
Multi-Level Semantics with Vertical Integrity Constraints
Alison R. Panisson1 and Rafael H. Bordini1 and Antônio Carlos da Rocha Costa2

Abstract. Operational semantics is a fundamental approach to the
formalisation of programming languages and almost a standard when
it comes to agent-oriented programming languages. It helps ensure
the correctness of interpreters, facilitates their implementation, and
supports proofs of important properties. Multi-agent oriented sys-
tems are a particular kind of distributed systems and through the
semantics of agent languages, operational semantics ended up play-
ing an important role towards ensuring their desired behaviour, even
though the operational semantics becomes more involved than orig-
inally intended. This work presents a new style for the operational
semantics of systems with multiple levels of abstractions (such as
multi-agent systems), by providing multi-level transitions (i.e., mul-
tiple hierarchical transition systems) with vertical (i.e., inter-level)
integrity constraints to ensure consistency of interrelated transitions.

1 Introduction

In multi-agent systems (MAS) there are multiple different levels of
specification, each one corresponding to a different conceptual level
in the system, and playing important roles in a more general frame-
work for programming MAS (e.g., JaCaMo Framework [1], PopOrg
(Populational-Organisational) Model [2], Electronic Institutions [3],
etc.). In order to ensure the desired behaviour of MAS, it has been
common in the Agents literature to give formal semantics to such
systems as transition systems [8, 5, 4, 6] (using operational seman-
tics [7]), expressing the possible states of the system and the neces-
sary conditions for the system to move from one such state to another.

Given the complexity of multi-agent system abstractions, we pro-
pose a multi-level operational semantics with vertical (i.e., inter-
level) integrity constraints in order to specify those systems. Such
vertical integrity constraints aim to ensure that the transition systems
giving separate semantics to the individual levels of abstraction are
combined in a way that preserves the required interrelations of those
levels. Furthermore, they allow some of the required semantic rules
to be automatically generated from compact representations of such
integrity constraints. In this work, we focus on the functioning of
multi-agent organisations, modelling them as multiple, independent
but interrelated, transition systems. In particular, we express the spec-
ification in terms of count-as relations between levels, i.e., relations
that express certain combinations of actions — i.e., processes — ex-
ecuted at a given abstraction level count as actions being executed at
an upper level.

1 Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto
Alegre, Brazil — Emails: alison.panisson@acad.pucrs.br,
rafael.bordini@pucrs.br

2 Graduate Program in Computers in Education – UFRGS, Porto Alegre,
Brazil and Graduate Program in Computer Science – FURG, Rio Grande,
Brazil — Email: ac.rocha.costa@gmail.com

2 Vertical Integrity Constraints
In order to exemplify our work, here we focus on processes (a or-
dering of actions/events) which occurs at a level of abstraction and
count-as actions/events on superior levels. In particular, here we con-
sider three levels in the multi-agent system, the agents, the organi-
sations, and the social sub-system, so we introduce two vertical in-
tegrity constraints:

#VIC org
ag ⇑ [ASorg ,Aorg ,ASag , Actag ] = S (1)

being ASorg the history of the organisational actions already exe-
cuted, Aorg the set of organisational actions yet to be executed (i.e.,
that the organisation aims to see executed), ASag the history of ac-
tions executed by the agents in that organisation, Actag the set of
agent actions being executed at that moment, and S the set of organi-
sational actions that can be considered as executed given that history
of agents actions (ASag and Actag ) and the count-as relations.

#VIC ss
org ⇑ [ASss ,Ass ,ASorg , Actorg ] = S (2)

being ASss the history of the social sub-system actions, Ass the
set of social sub-system actions that were not executed, ASorg the
history of actions executed by the organisations in that social sub-
system, Actorg the set of organisational action being executed at
that moment, and S the set of social sub-system actions that can be
considered as executed given that history of organisational actions
(ASorg and Actorg ) and the count-as relations.

3 Abstract Semantic Rule
The definition of multi-level semantics with vertical integrity con-
straints between the levels allows just one abstract semantic rule in-
terpreting all count-as relations in the multi-agent system, where the
corresponding actions can be instantiated to particular cases. The ab-
stract semantic rule is showed below3:

execute(act) act ∈ A
#VICorg

ag ⇑ [ASorg ,Aorg ,ASag , {act}] = Sorg

#VICss
org ⇑ [ASss ,Ass ,ASorg ,Sorg ] = Sss

(a) 〈ssl,O,Ass〉 . . .ASss →ss 〈ssl,O,A′
ss〉 . . .AS′

ss
(b) 〈orgn,Ag,Aorg〉 . . .ASorg →org 〈orgn,Ag,A′

org〉 . . .AS′
org

(c) 〈agm,A〉 . . .ASag →ag 〈agm,A′〉 . . .AS′
ag

where:
(a) AS′

ss = ASss ∪ Sss

A′
ss = c(Ass ,ASss ,Sss)

