
Towards Benchmarking Actor- and
Agent-Based Programming Languages

Rafael C. Cardoso
FACIN–PUCRS

Porto Alegre - RS, Brazil
rafael.caue@acad.pucrs.br

Maicon R. Zatelli, Jomi F. Hübner
DAS–UFSC

Florianópolis - SC, Brazil
xsplyter@gmail.com
jomi.hubner@ufsc.br

Rafael H. Bordini
FACIN–PUCRS

Porto Alegre - RS, Brazil
r.bordini@pucrs.br

Abstract
Over the past few years there have been several advances
in distributed systems, and more recently multi-core proces-
sors. Consequently, a natural need for concurrent and par-
allel programming languages arises. In this paper, we com-
pare some aspects of two concurrency models, Actors and
Agents, using benchmarks to evaluate: (i) the communica-
tion performance on a concurrency-heavy scenario; (ii) the
performance in a scenario with the presence of bottleneck
and synchronization problems; and (iii) the reactivity and
fairness of the models. We chose Jason, 2APL, and GOAL
as the agent-oriented programming languages and Erlang,
Akka, and ActorFoundry as the actor-oriented programming
languages. Overall, Erlang displayed the best performance
of all languages used in this comparison, followed by Actor-
Foundry, Akka, Jason, 2APL, and GOAL, in this particular
order.

Categories and Subject Descriptors I.2.11 [Distributed
Artificial Intelligence]: Multiagent systems; D.3.2 [Lan-
guage Classifications]: Concurrent, distributed, and parallel
languages

General Terms Languages, Experimentation

Keywords benchmark, agents, actors, programming lan-
guages, concurrency

1. Introduction
With the recent advances in distributed systems and multi-
core processors, there is naturally a greater need for con-
current and parallel programming languages. In this paper,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2602-5/13/10. . . $15.00.
http://dx.doi.org/10.1145/2541329.2541339

we compare several languages that belong to two inher-
ently concurrent programming models, the Actor- and the
Agent-based models. Both models present promising ap-
proaches towards taking advantage of multi-core hardware
that is widespread nowadays. The Actors model is by defini-
tion lighter and, consequently, more efficient, while typical
agent architectures lead to a heavier programming paradigm,
given that agents are capable of knowledge representation
and reasoning to support autonomous intelligent behaviour.

Benchmarking programming languages is an important
aspect of research in this area, particularly for those of a
young paradigm such as agent-oriented programming. Com-
puter hardware is constantly evolving and new languages are
being developed in order to make good use of new hardware
architectures. Thus, we hope that by comparing these two
models we will be able to establish whether certain scenar-
ios tend to be more appropriate for actors rather than agents
and vice-versa, both in terms of naturalness of the paradigm
for the development of those scenarios, and in terms of ac-
tual performance.

This work was inspired by The Computer Language
Benchmarks Game (http://shootout.alioth.debian.
org/), which provides performance evaluation for approx-
imately twenty four programming languages on various
benchmark problems. Although they evaluate the perfor-
mance on computers with multiple cores, the problems and
most of the languages are not appropriate for concurrent pro-
gramming. A python script is available on their website that
does repeated measurements of CPU time, elapsed time, res-
ident memory usage, and CPU load for each core.

In this paper, we analyse the performance of six actor
and agent platforms, using three concurrency benchmarks.
The first one is the token-ring benchmark, similar to the
threadring found in The Computer Language Benchmarks
Game, where a token has to be passed around a ring of
threads; this benchmark was used to compare the commu-
nication (message passing) aspect, common to both agent
and actor languages. The second one is the chameneos-redux
benchmark, also found in The Computer Language Bench-

115

AGERE!’13, October 27, 2013, Indianapolis, Indiana, USA.

http://shootout.alioth.debian.org/
http://shootout.alioth.debian.org/

marks Game, where chamaneos creatures go to a meeting
place and exchange colour with a meeting partner; we used it
to measure both the performance in the presence of a bottle-
neck, and the fairness represented by the number of meetings
that each “chameneos” had. The third and last benchmark is
based on Fibonacci numbers, where clients requests a ran-
dom Fibonacci number to be calculated by a server; in this
scenario we compare the reactivity and internal concurrency
of each language model and their platforms.

Unfortunately, not all the experiments finished success-
fully for 2APL and GOAL, as both were taking too long to
finish each benchmark. Jason and the actor languages did not
present this problem.

The remainder of this paper is organised as follows.
The next section discusses related work. Section 3 gives an
overview of each of the programming languages that we
compare in this paper. Section 4 shows the description of
each benchmark used in the experiments as well as all the
results obtained, and the analysis of these results. Finally,
we conclude the paper in Section 5.

2. Related Work
There are several benchmarks and evaluations of actor and
agent programming languages in the literature, but to the
best of our knowledge there is only a few that focus on eval-
uating both actor and agent models together. A study about
several actor-oriented programming languages based on the
Java Virtual Machine (JVM) is available in [20]. The study
shows a qualitative comparison of actor properties in regards
to their execution semantics, communication and synchro-
nization abstractions, and a performance evaluation using
three different benchmark problems. Two of the benchmarks
are from the Computer Language Benchmarks Game web-
site, the threadring and the chameneos-redux bench-
marks, while the third is a simple implementation of a Fi-
bonacci calculator. The JVM-based languages used in that
comparison were: SALSA, Scala Actors, Kilim, Actor Ar-
chitecture, JavAct, ActorFoundry, and Jetlang. Erlang uses
its own virtual machine, nevertheless it was also included
in the performance evaluation, as it was the most widely
used actor language at the time. The performance results
show that Erlang and Kilim had the best performance over-
all, although Kilim only focuses on providing basic mes-
sage passing support. While we also have used these three
benchmarks, we made several concurrency adaptations to
the threadring and the chameneos-redux benchmarks, and
had a different focus for the Fibonacci benchmark.

