2014 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT)

An Ontology for Guiding Performance Testing

Artur Freitas and Renata Vieira
Postgraduate Program in Computer Science — Faculty of Informatics (FACIN)
Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS — Brazil
artur.freitas @acad.pucrs.br, renata.vieira@pucrs.br

Abstract—Software test is a technique to obtain information
about software systems quality. Performance test is a type of
software test that aims at evaluating software performance at
a given load scenario, but it requires specialized knowledge
about tools, activities and metrics of the domain. Since ontology
is a promising knowledge representation technique, this paper
presents a literature review to identify trends and compare
researches of ontologies in the fields of software testing and
software performance. Also, to investigate this issue from a prac-
tical perspective, it was developed an ontology for representing
the core knowledge of performance testing. This paper presents
the ontology and compare it with related ones. Then, semantic
technologies are explored to demonstrate the practical feasibility
of developing ontology-based applications for assisting testers
with performance test planning and management.

I. INTRODUCTION

Planning and executing software tests demand specialized
knowledge about testing techniques, criteria, artifacts and
tools, among others. This diversity of concepts and their rela-
tionships make the establishment of a common understanding
an issue to be considered. Ontology is a technique for capturing
domain knowledge and, therefore, it shows great potential to
be used in the knowledge rich testing process. Ontologies have
achieved an important role with respect to information systems,
knowledge management and information sharing systems as
well as for the development of fields such as semantic tech-
nologies. On software testing, ontologies can provide a precise
choice of terms to be used in the communication between
testers, developers, managers and users. Thus, ontologies make
explicit the hidden assumptions related to this practice [1],
and support the acquisition, organization, reuse and sharing of
knowledge in the domain. This work reports both theoretical
findings and practical experiences obtained to answer the
following research questions: RQ1. What is the state of the
art of using ontologies in software testing? RQ2. Can ontolo-
gies represent performance testing knowledge? RQ3. Which
inferences are enabled by a performance testing ontology?

To answer the RQ1, papers using ontologies for software
testing activities were analysed and compared based on several
criteria such as, if they propose new ontologies, present
ontology-based applications, use ontology technologies, and
compare or evaluate ontologies. This field mapping guided the
decisions in the remainder of the research, i.e., the most used
ontology technologies were also adopted to build our ontology
of performance testing. To investigate the RQ2, we built the
performance testing ontology in OWL [2] (Web Ontology
Language) with Protégé [3] and compare it with the two
most related ontologies. To evaluate the RQ3, ontology-based
applications were developed employing semantic technologies,
such as Pellet [4], SQRWL [5], OWL API [6] and Protégé [3].

978-1-4799-4143-8/14 $31.00 © 2014 IEEE
DOI 10.1109/WI-IAT.2014.62

400

At a higher level of abstraction, the applications help testers
to define what have to be taken into consideration for the
execution of performance tests. The ontology-based applica-
tions aim to help performance testers to manage instances of
concepts and relationships in this domain, such as performance
test tools, activities, metrics, goals and artifacts. The ontology
is applied to support tester’s decisions by suggesting, for
example, a methodology for test development or indicating
tools aligned with the test goals. Then, it is possible to generate
a performance test plan according with testers decisions.

This paper is organized as follows. Section II explains
our literature review about ontologies in software testing
and software performance. Section III shows the scope and
conceptualization of our proposed performance testing domain
ontology. Section IV presents an evaluation of this ontology
by comparing its metrics with related ones. Section V explains
ontology-based applications developed based on our ontology.
Section VI concludes this research.

II. LITERATURE REVIEW

Ontology is a technique to represent and manipulate knowl-
edge. To clarify the main researches and to identify the state
of the art regarding the use of ontologies in the domains of
software testing and software performance, a literature review
was conducted. By mapping the field, it becomes possible to
identify research trends, implications for practice, open issues
and areas for improvement. Since it was not found any system-
atic review or systematic mapping with the same scope, this
literature review is an opportunity to bring interesting scientific
findings. The scope of the review embraces researches that
study or apply ontologies to benefit the domains of software
testing or software performance. Therefore, its main objective
is to assess the impact and provide a comprehensive overview
about the use of ontologies in the mentioned areas. Following
the systematic review vocabulary [7] this literature review has
as population software professionals related with software
testing or software performance; as intervention any ontology-
based approach; and as outcome any type of evidence about
the use of ontologies on software testing or software perfor-
mance. To accomplish this review, three article databases!
were consulted: IEEE Xplore Digital Library, Scopus and
Compendex. The search string adopted is the following:

ontology AND (“software testing” OR “software test”
OR “software performance” OR “system performance” OR
“performance testing” OR “performance test” OR “load test”
OR “load testing”)

