finally if it is the Head of a
strict rule and if the Condition (which derives the Content)
is also strictly derived. These rules permit the agent to query if
a content is strictly derived in its knowledge base (remember
that strict knowledge is indisputably known)2.

Therefore, when an agent wants to query if it has an
argument to support some conclusion, it uses the special
predicates strict_der(Content) and def_der(Content)

depending on whether the agent needs that information to be
strictly or defeasibly inferred, respectively. When an agent
needs the argument (set of beliefs representing facts and
inference rules used in that acceptable inference) to support
a claim in a dialogue or a decision-making process, the
argument is accessible using a second parameter in the query,
which we call Arg. Each rule and fact used in the inference
of that particular query are stored using the internal action
.concat (which concatenates a list with the new element,
e.g., a rule or a fact) available in Jason. Thus, depending
on the strategy of the agent, it can verify if it has a strict
or defeasible argument, using strict_der(Arg,Content)

2We do not show here the defeasible part of the mechanism of inference
for the sake of space, but our implementation will be made available open
source in due course.

16

and def_der(Arg,Content), or if this distinction is
not necessary, the agent can use the special predicate
argument(Content,Arg) inferred by:
argument(Content,Arg):-
strict_der(Arg,Content) | def_der(Arg,Content).

where we check first if the content is inferred in a strict way,
and then if the content can be inferred in a defeasible way.

The argumentation-based reasoning mechanism queries the
acceptability of arguments at runtime, and given the way the
agent reasoning cycle works, the arguments are constructed
using the most up-to-date information available to the agent
given a snapshot of its belief base. Therefore, the acceptability
of that particular argument (supporting the queried conclusion)
is guaranteed to be in accordance with the updated information
available for that agent at the moment of the query. Of course,
because of the dynamism of typical multi-agent systems, at the
very next reasoning cycle that same argument may no longer
be derivable for that same agent.

C. Example

As an example, we adapt the paper submission scenario
from [4]. In our example, imagine that an agent has submitted
a “paper” to BRACIS 2016. The agent believes that its paper
is good and will be accepted, so it commits itself to buying a
ticket to Recife because it concludes go_to(recife) from
its belief base, given that BRACIS 2016 is to take place in
Recife, i.e., it has the belief held_in(bracis,recife).
def_inf(go_to(L),[held_in(C,L),accepted(P,C)]).
def_inf(accepted(P,C),[submitted(P,C),good(P)]).
submitted(paper,bracis).
good(paper).
held_in(bracis,recife).

A plan that the agent could use to buy a ticket for some
location instantiated by L has the following format (in the
Jason platform):
+!buyTicket(L) : def_der(go_to(L))

<- buyTicket(L).

meaning that if the agent has reasons to believe that it needs
to go to some location L, it may buy a ticket to that location.
When the agent needs the actual argument that supports a
particular decision, it could use argument(go_to(L),Arg),
thereby instantiating Arg with such argument, which could
then be used to justify such decision-making to other agents,
for example.

However, before the agent buys its ticket, it checks the
BRACIS 2016 webpage and realises that the page limit
for BRACIS papers is 6 pages (including references) and
the agent has, unfortunately, submitted a longer paper than
allowed. In addition to the allowed paper length, the agent has
the information that papers longer than allowed are strictly
not accepted. This knowledge is represented as follows:
strict_inf(¬accepted(P,C),[longer_for(P,C),

submitted(P,C)]).
strict_inf(longer_for(P,C),[paper_length(P,X),

allowed_length(C,Y),X>Y]).
paper_length(paper,9).
allowed_length(bracis,6).

With the new information the agent can no longer
conclude go_to(recife), considering that the new
information allows the inference of a strict argument
for ¬accepted(paper,bracis), which defeats the
argument for go_to(recife), i.e., the argument for
¬accepted(paper,bracis) successfully undercuts the
argument for go_to(recife), considering that they are in
conflict and strict arguments have priority over defeasible
ones. Therefore, the plan above is no longer applicable (the
plan’s context is no longer satisfied).

IV. RELATED WORK

Much work on reasoning mechanisms based on argumenta-
tion can be found in the literature [2], [3], [21], [5], most of
them based on abstract argumentation systems at a theoretical
level only. Recently, Berariu [10] presented an approach
for defeasible reasoning to implement argumentation-based
reasoning in BDI agents. The author argues that, given the
scarcity of practical work in the area of argumentation-based
reasoning, it is now time to address the challenge of putting
such well-structured abstract theory into practice, proving its
usefulness in real applications. Towards that direction, the
system developed in [10] extends the Jason platform with a
module for argumentation, which is decoupled from the BDI
reasoning cycle, operating in a customised belief base for
the agent. Differently from [10], we implement our approach
internally to the agents’ reasoning mechanism, which we argue
is more adequate, considering that in [10], as the mechanism
is a decoupled module, the approach works with addition and
reaction to extraneous beliefs created to connect that separate
module with the agent reasoning, which makes programming
agents more difficult and cumbersome, as it is necessary to
predict reactions to such belief additions (as responses to the
results of the reasoning module).