Similarly, in [6] we have a comparison of agent pro-
gram similarity and time performance between three agent-
oriented programming languages: 2APL, GOAL, and Jason.
The benchmark used was a Fibonacci calculator, and the re-
sults show that the Jason agent was the fastest, followed by
2APL and then GOAL agents.

In [18] a feature model comprised of a collection of
general concepts about programming languages appearing in
the literature was presented. They validated those concepts
against Erlang, Jason, and Java. The result was a feature
model of actor, agent, and object programming languages
that can be useful to guide programmers, helping them to
decide which language is more appropriate for a particular
application.

An approach to query caching (memoisation) for agent-
oriented programming languages was proposed in [2]. A
performance analysis suggests that memoisation can signif-
icantly improve the performance of the languages that were
used: Jason, 2APL, and GOAL.

The simpAL agent-oriented programming language was
proposed in [24], with the purpose of integrating au-
tonomous and reactive behaviour; the authors claim that this
is a problem not easily achievable with object-oriented or
actor-oriented languages. The benchmark scenario is that of
an agent reacting to a message by incrementing a counter
and printing a message, comparing simpAL with Jason, Er-
lang, and ActorFoundry. When considering the experiments
with no I/O (i.e., no printing), the results show simpAL
as the fastest followed by Erlang, ActorFoundry, and then
Jason. Otherwise Erlang is the fastest, followed by Actor-
Foundry, simpAL, and then Jason.

An implementation of Jason in Erlang, eJason, was pre-
sented in [15]. It makes use of the lightweight processes
available in Erlang in order to allow the creation of a much
higher number of agents then previously possible in Jason.
The experiments involved a simple counter scenario, and a
greeting scenario where greeting messages are printed on
the console by each agent. The results show eJason going
as high as 800,000 agents in the first scenario, and 300,000
for the second, while still maintaining a low execution time.
Jason stayed in the limit of 10,000 agents in both scenarios.
The downside of eJason is that only a small subset of Jason
is currently implemented.

Finally, there is our own previous work [10, 11] in
benchmarking communication for actor- and agent-based
languages. We benchmarked Jason, Erlang, and Scala Ac-
tors, using the threadring scenario, from the Computer
Language Benchmarks Game website, as a simple non-
concurrent scenario, and two variations of it: a concurrent
variation where 50 tokens are passed concurrently and a vari-
ation to test reactivity by adding a second type of token in
the ring. Our results encouraged us to continue and extend
that work, as Jason performed surprisingly close to the ac-
tor languages, even surpassing them in some cases. We also
briefly benchmarked the agent-oriented programming lan-
guage JACK Intelligent Agents [9] in our previous work, but
the results obtained were not encouraging for benchmarks
that had significant concurrency, since JACK uses mainly
one thread, for security purposes. Therefore, JACK is not
included in this paper, and instead we added two other agent-

116

oriented programming languages, 2APL and GOAL, and an-
other actor-oriented programming language, ActorFoundry.
Besides the addition of these languages, we also used new
benchmarks to cover different metrics and features.

3. Background
In this section, we give a brief overview of the program-
ming languages that we chose for this comparison work. We
only present basic information about each language, such as
the runtime environment and communication features that
might help understanding the experiments. However, we as-
sume some familiarity of the reader with the actor and agent
paradigms. In the actor model [1], an actor is a lightweight
process that does not share state with other actors and com-
municates by asynchronous message passing through mail-
boxes. In the agent model [28], which is an extension of the
actor model, an agent is a more complex entity. The agent
languages we used are based on “practical reasoning” (i.e.,
logic-based reasoning about the best action to take at the
given circumstances) [7, 8].

Jason [7] is a platform for the development of multi-
agent systems based on the AgentSpeak language, initially
conceived by Rao [23] and inspired by the Belief-Desire-
Intention (BDI) architecture. The AgentSpeak language was
later much extended in a series of publications by Bordini,
Hübner, and colleagues, so as to make it suitable as a prac-
tical agent programming language. Communication in Ja-
son is based on the speech-act theory [27], which considers
messages as actions that affect the mental state of the agent
that is receiving the message. Jason is implemented in Java,
thus its programs run on a JVM, allowing support for user-
defined “internal actions” that are programmed in Java and
run internally within an agent rather than change the envi-
ronment model, as normal actions do in agent programs.

2APL [14] is also a BDI-based language, implemented
in Java, for the development of multi-agent systems. It is an
extension of the original version of 3APL [17], which was
focused on single agent programming. 2APL separates the
multi-agent and individual agent concerns into two levels:
the multi-agent level — providing constructs in terms of a
set of individual agents and a set of environments; and the
individual agent level — providing constructs to implement
cognitive agents. Communication in 2APL is also based on
speech acts and therefore considered actions.

GOAL [16] is not entirely based on the BDI model like
the other two agent-oriented programming languages; it is
influenced by the UNITY [13] language. In UNITY a set of
actions executed in parallel constitutes a program, however
whereas UNITY is based on variable assignment, GOAL
uses more complex notions such as beliefs, goals, and agent
capabilities. Message passing is based on mailboxes, each
message that arrives is inserted as a fact in the receiver agent
message base. GOAL’s agent communication is also based

on speech acts, represented by moods: indicative, declara-
tive, and interrogative.

Erlang [4], acronym for Ericsson language where it was
developed, is a functional language supported by an exten-
sive library collection named OTP, originally an acronym for
Open Telecom Platform before 2000 when Erlang became
open source. The Erlang Run-Time System (ERTS) appli-
cation is responsible for low-level operations, including the
Erlang virtual machine called Bodgan’s Erlang Abstract Ma-
chine (BEAM) [3]. Communication between processes —
the concurrency model usually referred by Erlang users is
the process model, but it corresponds directly to the actor
model — is based on asynchronous message passing; if a
message matching the pattern is found in the queue, it is pro-
cessed and its variables instantiated before the expressions in
the body are evaluated. Functions are also defined by pattern
matching and expressions as usual in functional languages.
For further details, we refer the interested reader to [12, 21].