!Databases: IEEE Xplore Digital Library http://ieeexplore.ieee.org/, Scopus
http://www.scopus.com/, and Compendex http://www.engineeringvillage.com/

IEEE
computer
psouety

This review was conducted in March 2013 and it was
searched all articles up to 2012 (inclusive). Table I shows
the results obtained by using the search string in the afore-
mentioned databases. The search on Scopus was limited to
article tittle, abstract and keywords, and from its results 20
papers were filtered because they are conference reviews. The
reason to remove 5 results from the IEEExplore is that 4 are
conference proceedings and 1 result came duplicated. From
the Compendex results, 11 papers were excluded since they
are conference proceedings (not journal or conference article).
From this total of 314 articles returned in the databases, 79
were removed because they are duplicated results retrieved
by more than one database, resulting in 235 different papers.
For the next step, the title, abstract and keywords of these
235 resulting articles were fully read to analyse if each paper
meets the inclusion criterion of using ontologies in the fields
of software testing or software performance. More precisely,
a work that makes at least one of the following contributions
was considered likely to be relevant to the field:

IC1. Propose an ontology related with the domain of soft-

ware testing or software performance.

IC2. Present an approach or application based on ontologies
to improve software testing or software performance.
IC3. Evaluate or compare ontologies related with software

testing or software performance.

Therefore, a paper is excluded from this literature review
if it does not present at least one of the inclusion criteria
defined above. Likewise, exclusion criteria were defined to
complement those inclusion criteria by defining characteristics
that classify a paper as out of the desired scope. A paper is
disqualified if it meets at least one of these exclusion criteria:

EC1. The domain of interest is not related with software
testing or software performance, which means that a
test is mentioned only to evaluate a system not related
with software testing or software performance.

The research is not related with ontologies.

It is not written in English language.

EC2.
EC3.

The search string was designed to be highly generic in order
to retrieve papers beyond the desired scope. However, the in-
clusion criteria was created aiming at filtering these additional
results. Consequently, reviewers had an extra work to analyse a
bigger amount of papers, but the risk of not retrieving relevant
results was mitigated in this way. After applying those criteria,
199 articles from those 235 were removed, which represents
84.68% of the initial sample. The main reason that removed
a paper is the lack of contribution to the domains of software
testing or software performance (EC1). In other words, 36
articles (15.32% of the sample) met at least one of the inclusion
criteria and did not meet any one of the exclusion criteria. It
was found the whole text of only 33 articles from this list of 36
works, thus, 3 papers had to be removed from this review?. The
33 remaining articles were fully read, analysed and compared
according with the research questions presented in sequence.
During these stage 15 papers were removed from the review
because of two different reasons: (i) the presented ontology-
based approach was not clearly specified, or the ontology itself
was missing, which removed 10 papers; and (ii) the paper was
a shorter and older version of another paper already selected

2The papers removed from this review and the reasons can be found at
https://code.google.com/p/performance-ontology/wiki/LiteratureReview

401

TABLE 1. RESULTS OBTAINED WITH THE SEARCH STRING
Database Raw Results | Excluded | Results
IEEExplore 137 5 132
Scopus 156 20 136
Compendex 57 11 46
Sum 350 36 314

in this review, which removed 5 papers. Then, the resulting 18
researches ([1] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17]
[18] [19] [20] [21] [22] [23] [24]) were analysed and compared
against the following questions.

