
Benchmarking Communication

in Actor- and Agent-Based Languages

Rafael C. Cardoso1, Jomi F. Hübner2, and Rafael H. Bordini1

1 FACIN–PUCRS
Porto Alegre - RS, Brazil

rafael.caue@acad.pucrs.br
r.bordini@pucrs.br

2 DAS–UFSC
Florianópolis - SC, Brazil
jomi@das.ufsc.br

Abstract. This paper presents the results of communication bench-
marks comparing an agent-oriented programming language and two actor-
oriented programming languages. It is based on an existing benchmark
for programming languages and two variations on that benchmark. We
selected Erlang and Akka (using the Scala interface) to represent ac-
tor languages, and Jason as the agent language representative. We also
present those three scenarios and the respective results in regards to
time, core usage, and memory. Even though BDI engines typically used
for agent languages provide sophisticated programming abstractions that
require significant platform overhead to facilitate the development of
complex agents, our initial results show that Jason has reasonable per-
formance for this type of benchmark, where actor-based languages were
expected to do significantly better than agent languages.

Keywords: benchmarking, agents, actors, Jason, Erlang, Akka, Scala.

1 Introduction

Jason is one of the best-known platforms for the development of multi-agent
systems based on agent-oriented programming. Various authors have included
Jason in their comparisons and analyses of agent programming languages. For
example, Jason was included in a qualitative comparison of features available in
Erlang, Jason, and Java [21]; in a universal criteria catalog for agent development
artifacts [11]; in a quantitative analysis of 2APL, GOAL, and Jason regarding
their similarity and the time it takes for them to reach specific states [7]; a per-
formance evaluation of Jason when used for distributed crowd simulations [17];
an approach to query caching and a performance analysis of its usage in Jason,
2APL, and GOAL [3]; and finally an implementation of Jason in Erlang and a
benchmark for evaluating its performance [16]. In those cases where performance
was considered, Jason typically showed excellent results.

M. Cossentino et al. (Eds.): EMAS 2013, LNAI 8245, pp. 58–77, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Benchmarking Communication in Actor- and Agent-Based Languages 59

However, there is no quantitative analysis — to the best of our knowledge
— of how well agent languages can do compared actor languages. Because the
actor approach is by design lighter than agents and because actor languages
have been improved over a much longer period than modern agent programming
languages, comparing performance on traditional programming language bench-
marks is a much harder challenge for Jason than those it previously faced, and
this is precisely what we do in this paper.

Our motivation for this recent line of work came from the idea of doing some
benchmarking experiments in order to investigate whether some variations of
usual benchmarking scenarios, taking into consideration features of agent pro-
gramming, would allow us to conclude whether certain scenarios could be more
appropriate for actors rather than agents and vice-versa, both in terms of nat-
uralness of the paradigm for developing the applications and in terms of actual
performance for the natural solutions in both paradigms. Even if it turns out
that we cannot immediately find a scenario that is intrinsically more appropriate
for agents, we could still use the outcome of our work to point out some flaws
or deficiencies in current agent-based languages, and learn something from the
longer experience with actor-based languages, thus making it possible to improve
performance for agent-based languages in the future.

We started by taking an Erlang program for a token passing problem available
in the Computer Language Benchmarks Game website (http://shootout.
alioth.debian.org/) and we wrote a Jason and Akka version for it. We then
changed that benchmark to a different scenario where the only difference is that
a number of tokens were being passed simultaneously, and all three programs
were changed accordingly. While Jason had the worst performance in regards
to elapsed time, it matched closely the performance of Akka, at least for our
current experiments. Erlang showed the best performance in all cases, which
was expected as it is known to have an efficient virtual machine and used in
industrial applications. Finally, for the third scenario, we added a notion of
token types in order to assess the reactivity of each language1.

The results reported in this paper were obtained from runs on a dedicated
computer with six physical cores (no hyperthreading). We also show the results
for the same scenarios but limiting the number of cores to three, with the pur-
pose of analysing the difference that it makes to run the same experiment on
increasing numbers of cores. The experiments presented in this paper are not
supposed to stress-test the languages but rather to compare them in normal
day-to-day usage measuring the performance, scalability, and reactivity of the
communication aspect of the languages. Because this comparison cannot be done
directly, as the actor model is by design lighter than the agent model and each
language has a different runtime environment, we make use of scale factors to
compare the languages.

1 The code for all scenarios/languages used in this paper is available at
https://github.com/rafaelcaue/
Actor-Agent-based-benchmark-for-communication.

http://shootout.alioth.debian.org/
http://shootout.alioth.debian.org/
https://github.com/rafaelcaue/Actor-Agent-based-benchmark-for-communication
https://github.com/rafaelcaue/Actor-Agent-based-benchmark-for-communication