Akka can be used either as a library for Scala or di-
rectly with Java. In this paper we chose to use the Akka li-
brary for Scala as it provides a syntax that is similar with
other common actor programming languages. Scala is con-
sidered a multi-paradigm language, as it combines features
of object-oriented and functional programming languages.
Its programs run on a JVM, so it has direct integration with
Java, allowing the use of existing Java code within Scala sys-
tems [22]. Many libraries have been developed for it, such
as Scala Actors (currently to be deprecated) and Akka: two
libraries that provide concurrent programming based on ac-
tors for Scala programming. It is important to note that the
actors used in the scenarios of this paper are event-based ac-
tors (default in Akka), and not thread-based actors. For a
more in-depth reading of Scala, we suggest [26] and, more
specifically for Akka, [29].

ActorFoundry [5] is a JVM-based framework for actor-
oriented programming that allows actor programs to be writ-
ten with a familiar Java syntax. It performs internally a
continuation-passing style transformation using the byte-
code post-processor from the Kilim [25] actor programming
language, and maps M actors to N native threads where
M � N. As in the previous actor-oriented programming
languages, actors in ActorFoundry communicate mainly by
asynchronous message passing.

4. Experiment Results
The machine used to run the experiments was an Intel Xeon
Six-Core E5645 CPU @ 2.40GHz (6 physical, 12 logical
cores with HyperThreadring), with 12GB of DDR3 1333
MHz RAM, 1TB hard disk drive, running Ubuntu 12.10 64
bits; the versions of the languages used were Jason 1.3.10,
2APL 2010-11-16, GOAL 20130516v5876, Erlang R16B01
erts 5.10.2, Akka 2.1.4 for Scala 2.10.2, and ActorFoundry
1.0; the additional software used were Java OpenJDK 64-
Bit Server VM, Java 1.7.0 21, and Python 2.7.3. We used

117

Java 6 for the experiments in ActorFoundry as its the only
Java version currently supported, and used Java 7 for all
the other languages that required Java. The benchmarks de-
scribed in the following sections focus on the message pass-
ing aspect of communication, testing the support for asyn-
chronous message passing, as well as the concurrency, fair-
ness, and reactivity present in each platform; features that
are essential for both actor- and agent-based languages.

Each program is run as a child-process of a Python
script using the popen function to create a pipe between the
script and the program. We used this script for the token-
ring and the chameneos-redux benchmarks, and took three
measurements with it: CPU load for each core, elapsed
time, and resident memory. The script measures core us-
age through the GTop library on Unix systems, taking the
CPU-idle and CPU-total values before forking the child-
process and after it exits; the percentage represents the time
that a core was not-idle. For measurements of elapsed time,
it uses time.time() to get the time before forking and
after exiting. Resident memory is measured by sampling
GLIBTOP PROC MEM RESIDENT for the program every
0.2 seconds. All the values shown below were collected
through five repeated measurements of each program with
each configuration; the results represent the turn with lowest
(best) value of elapsed time among the five different runs.
We did not use these performance metrics for the Fibonacci
benchmark, as performance is not the focus in that scenario.
We also measured source code size for all three benchmarks;
source code size was measured by removing the comments
then applying GZip compression (using the --fast param-
eter). The results of source code size can be found at the
end of this section, after the analysis of the Fibonacci bench-
mark.

4.1 Token Ring
This scenario is similar to one in our previous work on
benchmarking actor and agent languages [11], except that
this time there is a larger focus on concurrency rather than
just a variation on number of token passes. In this version
of the benchmark, T tokens are available to be passed con-
currently N times through a ring of “workers” (i.e., agents,
processes, or actors, depending on the language). Each pro-
gram in this scenario should:

• create 500 workers, named 1 to 500, and each linked to
its successor;

• worker 500 should be linked back to worker 1, forming
an unbroken ring;

• initially pass a token to the worker assigned by the distri-
bution equation below;

• each worker passes the token to its neighbouring worker
(i.e., the worker it is linked to);

• the program halts when all T tokens have been passed,
between any two workers, N times each.

At the start of a run the tokens are distributed through the
ring using the following equation:

W = I ∗ (WT/T)

where W is the worker which will receive the current token,
I is the number of the current token being assigned, WT is
the total number of workers, and T is the total number of
tokens. Each of these T tokens have to be passed N times,
and because neither agents nor actors share state, a counter
worker is needed for counting the tokens that have finished:
this is necessary because in order for the Python bencher
script to run repeated measurements it needs the programs
to halt. We ran experiments for this scenario with N fixed
at 500,000 and five different configurations for T , starting
from 1 token (not concurrent) and adding 250 tokens with
each configuration, arriving at a total of 1,000 tokens (2
tokens per worker) in the last configuration. This was done in
order to check how well the languages handle an increasing
concurrency factor, and its impact on multi-core processors.
In summary, we have the following configurations: T = 1;
T = 250; T = 500; T = 750; and T = 1, 000.

The results for this benchmark can be seen in the follow-
ing graphs1. Figure 1 presents the measurements of elapsed
time in seconds based on the values in Table 1. Figure 2
shows the memory results, and in Figure 3 we have the CPU
load results.

0,1

1

10

100

1000

T = 1 T = 250 T = 500 T = 750 T = 1000

El
ap

se
d

 T
im

e
 (

se
co

n
d

s)

Configuration

Jason

2APL

Erlang

Akka

ActorFoundry

Figure 1. Elapsed time for the token-ring benchmark.

As we previously stated in the introduction, it was not
possible to complete all experiments when using 2APL and
GOAL. 2APL could not run any configuration besides the
first one, always terminating with a Java exception indi-
cating that the garbage collector overhead limit had been
exceeded. We made several trials, changing some parame-
ters of the JVM, for example increasing the heap size, but
to no avail. By using the flag -XX:-UseGCOverheadLimit

we managed to ignore the warning generated by the excep-
tion, but the benchmark execution would carry on for several
hours (more than 8 hours) without concluding, and Ubuntu
would display several overheating warnings for the cores.