How many works regarding ontologies in software
testing or software performance domains propose new
ontologies? What are the domains of these ontologies? New
domain ontologies were proposed in 16 of these 18 papers,
only [9] [19] used already developed ontologies. The domains
addressed by each work are the following:

- Software testing, focusing on concepts such as test activities
& artifacts [8]; test coverage criteria, test objectives & test
cases [13] [16]; testers, test resources & activities [17] [18]
[20]; test case, test process & test techniques [1]; test projects,
test documents & test knowledge level [14]; test data, test
result, test schedule & test plan [21]; and test case [12] [22].
- Software performance models, i.e., workload, resource uti-
lization, requests, servers and users [9] [10] [23] [24];

- Non-functional requirements, including concepts such as
performance requirements & response time [11];

- Web services behaviour concepts [15] [19];

Which ontology-based applications in software testing
or software performance domains are already developed?
Application of ontologies are demonstrated in 15 of the 18
papers. This characteristic was missing at [8] [9] [11]. The
application of ontologies for test case reused was explored
in 3 papers: [1] [12] [22]. The performance assessment and
improvement at runtime based on ontologies was investigated
in 3 works: [10] [23] [24]. An ontology-based framework for
test case generation is presented in [16] and an unit test case
generation approach is explained in [13]. The generation of
test case or test input data for web services, which usually
includes automatic discovery and composition of web services,
is investigated in 5 works: [15] [17] [19] [20] [21]. Finally, the
use of a software test ontology for knowledge management
was researched in [14] and his use to establish a reference
architecture is presented in [18].

Which advantages were identified of using ontologies
in software testing or software performance domains?
Generally speaking, ontologies were used for knowledge repre-
sentation, sharing, reuse, reasoning and inference. Specifically
in the domains of software testing and software performance
ontologies can be explored to enhance test case generation,
foster test knowledge reuse, improve performance analysis
and enable test tools interoperability. The advantages and
contributions of ontology-based applications highlighted in the
literature were diverse, as can be observed in the sequence.
Representing data and reasoning about the environment state
and the system performance in ontologies were advantages
highlighted in [10]. According with [23], ontology reasoning
allows the system to infer performance knowledge and take
decisions about his own performance represented in ontologies.
Similarly, in [24] it was studied the advantages of ontologies

to express performance-related information in a context-aware
ambient intelligent application and the use of this knowledge
to assess the application performance during its execution.
In [11], ontology was used to support decision making in
order to improve software performance and better achieve non-
functional requirements. Test case specification and reuse by
means of ontologies is proposed in [12]. Moreover, improving
test case management is an advantage identified in [1] and
ontology-based enhancing test case generation was researched
in [16] [21]. In [21] the conclusion is that rules and reasoning
techniques improve test generation intelligence and ontologies
ease the sharing of testing assets. Semantic-level mutation
testing analysis is another important contribution of using
ontologies, as identified in [15]. In [17], it was concluded
that ontologies enable automatic processing of testing tasks
and standardize the vocabulary for encoding the information
exchanged between testing services. According with [18],
ontologies provide a mechanism to support the acquisition,
organization, reuse and sharing of testing domain knowledge.
Another interesting conclusion is that ontology reasoning can
greatly improve the intelligence of automatic test generation,
according with [19]. Testing process improvement, testing
strategies definition and testing improvement measurements
are advantages cited in [8]. Tool interoperability and model
transformations were identified by [9]. In the realm of testing
services, it was said that ontologies support dynamic discov-
ery and invocation of testing services without compromising
security, privacy and intellectual property rights [20].

Which limitations were identified of using ontologies
in software testing or software performance domains? In
[10], it was said that the proposed ontology-based approach to
improve performance during execution can cause the opposite
effect, which is performance degradation. This effect can
result from a bad designed approach where the computation
overhead used for reasoning exceeds the benefits obtained
by the possible performance improvements. Moreover, the
approach for ontology-based test generation presented in an-
other work [13] can introduce the limitation of requiring
knowledge engineering skills. Similarly, modelling complex-
ities and time efficiency were cited as possible downsides of
the test case generation approach proposed in [16]. In [17],
it was concluded as limitation that is impossible to build a
complete ontology of software testing given the huge volume
of software testing knowledge and the rapid development of
new testing techniques, methods and tools. As observed in
[18], each ontology can cover certain knowledge aspects and
use a different terminology. Finally, according with [24], there
is no single correct ontology for any domain. Thus, ontology
design is a creative process as modelling itself [24].