(b) AS′
org = ASorg ∪ Sorg

A′
org = c(Aorg ,ASorg ,Sorg)

(c) AS′
ag = ASag ∪ {act}

A′ = c(A,ASag , {act})
(ABSTRACTSEMANTICRULE)

where the tuple 〈ss id ,O,Ass〉 represents the social sub-system, with
ss id the social sub-system identifier, O a set of organisation identi-
fiers, each one representing the organisation populating the social

3 We use the notation “〈agm,A〉 . . .ASag” as a simplified representation
for “{〈ag1, Aag1 〉, . . . , 〈agn, Aagn 〉},ASag”.

ECAI 2016
G.A. Kaminka et al. (Eds.)

© 2016 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/978-1-61499-672-9-1708

1708



sub-system, and Ass the set of actions of the social sub-system. The
tuple 〈org id ,Ag ,Aorg〉 represents an organisation, with org id the
organisation identifier, Ag a set of agent identifiers, which are pop-
ulating that organisation, and Aorg the set of organisational actions.
The tuple 〈ag id ,A〉 represents an agent in the multi-agent system,
with ag id the agent identifier, and A the set of actions that the agent
is able to execute. At each level of the system (i.e., agents, organi-
sations and social sub-systems), we maintain a history (i.e., trace) of
actions already executed at that level, ASag , ASorg , and ASss , re-
spectively. When an action is executed by an agent, the VICs check if
the particular action satisfies some process which count-as an action
in the superior level, and update the set of organisational and social
sub-system in accordance. Further, we use a continuation function
c(A,AS, a), in order to specify when the action being executed (i.e.,
a) is removed or not from the set of actions A, and if other actions are
included in the set of actions given the ones that were executed. This
function covers both achievement and maintenance tasks in MAS.

4 Example

Imagine the process of exchanging an employee by two organisa-
tions org1 and org2. On the top of our multi-agent system, we
have the social sub-system ssys regulating such exchange through
a process for a norm-conforming exchange norm-conf exchange,
which is achieved by the sequence of the organisational actions
{dismissorg,appointorg}. The appointorg action is achieved
by the sequential process {interview, admission request,
admission processing, appoint}, and dismissorg is achieved
by the sequential process {give notice, dismissal request,
dismissal processing, dismiss}, where all those are actions ex-
ecuted by agent populating those organisation, and that count-as or-
ganisational action when the process is followed.

In this section, we present three instances from the abstract se-
mantic rule, in accordance with the scenario described. The first,
ExInterviewAction, shows an agent called interviewer execut-
ing the first action of the appointorg process. In this semantic rule,
as the VICs are not satisfied (none process is satisfied) only the agent
level (c) is updated in accordance.

execute(interview) interview ∈ A
#VICorg

ag ⇑ [ASorg ,Aorg ,ASag , {interview}] = { }
#VICss

org ⇑ [ASss ,Ass ,ASorg , { }] = { }
(a) 〈ssys,O,Ass〉 . . .ASss →ss 〈ssys,O,Ass〉 . . .ASss
(b) 〈org2,Ag,Aorg〉 . . .ASorg →org 〈org2,Ag,Aorg〉 . . .ASorg

(c) 〈interviewer,A〉 . . .ASag →ag 〈interviewer,A′〉 . . .AS′
ag

where:
(c) AS′

ag = ASag ∪ {interview}
A′ = c(A,ASag , {interview})

(EXINTERVIEWACTION)

execute(dismiss) dismiss ∈ A
#VICorg

ag ⇑ [ASorg ,Aorg ,ASag , {dismiss}] = {dismissorg1}
#VICss

org ⇑ [ASss ,Ass ,ASorg , {dismissorg1}] = { }
(a) 〈ssys,O,Ass〉 . . .ASss →ss 〈ssys,O,Ass〉 . . .ASss

(b) 〈org1,Ag,Aorg〉 . . .ASorg →org 〈org1,Ag,A′
org〉 . . .AS′

org

(c) 〈manager,A〉 . . .ASag →ag 〈manager,A′〉 . . .AS′
ag

where:
(b) AS′

org = ASorg ∪ {dismissorg1}
A′

org = c(Aorg ,ASorg , {dismissorg1})
(c) AS′

ag = ASag ∪ {dismiss}
A′ = c(A,ASag , {dismiss})

(EXDISMISSACTION)

In contrast, when an agent (exemplified by the agent named
manager) executes the last action for the process dismissorg, i.e.,
the action dismiss, such organisational action is achieved. This is
exemplified by the semantic rule ExDismissAction, where we as-
sume that all other action for such dismissorg process have been

executed, and therefore the #VIC org
ag ⇑ is satisfied, i.e., the agents’

actions satisfies a process for dismissorg. In this case both, the agent
and organisational levels change in accordance.