1 The elapsed time graphs presented in this paper are in logarithmic scale of
base 10, and the memory usage graphs are in logarithmic scale of base 2.

118

Tokens 1 250 500 750 1,000
Jason 5.724 162.476 302.386 444.015 597.024
2APL 112.078 — — — —
Erlang 0.377 8.888 16.273 23.768 31.156
Akka 4.727 103.21 196.375 333.929 418.273

ActorFoundry 1.229 56.749 114.221 167.199 223.918

Table 1. Elapsed time in seconds for the token-ring benchmark.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Jason Erlang Akka ActorFoun
dry

2APL GOAL

T = 1

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Jason Erlang Akka ActorFoundry

T = 250

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Jason Erlang Akka ActorFoundry

T = 500

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Jason Erlang Akka ActorFoundry

T = 750

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Jason Erlang Akka ActorFoundry

T = 1000

Figure 3. Core load for the token-ring benchmark.

Using 500 workers caused a heavy impact on performance
in this benchmark for GOAL, to the point where it would
run for more than 4 hours in the first configuration, with only
one token. Thus we were not able to run the experiments us-
ing GOAL with the same configurations used in the other
languages. Just to present some values, it took 328 seconds
to finish the experiment with only 50 workers, 1 token, and
50,000 token passes, which is a much lower configuration
than those that we used for the other languages. In regards to
memory and core load for this lower configuration, GOAL
used 250MB and an average of 17% respectively.

0,5

2

8

32

128

512

2048

T = 1 T = 250 T = 500 T = 750 T = 1000

M
e

m
o

ry
 (

m
e

ga
b

yt
e

s)

Configuration

Jason

2APL

Erlang

Akka

ActorFoundry

Figure 2. Memory for the token-ring benchmark.

That garbage collector exception found in 2APL occurs
if more than 98% of the total time is spent in garbage col-
lection and less than 2% of the heap is recovered, then
an OutOfMemoryError will be thrown. This feature is de-
signed to prevent applications from running for an extended
period of time while making little or no progress because the
heap is too small. Although we cannot attest to what specif-
ically caused this behaviour, the nature of the experiments
indicate that the problem is related to the use of multiple to-
kens, i.e. increasing the concurrency factor of the scenario.
As each token has to be passed N times, we also have a much
larger pool of messages to go through, totalling T*N mes-
sages, which should also be considered as a potential cause
for this problem.

With GOAL, the performance bottleneck appears be the
number of workers, as it takes a long time just to start the
workers and form the ring. GOAL had the highest elapsed
time between all of the languages, even when using a lower
configuration and only one token. Both 2APL and GOAL
use, besides the JVM, a Prolog interpreter that could have
caused a heavy impact on performance. 2APL uses the
JIProlog interpreter and GOAL uses the SWI-Prolog inter-
preter.

The elapsed time results for the token-ring benchmark
show Erlang as the one with the best results (i.e., lower

119

elapsed time), followed distantly by ActorFoundry, and then
Akka and Jason close together. All languages had the ex-
pected peak in elapsed time when moving from the first con-
figuration (1 token) to the second (250 tokens), with a close
to linear increase for the rest of the configurations. We can
easily separate Erlang into one group, and the other three
languages into another one which are orders of magnitude
slower for this benchmark. Interestingly, these three lan-
guages use a JVM, while Erlang has its own VM. This sug-
gests that the VM could be responsible for the performance
gap, as it is responsible for the garbage collector, thread op-
timisation, memory usage, core distribution, and many other
performance factors.

Considering the memory results, we have a much smaller
peak when moving from the first configuration to the second.
It may seem that there is a big peak for Erlang, but moving
from 0.5MB to 28MB is not really a lot. Increasing the con-
currency factor, i.e. the number of tokens, did not seem to
impact the memory used by each language except for that
initial peak. Although this is a somewhat expected behaviour
for the actor languages, the agents are much heavier enti-
ties and with more tokens passing through the ring it would
mean that more intentions are generated during each agents
reasoning cycle, and therefore should have an increase in
memory usage as the number of tokens that are passed con-
currently increases. A possible solution involves changing
the heap size used by the JVM, which may improve perfor-
mance as the garbage collector would waste less time emp-
tying the heap, and less time would be spent in paging.

In regards to core usage, both ActorFoundry and Er-
lang had optimal use of the cores for the first configura-
tion; as only one token is passed, there is no concurrency
and therefore mostly one core should be used. When mov-
ing to concurrency-heavy configurations, ActorFoundry did
not manage to keep up with the other languages, present-
ing only an average usage of the cores while Jason, Erlang,
and Akka used the cores to their maximum. Although Actor-
Foundry’s performance on elapsed time was not bad by any
means, the core usage indicates that it could do even better
if it made more appropriate use of the available cores. Both
2APL and GOAL had low core usage across all six cores in
the configurations that they were able to finish; this could be
another determining factor for their low performance.

4.2 Chameneos Redux
This benchmark is also from The Computer Language
Benchmarks Game website, which is an adaptation of the
full version found in [19]. In our version of this benchmark
we varied the number of chameneos creatures instead of the
number of meetings. The general idea of the benchmark is
that given a population of C chameneos creatures, each crea-
ture lives lonely in the forest but at certain times it goes to
a meeting place where it meets one other creature, and both
mutate before returning to the forest. Each program in this
scenario should:

• create C differently coloured (blue, red, or yellow), dif-
ferently named, chameneos creatures;

• each creature will repeatedly go to the meeting place and
meet, or wait to meet, another creature;

• both creatures will change colours to the complement of
the colour of the chameneos that they just met;

• write all of the complements between the three colours
(blue, red, and yellow);

• write the initial colours of all chameneos creatures;
• after N meetings, for each creature write the number of

creatures it met and spell out the number of times that it
met a creature with the same name (should be zero);

• the program halts after writing the sum of the number of
meetings that each creature had (should be 2 ∗N).