Which ontology technologies are more frequently ap-
plied? The ontology language most cited is OWL, in 14 of
the 18 papers. The 4 works that did not cite any ontology
languages or technologies were [9] [14] [16] [22]. Among the
works that used OWL, the following 5 papers used an OWL
extension known as OWL-S: [15] [17] [19] [21] [23]. The
ontology tool most used is Protégé, as cited in the following
7 papers: [8] [12] [1] [17] [18] [19] [21]. Similarly, the
Uschold methodology was the most cited approach for building
ontologies, cited by the following 4 papers: [1] [10] [12] [23].
The most cited reasoner was Pellet, mentioned only by 2
works: [15] [21]. Another interesting technologies cited were

402

Jastor [10] [23], POSL and OO jDREW [13], Jess [21] [23],
SWRL [21], OWL API [17] [21], OWL-S API [17] [19] and
Jena [15] [19] [21] [24].

Which sources are used to build the ontologies and
which sources could be used to build ontologies? The
main sources cited in the 18 papers were the following:
SWEBOK [8] [1] [14]; Testing Maturity Model [8]; Capabil-
ity Maturity Model [8]; UML SPT [9] [23]; Core Scenario
Model and Software Performance Engineering Meta-Model
[9]; RFC 2616 (HTTP/1.1) [10]; Non-Functional Requirement
Framework Softgoal Interdependency Graph [11]; ISO/IEC
9126-1:2001 [1]; and UML Testing Profile [21]. Moreover,
the following papers adapted and reused other ontologies,
such as Time Ontology [23] [24]; Software Testing Ontologies
[17] [20]; and Object Management Group Ontology Definition
Meta Model [16]. On the other hand, the following papers did
not explicitly cite any sources that were used or could be used
to build ontologies [12] [13] [15] [18] [19] [22].

Which approaches are used to evaluate or compare
ontologies in the domains of software testing or software
performance? None of these 18 analysed papers addressed
the issue of ontology validation. Also, comparisons among
ontologies or even comparisons among papers that addressed
ontologies in software testing or software performance do-
mains were not found in the analysed literature. These charac-
teristics indicates that this research topic is still in its infancy.
Another related point is that none of these papers explicitly
indicates a place where the ontologies or the ontology-based
applications could be accessed and downloaded. However, it
is possible that the ontologies and application proposed were
not intended to be public, e.g., they could be protected by
some form of intellectual property. The unavailability of the
ontologies complicates the overall understanding of the papers.

This section presented the results obtained from a literature
review about ontologies on the domains of software testing and
software performance. Although ontologies in related domains
can be found (e.g., a software testing domain ontology), this
work is the first to propose an ontology on performance testing
domain to answer the competency questions detailed in next
section. We highlight that the trends and patterns identified in
this literature review were used to guide decisions related with
the ontology development approach adopted in this work.

I1I.

The motivation to build an ontology of performance testing
lies in the assumption that the identification of tools, activ-
ities, metrics, artifacts and other domain concepts requires
previous knowledge over the performance testing domain.
Consequently, this research studies the possibilities of using
ontologies to represent this knowledge and support tester’s
decisions. The ontology editor tool Protégé-OWL [3] was used
to develop our ontology of software performance testing. The
formalism that represents the ontology is OWL, which is a
web standard language intended to explicitly represent the
meaning of terms in vocabularies and the relationships between
those terms [2]. In this context, it was adopted the ontology
development methodology proposed in [25]. The first step of
this methodology is to determine the ontology domain and
scope. The ontology covers the domain of software perfor-
mance testing and some examples of competency questions

PROPOSED ONTOLOGY

Performance Test

b PerformanceMetric
— —
is,

SystemUnde:TestConcept b
nmmmrsh/

] usesTool > [prrgel |
I 1 |
1 L 1

supports
n;sgm hasAclmr,\ 6 dependsOn P
~

[pnuﬁ?‘mjm

genefalesArtifact
v

canMonitor

i

Performancehletiic b

i
V7 PTActivity B

‘.—u.a-—’-“
DomainConcept

——

PerformanceTester

(_ PTArifact b

PTTool

| Performancelester | Eetutzshctuity B>

PTAriIfact

PTGoal b

Fig. 1. Class hierarchy (left); main ontology concepts and properties (right)

that it must answer are listed in the sequence. Which features
should be considered during the preparation of a performance
test? How to choose which technologies can be used according
with the configuration of a system that will be submitted to a
performance test? Which activities the performance test must
have to achieve its goals? Which performance test tools can
be used if the test objective is to monitor the Linux operating
system? Given a test tool, which metrics it can collect and
which protocols it is able to load test? The answers to these
questions will be inferred from the concepts, properties and
instances of our performance testing ontology. Constraints and
capabilities involved in the application of each technology, e.g.,
a capability provided by the performance testing tool Load-
Runner is load testing applications over the HTTP protocol.
Thus, once the test environment is defined, it is possible to
choose technologies that can be used on a specific instance
of performance test. Furthermore, according to the testers’s
choices in drafting a new performance test, a corresponding
test plan can be generated as a result of the application that
uses this ontology. The test plan is a document that provides
the basis for the execution of software testing in a manner that
is organized, systematic and well documented [26].