Another related work is [22], where the authors demon-
strate, in a preliminary version, the benefits of argumentation
techniques in negotiation between agents. The work is based
on the assumption-based argumentation systems [23], and
presents a scenario of negotiation between agents (one-to-one
negotiation), where the agents negotiate resource allocation.
The work is implemented in Jade (Java Agent DEvelopment
Framework) [24] and agents engage in dialogues in order
to obtain the resources they need. The aim in [22] is to
define communication policies which allow agents to provide
reasons (arguments) for their refusal to provide the requested
resources. The benefits, as the authors describe, are assessed
in an informal and experimental way, showing that agents are
more effective in identifying the reallocation of resources (or
if such reallocations do not exist). Our work differs from [22]
because our argumentation framework can be used to develop
any type of multi-agent application. Still, as described before
our knowledge representation also allows assumptions (as
in [22]) and is thus able to implement such communication
policies as well.

To the best of our knowledge, [10] and our previous
work [4] are the only ones that integrate argumentation in

17

an agent-oriented programming language, aiming at general
argumentation-based reasoning, i.e., where agents are able
to reason using the domain-specific knowledge available to
them. Therefore, the work presented here is one of the
first approaches to integrate argumentation and agent-oriented
programming languages in such depth. Further, our argu-
mentation framework is the first that discusses together: (i)
argumentation-based reasoning, and defeasible knowledge rep-
resentation within the context of an agent-oriented program-
ming language; and (ii) how the argumentation-based reason-
ing mechanism and the knowledge representation are used by
agents to construct arguments to support their decision-making
and communication/interaction with other agents.

V. CONCLUSION

In this work, we described an argumentation framework
developed on the basis of an agent-oriented programming
language. The framework is both formally defined and imple-
mented. Furthermore, in this paper we described the knowl-
edge representation mechanisms available in our framework
(i.e., some of the language features), which can be inter-
preted by agents in the same way they have access to their
beliefs. Also, we described an argumentation-based reasoning
mechanism that allows the agents to construct and define the
acceptability of arguments, using both strict and defeasible
inference, meaning that conclusions are drawn in a tentative
way and thus might have to be retracted when new information
come in. That is, this is an approach to non-monotonic
reasoning, where new information can invalidate conclusions
previously derived from the agent’s belief base.

The argumentation framework presented in this paper allows
the development of multi-agent applications that can take ad-
vantage of argumentation techniques, both in order to support
the agents’ decision-making and to allow richer dialogues
through the exchange of arguments. In fact, our argumen-
tation framework has been successfully used as part of the
development of a healthcare multi-agent prototype application,
briefly reported in [6]. In the application, agents are able to
argue about task reallocation on behalf of the human users
they represent, justifying the requests for reallocation, the
refusals to accept particular reallocations, and so on. Further,
this argumentation framework has supported the development
of the argumentation-based protocol reported in [25].

Our argumentation framework has a working implemen-
tation for Jason agents; this implementation and a tutorial
with some examples will be made available in the Jason
web site3 in due course. Although we have developed the
argumentation framework on the basis of Jason [16], we argue
that other agent-oriented programming languages that have
similar knowledge representation and inference mechanisms
can use our argumentation framework in order to incorporate
argumentation techniques.

ACKNOWLEDGEMENTS

This research was partially funded by CNPq and CAPES.

3http://jason.sourceforge.net/

REFERENCES

[1] N. Maudet, S. Parsons, and I. Rahwan, “Argumentation in multi-
agent systems: Context and recent developments.” in ArgMAS, LNCS,
Springer, 2006, pp. 1–16.

[2] L. Amgoud and C. Cayrol, “A reasoning model based on the production
of acceptable arguments,” Ann. Math. Artif. Intell., vol. 34, no. 1-3, pp.
197–215, 2002.

[3] K. Atkinson and T. Bench-Capon, “Practical reasoning as presumptive
argumentation using action based alternating transition systems,” Artif.
Intell., vol. 171, no. 10-15, pp. 855–874, jul 2007.