A broker worker had to be created in order to represent
the meeting place and simulate the meetings. We ran experi-
ments for this scenario with N fixed at 500,000 meetings and
three different configurations for the number of chameneos
creatures (C), in order to test how well the languages handle
an increasing concurrency factor when dealing with a small
bottleneck, such as the Broker (i.e., the meeting place), in
this scenario. The configurations used are: C = 5; C = 50;
and C = 500.

The results for this benchmark are shown in the following
graphs. Figure 4 presents the measurements of elapsed time
in seconds based on the values in Table 2. Figure 7 shows the
memory results, and in Figure 5 we have the CPU load re-
sults for each of the six cores. Besides these measurements,
another important aspect to report in this scenario is the fair-
ness of the workload distribution between workers for each
language, which in this case is represented by the number of
meetings that each chameneos (i.e., worker) had at the end of
a run. To represent this data we make use of boxplot graphs2

in Figure 6, and present the standard deviations in Table 3.

0,1

1

10

100

C = 5 C = 50 C = 500

El
ap

se
d

 T
im

e
 (

se
co

n
d

s)

Configuration

Jason

Erlang

Akka

ActorFoundry

Figure 4. Elapsed time for the chameneos-redux bench-
mark.

2 In a boxplot, the bottom of the box represents the first quartile, the top
of the box represents the third quartile, the band inside the box represents
the median, and the bottom and top whiskers represent, in the way we used
here, the minimum and maximum of all the data, respectively.

120

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Jason Erlang Akka ActorFoundry

C = 5

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Jason Erlang Akka ActorFoundry

C = 50

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Jason Erlang Akka ActorFoundry

C = 500

Figure 5. Core load for the chameneos-redux benchmark.

185000

190000

195000

200000

205000

210000

215000

Jason Erlang Akka ActorFoundry

N
u

m
b

e
r

o
f

m
e

e
ti

n
gs

C = 5

19000

19200

19400

19600

19800

20000

20200

Jason Erlang Akka ActorFoundry

N
u

m
b

e
r

o
f

m
e

e
ti

n
gs

C = 50

1930

1940

1950

1960

1970

1980

1990

2000

2010

2020

Jason Erlang Akka ActorFoundry

N
u

m
b

e
r

o
f

M
e

e
ti

n
gs

C = 500

Figure 6. Boxplot for the numbers of meetings of each worker in the chameneos-redux benchmark.

The same behaviour as in the previous benchmark ap-
peared again for 2APL and GOAL, as both were unable
to run the same experiment configurations as the other lan-
guages. Their programs would either end in an exception, or
keep running for too long a period of time. In 2APL we ob-
tained the same exception as before, “GC overhead limit ex-
ceeded”, and had to lower the configurations in order to ob-
tain the following results: for 5 chameneos and 50,000 meet-
ings, the result was 33 seconds of elapsed time, 1040MB
of memory used, and an average 50% of core load; for 50
chameneos and 50,000 meetings, the result was 33 seconds
of elapsed time, 1552MB of memory used, and an average
49% of core load; and for 500 chameneos and 50,000 meet-
ings the results was 56 seconds of elapsed time, 1716MB of
memory used, and an average 40% of core load.

1

2

4

8

16

32

64

128

256

512

1024

2048

C = 5 C = 50 C = 500

M
e

m
o

ry
 (

m
e

ga
b

yt
e

s)

Configuration

Jason

Erlang

Akka

ActorFoundry

Figure 7. Memory for the chameneos-redux benchmark.

In GOAL, it was even more difficult to choose the val-
ues for the lower configuration because, as in the previous
benchmark, changing the number of workers proved to cause
a huge impact on performance, so we had to lower consider-

Chameneos 5 50 500
Jason 24.882 24.034 30.326

Erlang 1.157 1.061 0.997
Akka 2.11 1.956 2.038

ActorFoundry 1.693 1.705 2.257

Table 2. Elapsed time in seconds for the chameneos-redux
benchmark.

Chameneos 5 50 500
Jason 167 5 0.347

Erlang 144 50 5.059
Akka 7,021 154 3.637

ActorFoundry 3 0 0

Table 3. Standard deviations for chameneos-redux.

ably the number of meetings in order to increase the number
of chameneos. The configurations and results are as follows:
for 5 chameneos and 50,000 meetings the result was 310
seconds of elapsed time, 171MB of memory used, and an
average 17% of core load; for 50 chameneos and 5,000 meet-
ings the result was 195 seconds of elapsed time, 268MB of
memory used, and an average 17% of core load; and for 500
chameneos and 500 meetings the results was 632 seconds of
elapsed time, 1252MB of memory used, and an average 16%
of core load.

The analysis of the observed behaviour of 2APL and
GOAL in the token-ring benchmark also applies here. We
can see that this time 2APL used the available cores a lit-
tle better, albeit still low when compared to the other lan-
guages. GOAL stayed below the 20% mark for core-load

121

average, as in the previous benchmark, indicating that it has
high amounts of CPU idle time. Regarding memory usage,
2APL seems to use a lot of memory even for simpler config-
urations; this memory problem may be the cause of the GC
overhead exceptions that we encountered when trying to run
heavier configurations. As for the memory usage in GOAL,
it had similar results to Jason, even though the number of
meetings were a lot lower per configuration for the same
number of workers (chameneos). Increasing the number of
workers makes a higher impact on memory usage than in-
creasing the number of meetings for the agent programming
languages, which is expected as each agent has a complex
internal architecture.

Our initial idea for this benchmark was to increase the
number of chameneos up to a point where the elapsed time
would start to increase as well with each configuration,
because of the bottleneck that the broker (meeting place)
causes. We were not able to increase that value further as
2APL and GOAL had problems even with the normal con-
figurations. With only three configurations and a max of 500
chameneos, there was almost no increase in time for any of
the other languages in the graph. Jason did not present sim-
ilar results as in the previous benchmark, that is, its perfor-
mance was not as close to the actor languages that use JVM.
This suggests that, performance-wise, this benchmark may
be a more appropriate scenario for actor languages instead
of agent languages.