The second step of the methodology [25] is to consider
the reuse of existing ontologies. Ontologies repositories were
searched for OWL ontologies in related domains, since it
was not found any ontology covering specifically the domain
of performance testing. We analysed ontologies of software
testing, such as OntoTest [27] and SWTO [28]. Our ontology
was built based on concepts extracted from the Software
Engineering Body of Knowledge (SWEBOK) [29], the IEEE
Standard Glossary of Software Engineering Terminology [30]
and the IEEE Standard for Software Test Documentation [26].
Then, the most important terms of the performance testing
domain began to be defined as top classes and relationships,
as shown in Figure 1. Some of these concepts and properties
in the ontology use the acronym PT, which stands for Per-
formance Test. Beyond the obvious performance test concept,
the proposed ontology is composed of concepts such as per-
formance test activities, tools, goals, artifacts (also known as
deliverables), testers, performance metrics and concepts related
with the system under test. Figure 1 shows the performance
test concept (named PerformanceTest) with a color highlight.
The reason is that PerformanceTest is an OWL defined class,
while the other concepts are primitive classes. In OWL,
primitive classes have restrictions that all individuals belonging
to the class must satisfy, but it does not mean that a random

403

v PTACtiy
For Project: @ PerformanceTestOntology PerformanceieasurementAnalysis
PerformanceRequirementsDefinttion
Class Hierarchy > PTDevelopment Activity
v Performancetetric > PTDocumentationActivity
v MachinePerformanceMetric »> PTExecutionactivity
> Diskhetric > PTPlanning&ctivity
Memoryhietric (11) v PTAHifact
»> MetworkMetric Performanceteasurement
> ProcessMetric (7) PTCase
ProcessorMetric (5 v PTDocument
SystemMetric (7] PTPlan
PThetric (5) » PTReportingCocument
> PTSpecificationDocument

Fig. 2. Concept hierarchies of PerformanceMetric, PTActivity and PTArtifact

individual that meets these conditions necessarily belongs to
that class [2]. On the other hand, a defined class means that
all individual belonging to that class must satisfy its class
restrictions, and also means that any random individual that
meets these class restrictions can be classified as belonging to
that concept by semantic reasoners. According to this ontology,
an instance of PerformanceTest must be related with at least
one instance of PTActivity through the property hasActivity,
as depicted in Figure 3. In addition, a performance test must
have relationships with at least one application under test (Ap-
plicationUnderTest), one goal (PTGoal), one tool (PTTool) and
one performance metric (PTMetric) through the corresponding
properties as defined at the PerformanceTest concept. Figure 1
shows a class diagram illustrating the main ontology concepts
and relationships. The origin of a property denotes its domain,
and its destination is the image (or range) of such relationship
between concepts.

The test activities represent important concepts in this
proposed performance testing ontology. Figure 2 points out
the PTActivity concept hierarchy, while Figure 3 illustrates the
axioms of two concepts that specialize PTActivity: PTReportE-
laboration and PerformanceToolsDefinition. Besides the gener-
atesArtifact property, these concept have restrictions based on
the dependsOn property, which is a transitive property having
PTActivity concept both as domain and image. Because of
the transitivity characteristic, if an activity A depends on an
activity B and this activity B depends on an activity C, then
it can be inferred that A depends on C. The activities of per-
formance tests were classified in the ontology as development,
documentation, implementation or planning activities. These
categories are not mutually exclusive, for example, the activity
responsible for creating the test plan (PTPlanElaboration) is
classified both as documentation and planning activity. As
Figure 1 illustrated, further properties of this concept explored
in the ontology refer to the fact that an activity may be
supported by a tool and also an activity can generate an artifact
such as, for example, a test case.