The last semantic rule ExAppointAction shows when the
last action of the norm-conf exchange process is achieved, i.e.,
appointorg is achieved by the organisation. Further, the appointorg
organisational action is achieved when the agent named manager ex-
ecutes the last action of such process, i.e., the action appoint. Ob-
serve that both VICs are satisfied and all levels in the systems are
updated.

execute(appoint) appoint ∈ A
#VICorg

ag ⇑ [ASorg ,Aorg ,ASag , {appoint}] = {appointorg2}
#VICss

org ⇑ [ASss ,Ass ,ASorg , {appointorg2}] = {norm-conf exchange}
(a) 〈ssys,O,Ass〉 . . .ASss →ss 〈ssys,O,A′

ss〉 . . .AS′
ss

(b) 〈org2,Ag,Aorg〉 . . .ASorg →org 〈org2,Ag,A′
org〉 . . .AS′

org

(c) 〈manager,A〉 . . .ASag →ag 〈manager,A′〉 . . .AS′
ag

where:
(a) AS′

ss = ASss ∪ {norm-conf exchange}
A′

ss = c(Ass ,ASss , {norm-conf exchange})
(b) AS′

org = ASorg ∪ {appointorg2}
A′

org = c(Aorg ,ASorg , {appointorg2})
(c) AS′

ag = ASag ∪ {appoint}
A′ = c(A,ASag , {appoint})

(EXAPPOINTACTION)

5 Conclusion
In this work, we introduced an approach to the formalisation of MAS
based on operational semantics; we call it multi-level semantics with
vertical integrity constraints. The approach allows the representation
of the interactions between components of different system-levels.
Given the complexity and ubiquity of such multiple levels in MAS,
the approach seems to allow for a clearer understanding of such com-
plex semantics. Furthermore, we demonstrate, using count-as rela-
tions applied to processes, how the proposed style for multi-level
operational semantics can be strengthened through the definition of
vertical integrity constraints. Such multi-level semantics with verti-
cal integrity constraints allows the independent specification of the
various levels typical of the MAS, so that each level is formalised
through its own transition system, and the vertical integrity con-
straints between these transition systems help guarantee that the over-
all system operates coherently in all possible executions.

REFERENCES
[1] Olivier Boissier, Rafael H Bordini, Jomi F Hübner, Alessandro Ricci,

and Andrea Santi, ‘Multi-agent oriented programming with jacamo’,
Science of Computer Programming, 78(6), 747–761, (2013).

[2] Antônio Carlos Rocha Costa and Graçaliz Pereira Dimuro, ‘A minimal
dynamical mas organization model’, Handbook of Research on Multia-
Agent Systems: Semantics and Dynamics of Organizational Models,
419–445, (2009).

[3] Pablo Noriega, Agent mediated auctions: the fishmarket metaphor, In-
stitut d’Investigació en Intelligència Artificial, 1999.

[4] Alison R Panisson, Rafael H Bordini, and Antônio Carlos Rocha
Costa, ‘Towards multi-level semantics for multi-agent systems’, in 3th
Workshop-School on Theoretical Computer Science, (2015).

[5] Alison R. Panisson, Felipe Meneguzzi, Moser Fagundes, Renata Vieira,
and Rafael H. Bordini, ‘Formal semantics of speech acts for argumen-
tative dialogues’, in AAMAS, pp. 1437–1438, (2014).

[6] Alison R. Panisson, Felipe Meneguzzi, Renata Vieira, and Rafael H.
Bordini, ‘Towards practical argumentation in multi-agent systems’, in
BRACIS, (2015).

[7] Gordon D Plotkin, ‘A structural approach to operational semantics’,
(1981).

[8] Renata Vieira, Álvaro Moreira, Michael Wooldridge, and Rafael H.
Bordini, ‘On the formal semantics of speech-act based communication
in an agent-oriented programming language’, J. Artif. Int. Res., 29(1),
221–267, (June 2007).

A.R. Panisson et al. / Multi-Level Semantics with Vertical Integrity Constraints 1709