Jason also does not scale very well in regards to mem-
ory in this benchmark, although in this case it was to be
expected, as generally creating more agents will result in
an increase on memory usage, as we previously mentioned.
The actor languages managed to stay constant in their mem-
ory usage, although they may have executed too fast to even
make use of the garbage collector.

ActorFoundry had an even lower use of the available
cores, across all three configurations, than in the previous
benchmark. Jason and Akka had an even distribution of core
load, while Erlang started using only three cores for the first
configuration and balanced out in the other two configura-
tions. Except for Jason, we cannot attest how core usage
may have influenced the performance of elapsed time, as the
actor languages may have executed too fast for our current
configurations. However, the core load results suggest the
presence of a small bottleneck, as it appears that in each lan-
guage there were similar core load results across all three
configurations.

Regarding the boxplot graphs and the standard devia-
tion results, we can observe optimal performance in all con-
figurations by ActorFoundry, where basically almost every
chameneos had the same number of meetings, followed by
an excellent display by Jason, that had only a small num-
ber of chameneos with more/less meetings than the other
ones. Erlang had good performance for the first configura-
tion, but an average performance for the other two, indicat-

ing that performance appears to get worse as the number of
chameneos increase. Akka had the worst performance in re-
gards to fairness (i.e., how many other creatures each chame-
neos met). It had an asymmetrical distribution of the number
of meetings, which varied either with a few very high val-
ues (first configuration) or very low values (in the other two
configurations).

4.3 Fibonacci
In this scenario we analyse the reactivity aspect of communi-
cation, using an implementation of a Fibonacci number cal-
culator as a server. The fibonacci worker that acts as a server
takes requests from C clients, with each client making R
requests (one at a time for each client) to solve an nth Fi-
bonacci number; each such n is as a random number from
0 to M , where M is the maximum value that can be calcu-
lated for each language, before it takes too long too wait (i.e.,
around 10 minutes). Each program in this scenario should:

• create the Fibonacci ”server”;
• create C clients;
• create a manager worker, responsible for writing the re-

sults in a file;
• from the total of R requests made by each client, send

to the server one pending request to calculate the nth
Fibonacci number, with n a random value between 0 and
M ;

• each client sends the time it waited for the answer for that
request to the manager;

• the program halts when all R requests from each client
have been completed.

The implementation should be as simple as possible,
preferably using a regular recursive solution, as we are not
trying to measure how quick these languages can calculate
a Fibonacci number, but rather how quick they can react
when they receive requests for calculating a small Fibonacci
number among larger requests that will take a lot of time.
That is, we want to measure the responsiveness of the Fi-
bonacci server to all the clients’ requests. Therefore, the
clients should start a timer just before they send a request to
the server, and stop the timer as soon as they receive that par-
ticular result. After receiving the result, they should send the
time it took to get the answer to the manager, who will then
write it in a file along with the Fibonacci number calculated
in that particular request. To summarise, the behaviour we
expect as ideal in this benchmark is to quickly solve small
Fibonacci numbers, so as to not let larger requests slow down
the calculation of all the other smaller (hence quicker to cal-
culate) requests.

The results shown in Figure 8 present the different be-
haviours that we obtained using different approaches with
each language. For these experiments, R (total number of
requests) was set to 50 and C (total number of clients) to

122

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 0 5 10 15 20

re
sp

o
n
se

 t
im

e
 (

m
s)

i from fib(i)

Jason

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 5 10 15 20

re
sp

o
n
se

 t
im

e
 (

m
s)

i from fib(i)

2APL - No Id
2APL - Id

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 0 2 4 6 8 10 12 14 16 18

re
sp

o
n
se

 t
im

e
 (

m
s)

i from fib(i)

GOAL - No Id
GOAL - Id

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0 5 10 15 20 25 30 35 40

re
sp

o
n
se

 t
im

e
 (

m
s)

i from fib(i)

Erlang - Function
Erlang - SubActor

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 5 10 15 20 25 30 35 40 45

re
sp

o
n
se

 t
im

e
 (

m
s)

i from fib(i)

Akka - Function
Akka - SubActor 4 threads

Akka - SubActor 100 threads

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 5 10 15 20 25 30 35 40 45 50

re
sp

o
n
se

 t
im

e
 (

m
s)

i from fib(i)

ActorFoundry - SubActor Recursive
ActorFoundry - SubActor

Figure 8. Results for each language in the Fibonacci benchmark.

100, resulting in 5,000 points for the graphs in Figure 8. For
GOAL we had to lower the number of points to 1,000, set-
ting R to 10 instead of 50. Below we will discuss how we
tried to achieve the behaviour that we expected as ideal for
each language and the results from the graphs.

In Jason there is a natural solution to achieve the expected
behaviour for this benchmark, while all other languages had
multiple solutions, none of which appears to be as natural as
in Jason. Besides the concurrency between agents, Jason also
has internal concurrency in each agent through the notion of
intentions. Because of this internal concurrency present in
Jason, each request made by a client to calculate a Fibonacci
number will generate a new intention on the server. These
intentions will then be executed concurrently, thus ensuring
that small Fibonacci numbers are calculated fast and before
larger Fibonacci numbers. That is an important feature of
Jason, and one that is useful in scenarios where reactivity is
needed. Although other languages also have some degree of
reactivity, they often have to be simulated or worked around,
and as such they do not appear as natural.

To simulate this behaviour in the other agent languages,
namely 2APL and GOAL, a special version using identifiers
(IDs) for each request had to be implemented, so that goals
could be pursued concurrently. We had to add an ID for each
new request, in order to identify which one was being calcu-
lated, otherwise the server would not know who to respond
to if it had, for example, two requests (goals) for fib(10). In
2APL, we were able to do that without much effort. Besides
the increase in the code length, there was also a decrease
in performance, but 2APL managed to achieve the type of
behaviour that we expected for this benchmark. In GOAL,
however, this approach did not result in the behaviour that
we hoped for, but it was somewhat closer to it, even though
performance was significantly compromised in the process.