Figure 2 also depicts the PTArtifact concept hierarchy,
which was designed according with IEEE 829-1998 [26]
taxonomy. In this standard, test documentation is divided
into three types: planning, specification or reporting. These
concepts can help the tester to determine which set of test
documents will be used and what information each of these
documents should include. Thus, the ontology provides a

standard description of test documents, which might serve as
a reference to facilitate communication about the meaning of
each test artifact. The performance metric is also an important
concept of the ontology, which is divided into two main
categories: the metrics related with machines and the metrics
related with transactions. The machine metrics, represented by
the MachinePerformanceMetric concept, are subdivided into
more specialized categories, such as metrics of memory, pro-
cessor, process and disk. This hierarchy is shown in Figure 2,
which also indicates that these concepts already have instances.
For example, the class MemoryMetric has as instances the
amount of memory available in megabytes and the number
of pages accessed by the second. On the other hand, the
metrics related to a transaction are represented by the PTMetric
class, which have instances to represent the response time and
the throughput. Still regarding the metrics, the ontology has
the property canMonitor to represent that a given test tool
can monitor certain performance metrics. In other words, the
property canMonitor has the class PTTool as domain and the
class PerformanceMetric as range, as depicted at the right side
of Figure 1. The PTTool concept was also already instantiate,
it has 18 instances to represent performance test tools, such as,
LoadRunner, Visual Studio, JMeter and so on. These instances
were defined to represent the features offered by each tool.

The ontology defines 7 concepts as subclasses of PT-
Goal to represent different possible performance test goals.
Figure 3 depicts the restrictions of one of these concepts,
named NormalWorkloadPerformanceEvaluation. For example,
if a test has the goal of determining the performance of
a system (NormalWorkloadPerformanceEvaluation), then at
least one instance of activity responsible for analysing the
performance measurements (PerformanceMeasurementAnaly-
sis) must be executed. This restriction is defined using the
property imposesActivity, whose domain is PTGoal and image
is PTActivity. As shown in Figure 3, goals are modelled as
classes to allow the specification of constraints at concept level,
and these classes only need a single instance to represent the
test goal that will be used to specify performance test instances.

This section presented the proposed ontology for the do-
main of software performance test. Next section shows an
approach to assess and compare the proposed ontology.

IV. ONTOLOGIES COMPARISON

Evaluating the quality of an ontology allows the identifi-
cation of parts that can be better specified and enables the
comparison between two or more ontologies. This section
compares the proposed ontology with the two most related
ontologies found in literature: OntoTest [27] and SWTO [28].
OntoTest [27] is an ontology of software testing built in order
to support the acquisition, organization, sharing and reuse of
knowledge regarding this domain. OntoTest explores the differ-
ent aspects involved in the activity of software testing, defines
a common vocabulary and also helps in the establishment of
reference architectures. Such architectures simplify the use and
integration of tools, processes and artifacts in software engi-
neering environments. On the other hand, SWTO [28], which
stands for Software Test Ontology, is an ontology concerning
software testing designed for testing over the Linux domain.
Hence, SWTO represents both software testing concepts and
Linux operating system concepts [28], but without focusing on

404

PerformanceTest

T % o
o & Asserted Co

PTReporiElaboration

hasActivity some PTActivity

hasGoal some PTGo!

moritors some Performancettetric
testsApplication some ApplicationUnder Test
uzesTool some PTTool

PTDocumentationActivity
dependsOn some Performancebeasurementanalysis
generatesArtifact some PTSummaryReport =]

owl:Thing PerformanceToolsDefintion

NormalorkloadPerformanceEvaluation

& & y
W PTPlanningctivity
dependsOn some FTResourcesDefirtion
dependson some TestEnvironmentDefinition
dependson some UseCasesToTestDefintion

PTGoal
imposesactivity some Pert

=]
[e]

Fig. 3. Axioms on four different concepts: PerformanceTest (upper left), Nor-
malWorkloadPerformanceEvaluation (lower left), PTReportElaboration (upper
right) and PerformanceToolsDefinition (lower right)

performance testing. An ontology evaluation and comparison
approach based on metrics describes and highlights certain
aspects of each ontology, rather than classifying them as right-
wrong, efficient-inefficient, and so on. From the viewpoint
of ontology developers, metrics can be used to recognise
areas that might need more work or cause problems. Table II
shows metrics extracted in Protégé [3] for each ontology being
compared. In principle, a bigger number concepts indicates
that more domain elements were represented in the ontology.
However, absolute metrics, such as the number of concepts, do
not take into consideration whether these concepts are correct
or if they will be useful. Moreover, Table II highlights that
Ontotest [27] presents the highest number of concepts but the
smallest number of relational properties. On the other hand,
SwTO [28] was the ontology with more relational properties
but less concepts. Also, the proposed ontology presents more
predefined instances and axioms.