[4] A. R. Panisson, F. Meneguzzi, R. Vieira, and R. H. Bordini, “An
Approach for Argumentation-based Reasoning Using Defeasible Logic
in Multi-Agent Programming Languages,” in ArgMAS, 2014.

[5] I. Rahwan and L. Amgoud, “An argumentation based approach for prac-
tical reasoning.” in AAMAS, H. Nakashima, M. P. Wellman, G. Weiss,
and P. Stone, Eds. ACM, 2006, pp.347–354.

[6] A. R. Panisson, A. Freitas, D. Schmidt, L. Hilgert, F. Meneguzzi,
R. Vieira, and R. H. Bordini, “Arguing About Task Reallocation Using
Ontological Information in Multi-Agent Systems,” in ArgMAS, 2015.

[7] S. Parsons and P. McBurney, “Argumentation-based dialogues for agent
co-ordination,” Group Decision and Negotiation, vol. 12, no. 5, pp. 415–
439, 2003.

[8] S. Parsons, M. Wooldridge, and L. Amgoud, “An analysis of formal
inter-agent dialogues,” in 1st International Conference on Autonomous
Agents and Multi-Agent Systems. ACM Press, 2002, pp. 394–401.

[9] M. Wooldridge, An introduction to multiagent systems. John Wiley &
Sons, 2009.

[10] T. Berariu, “An argumentation framework for bdi agents,” in Intelligent
Distributed Computing VII, Springer, 2014, vol. 511, pp. 343–354.

[11] D. Nute, “Defeasible logic,” in Handbook of Logic in Artificial Intel-
ligence and Logic Programming. Oxford University Press, 2001, pp.
353–395.

[12] H. Prakken and G. Vreeswijk, “Logics for defeasible argumentation,”
in Handbook of Philosophical Logic, second edition, vol. 4, D. Gabbay
and F. Guenthner, Eds. Dordrecht etc., 2002, pp. 219–318.

[13] G. Governatori, M. J. Maher, G. Antoniou, and D. Billington, “Argumen-
tation semantics for defeasible logic.” J. Log. Comput., vol. 14, no. 5,
pp. 675–702, 2004.

[14] P. M. Dung, “On the acceptability of arguments and its fundamental role
in nonmonotonic reasoning, logic programming and n-person games,”
Artificial Intelligence, vol. 77, pp. 321–357, 1995.

[15] R. H. Bordini, M. Dastani, J. Dix, and A. E. F. Seghrouchni, Multi-Agent
Programming: Languages, Tools and Applications, 1st ed. Springer
Publishing Company, Incorporated, 2009.

[16] R. H. Bordini, J. F. Hübner, and M. Wooldridge, Programming Multi-
Agent Systems in AgentSpeak using Jason (Wiley Series in Agent
Technology). John Wiley & Sons, 2007.

[17] A. S. Rao, “AgentSpeak(L): BDI agents speak out in a logical com-
putable language,” in Proceedings of the 7th European workshop on
Modelling autonomous agents in a multi-agent world : agents breaking
away: agents breaking away, ser. MAAMAW ’96. Secaucus, NJ, USA:
Springer-Verlag New York, Inc., 1996, pp. 42–55.

[18] D. Nute, Defeasible Prolog, ser. Research report (University of Georgia.
Artificial Intelligence Programs). Artificial Intelligence Programs,
University of Georgia, 1993.

[19] D. Walton, C. Reed, and F. Macagno, Argumentation Schemes. Cam-
bridge University Press, 2008.

[20] J. L. Pollock, Cognitive carpentry: A blueprint for how to build a person.
Mit Press, 1995.

[21] A. Bondarenko, P. M. Dung, R. A. Kowalski, and F. Toni, “An abstract,
argumentation-theoretic approach to default reasoning.” Artif. Intell.,
vol. 93, pp. 63–101, 1997.

[22] A. Hussain and F. Toni, “On the benefits of argumentation for
negotiation-preliminary version,” in EUMAS, 2008.

[23] P. M. Dung, R. A. Kowalski, and F. Toni, “Assumption-based argumen-
tation,” in Argumentation in AI. Springer, 2009, pp. 199–218.

[24] F. Bellifemine, F. Bergenti, G. Caire, and A. Poggi, “Jade – a java agent
development framework,” in Multi-Agent Programming. Springer, 2005,
pp. 125–147.

[25] A. R. Panisson, F. Meneguzzi, R. Vieira, and R. H. Bordini, “Towards
practical argumentation-based dialogues in multi-agent systems,” in
IEEE/WIC/ACM Int. Conf. on Intelligent Agent Technology, 2015.

18