In Erlang, using recursive functions resulted in exactly
the opposite behaviour we were looking for: large Fibonacci
number requests were holding up the solution of the smaller
ones. The version with subactors — despite this being an
obvious approach for the actor paradigm, it does not appear
as natural as the one in Jason, as actors do not have inter-
nal concurrency — leads to the expected behaviour. In that
version, the server creates a subactor for each request that ar-
rives, and the subactor becomes responsible for solving that
particular request.

With Akka, using recursive functions resulted in the same
behaviour as Erlang with functions but, unexpectedly, us-
ing subactors in Akka did not initially result in the same
behaviour as subactors in Erlang. We then altered the con-
figuration for the number of threads used, changing it to the
maximum number of subactors possible at any given time
(which in our scenario is 100: 1 subactor per request, 100
clients, each client makes one request at a time), we then
managed to achieve the expected behaviour. Such configu-
rations are found in the application.conf file; we changed
parallelism-factor and parallelism-max to 100 for the de-
fault Akka dispatcher, fork-join-executor.

We used two different subactor versions for Actor-
Foundry, one where a subactor is created for every request
from a client (same as Erlang and Akka subactor versions),
and another where a subactor is created for every request
(from a client, server, or another subactor). The latter was
adapted from the source codes available with the Actor-
Foundry distribution, and we refer it from now on as the
recursive subactor version. Despite its unexpected linear
growth, as shown in the graph, this recursive subactor ver-
sion had poor performance in this benchmark because a very
high number of subactors had to be created. When dealing
with a lower number of requests, this recursive subactor ver-

123

sion can be very efficient. The version with simple subactors
had a similar behaviour to the one presented by Akka when
using 4 threads, but as far as we know ActorFoundry has no
similar setting for the number of threads, and thus could not
achieve that ideal behaviour that we were looking for.

The values of M (maximum Fibonacci number to be
calculated) for each language were as follows: in Jason,
20; in 2APL with IDs, 13; in 2APL with no IDs, 20; in
GOAL with IDs, 12; in GOAL with no IDs, 18; in Erlang
with subactors or functions, 38; in Akka with subactors and
100 threads, 42; in Akka with functions or subactors and
4 threads, 45; in ActorFoundry with subactors, 46; and in
ActorFoundry with recursive subactors 20.

Finally, we show the results for source code size in Ta-
ble 4. Although there is in general some controversy about
whether any metrics other than source lines of code (SLOC)
are good code-complexity metrics, we decided to measure
the source code size by compressing it with gzip. The au-
thors are not expertly familiar with the syntax and the best
coding practices for all the languages used in this paper, so
perhaps compression may help to alleviate some of these
factors (e.g., ignoring line breaks that expert programmers
of a particular language would normally do). The results
for the alternative implementations (i.e., those that did not
achieve the expected behaviour) for the Fibonacci bench-
mark are as follows: 2APL with no IDs, 568 bytes; GOAL
with no IDs, 797 bytes; Erlang with functions, 710 bytes;
Akka with functions, 856 bytes; ActorFoundry with recur-
sive subactors, 1157 bytes.

Benchmark Token Chameneos Fibonacci
Jason 415 1074 501
2APL 1034 1711 656
GOAL 1038 1687 929
Erlang 400 726 710
Akka 423 1221 856

ActorFoundry 636 1266 1043

Table 4. Compressed source code size for the benchmarks,
in bytes.

In regards to the results for source code size, overall Ja-
son and Erlang presented the lowest (best) size among all the
languages. In the Fibonacci benchmark, Jason had the short-
est source code, while Erlang did best in the chameneos-
redux benchmark; both languages has similarly good results
for the token-ring benchmark. Overall 2APL and GOAL had
the worst results while Akka and ActorFoudry stayed in be-
tween.

The interested reader can check the source code for all
benchmarks and languages used in this work at https:

//github.com/rafaelcaue.

5. Conclusion
In this paper, we compared three agent-oriented program-
ming languages, Jason, 2APL, and GOAL, along with three
actor-oriented programming languages, Erlang, Akka, and
ActorFoundry, using three distinct benchmarks: the token-
ring benchmark, with a non-concurrent configuration and
multiple concurrency-heavy configurations for measuring
communication performance; the chameneos-redux bench-
mark, a concurrency scenario for measuring fairness and per-
formance in the presence of a bottleneck; and a Fibonacci
benchmark, a scenario focused on measuring reactivity. Al-
though the comparison of different programming models is
a hard task, even for related models with many similari-
ties such as the actor and agent models, we were able to
show that Jason can follow closely the performance of the
JVM-based actor languages, even surpassing them in some
of the comparison criteria, despite belonging to a “heavier”
paradigm.

The criteria mentioned above relate to some of the fea-
tures found in programming languages. Although we only
focused on those features in this paper, there are many oth-
ers that could be taken into consideration when evaluating a
programming language, such as: security, software quality,
exception handling, library support, expressiveness, etc.

Future work includes developing new benchmarks for
measuring more specific metrics of actor and agent lan-
guages, and including even more languages and comparison
criteria in the experiments. We also plan to compare more
qualitative aspects of such languages, with specific bench-
marks for that.

The agent languages we compared so far demonstrated
very different behaviours where performance was consid-
ered, which is to be expected since these languages are rel-
atively new when compared to their actor counterparts. A
more in-depth comparison focusing only on the agent lan-
guages would make it easier to focus on metrics that are
specific to the agent model, and that may lead to more
complete experiment sets for those languages. In order to
support the work on benchmarking agent languages, we
have developed a website (http://www.inf.pucrs.br/
maop.benchmarking/) to serve as a repository of bench-
marks specifically designed for comparison of agent pro-
gramming languages. Benchmarking agent programming
languages can sometimes lead to performance improvements
in the respective platforms, and is an important step towards
mainstreaming of the agent programming paradigm.

Acknowledgments
We are grateful for the support given by CAPES and by
CNPq (grant numbers 140261/2013-3, 306301/2012-1, and
308095/2012-0).

124

https://github.com/rafaelcaue
https://github.com/rafaelcaue
http://www.inf.pucrs.br/maop.benchmarking/
http://www.inf.pucrs.br/maop.benchmarking/

References
[1] G. Agha. Actors: a model of concurrent computation in

distributed systems. MIT Press, Cambridge, MA, USA, 1986.

[2] N. Alechina, T. Behrens, K. Hindriks, and B. Logan. Query
Caching in Agent Programming Languages. In Proceedings
of ProMAS-2012, held with AAMAS-2012, pages 117–131,
Valencia, Spain, June 2012.

[3] J. Armstrong. Programming Erlang: Software for a Concur-
rent World. Pragmatic Bookshelf, 2007.

[4] J. Armstrong. Erlang. Commun. ACM, 53(9):68–75, Sept.
2010.

[5] M. Astley. The Actor Foundry: A Java-based Actor Program-
ming Environment. Open Systems Laboratory, University of
Illinois at Urbana-Champaign, 1998.

[6] T. M. Behrens, K. Hindriks, J. Hübner, and M. Dastani.
Putting APL Platforms to the Test: Agent Similarity and Ex-
ecution Performance. Technical Report IfI-10-09, Clausthal
University of Technology, 2010.

[7] R. H. Bordini, J. F. Hübner, and M. Wooldridge. Programming
Multi-agent Systems in AgentSpeak Using Jason. Wiley Series
in Agent Technology. John Wiley & Sons, 2007.

[8] R. H. Bordini, M. Dastani, J. Dix, and A. El Fal-
lah Seghrouchni, editors. Multi-Agent Programming: Lan-
guages, Tools and Applications. Springer, 2009.

[9] P. Busetta, R. Ronnquist, A. Hodgson, and A. Lucas. JACK
Intelligent Agents - Components for Intelligent Agents in
Java. AgentLink News, Issue 2, 1999.

[10] R. C. Cardoso, J. F. Hübner, and R. H. Bordini. Benchmarking
Communication in Agent- and Actor-Based Languages
(Extended Abstract). In Proceedings of the AAMAS ’13,
pages 1267–1268, Saint Paul, Minnesota, USA, 2013.

[11] R. C. Cardoso, J. F. Hübner, and R. H. Bordini. Benchmarking
Communication in Agent- and Actor-Based Languages. In
Proceedings of the EMAS ’13, held with AAMAS-2013, pages
81–96, Saint Paul, Minnesota, USA, 2013.

[12] F. Cesarini and S. Thompson. ERLANG Programming.
O’Reilly Media, Inc., 1st edition, 2009.

[13] K. M. Chandy. Parallel program design: a foundation.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1988.

[14] M. Dastani. 2APL: a practical agent programming language.
Autonomous Agents and Multi-Agent Systems, 16(3):214–248,
June 2008.

[15] Á. F. Dı́az, C. B. Earle, and L.-A. Fredlund. eJason: an
implementation of Jason in Erlang. In Proceedings of
ProMAS-2012, held with AAMAS-2012, pages 7–22, Valencia,
Spain, June 2012.

[16] K. V. Hindriks. Programming rational agents in GOAL. In
Multi-Agent Programming: Languages, Tools and Applica-
tions, pages 119–157. Springer, June 2009.

[17] K. V. Hindriks, F. S. De Boer, W. Van Der Hoek, and J.-
J. Ch. Meyer. Agent Programming in 3APL. Autonomous
Agents and Multi-Agent Systems, 2(4):357–401, Nov. 1999.

[18] H. Jordan, G. Botterweck, M.-P. Huget, and R. Collier.
A feature model of actor, agent, and object programming

languages. In Proceedings of AGERE!’11, pages 147–158,
New York, NY, USA, 2011.

[19] C. Kaiser and J.-F. Pradat-Peyre. Chameneos, a concurrency
game for Java, Ada and others. In Computer Systems and
Applications. ACS/IEEE International., 2003.

[20] R. K. Karmani, A. Shali, and G. hind. Actor frameworks
for the JVM platform: a comparative analysis. In PPPJ ’09,
pages 11–20, New York, NY, USA, 2009.

[21] M. Logan, E. Merritt, and R. Carlsson. Erlang and OTP in
Action. Manning, Nov. 2010.

[22] M. Odersky and al. An Overview of the Scala Programming
Language. Technical Report IC/2004/64, EPFL Lausanne,
Switzerland, 2004.

[23] A. S. Rao. AgentSpeak(L): BDI Agents Speak Out in a
Logical Computable Language. In Proc. 7th MAAMAW,
pages 42–55, 1996.

[24] A. Ricci and A. Santi. Programming abstractions for
integrating autonomous and reactive behaviors: an agent-
oriented approach. In Proceedings of AGERE! ’12, pages
83–94, New York, NY, USA, 2012.

[25] S. Srinivasan and A. Mycroft. Kilim: Isolation-Typed Actors
for Java. In ECOOP ’08, pages 104–128, Berlin, Heidelberg,
2008.

[26] J. Suereth. Scala In Depth. Manning Publications Co., 2012.

[27] R. Vieira, Á. F. Moreira, M. Wooldridge, and R. H. Bordini.
On the Formal Semantics of Speech-Act Based Communica-
tion in an Agent-Oriented Programming Language. J. Artif.
Intell. Res. (JAIR), 29:221–267, 2007.

[28] M. Wooldridge and N. R. Jennings. Intelligent Agents: Theory
and Practice. Knowledge Engineering Review, 10:115–152,
1995.

[29] D. Wyatt. Akka Concurrency. Artima Incorporation, USA,
2013.

125

	Introduction
	Related Work
	Background
	Experiment Results
	Token Ring
	Chameneos Redux
	Fibonacci

	Conclusion