The performance testing domain has different concepts
and properties when compared with these related ontologies,
such as performance metrics, different testing goals and tools
capabilities. On the other hand, upper concepts such as tester,
artifact and activity are similar, although there are different
subclasses of these concepts between the domains of software
testing and performance testing. In other words, these related
works address the software testing domain, but do not specify
the performance testing sub domain. Table II illustrates the
differences according to the number of subclasses among
the main concepts represented in each of these ontologies.
According to Table II, the proposed ontology specifies with
more detail the concepts of test activity, test deliverable and
performance metric. Although the SwTO represents 11 test
goals, as opposed to the proposed ontology, not all these goals
are applicable to the performance test domain. The differences
among these ontologies are not only the numbers of concept
subclasses shown in Table II. For example, the concept test
tool exists in all ontologies, but in the proposed ontology
it is used in 5 properties and it is related with 4 different
concepts. The same concept is used in only 2 properties in
the other ontologies. There are also divergences regarding the
axioms that define each concept, properties and individuals
represented in each ontology. These ontologies were designed
based on distinct competency questions and domains. The
focus of our ontology is the performance testing domain, thus
it describes concepts not represented in other ontologies, such
as the performance metrics, as shown in Table II.

TABLE II. ONTOLOGIES COMPARISON

Number of ... PTOntology | Ontotest | SWTO
Concepts 99 126 85
Relational properties 44 19 85
Datatype properties 9 6 26
Instances 171 18 36
SubClassOf axioms 118 161 166
DisjointClasses axioms 231 0 180
AnnotationAssertion axioms 187 0 153
Test activity concepts 29 20 7
Test document concepts 10 8 4
Test goal concepts 7 0 11
Test deliverables concepts 13 7 0
Test tool concepts 10 0 1
Test tool instances 18 1 32
Performance metrics concepts 23 0 0

V. ONTOLOGY-BASED APPLICATIONS

Applications using our ontology can be developed in dif-
ferent ways such as by extending the functionality of Protégé
or using an API for ontology manipulation. The following
subsections illustrate some of these ways of using the proposed
ontology. Although these ontology-based applications employ
different approaches, the goal is always to help the software
tester to establish performance tests. The applications aim at
supporting testers’ decisions with domain knowledge of tech-
nologies used in performance testing software, validating and
recommending options according with the test environment,
goals and activities that tests might present. To achieve this,
the applications must query the ontology that has knowledge
about the activities required to conduct performance tests,
the tools that can solve such activities, the requirements for
using a given test tool and so forth. One assumption for
such applications is that the identification of appropriate tools,
activities, artifacts and metrics for a specific test requires some
prior knowledge about the domain. Thus, applications might
assist testers according with the knowledge represented in the
ontology. To execute inferences over the domain, the available
axioms in the ontology are manipulated to answer questions
designed according with the ontology scope, which are as
follows: According to the test environment, which tools can
be used? According to the test goals, which activities should
be performed? According with both the test goals and test
environment, which performance metrics may be collected?

A. Using Semantic Reasoners

It is expected from an OWL semantic reasoner the func-
tionalities of consistency checking, concept satisfiability, clas-
sification and realization [4]. Consistency checking ensures
that the ontology does not contain contradictory facts; concept
satisfiability checks if it is logically possible for a concept to
have instances; classification computes hierarchical relation-
ships between classes, and realization find concepts to which
individuals belong [4]. In other words, semantic reasoners are
able to infer logical consequences from an initial set of axioms.
To use the reasoners feature known as realization, some con-
cepts with restrictions were defined, for example, an individual
is a MonitoringTool if it belongs to the PTTool concept, has
the property canCollectMetric with an instance of MachinePer-
formanceMetric and also has the property supports with an
instance of PerformanceMetricMonitoring. It is important to
remember that more complex concepts can be build based
on previous concepts, for example, the LinuxMonitoringTool

405

Project: @ PerformanceTestOntology For Project: @ PerformanceTestOntology

Class Hierarchy Class Hierarchy

v @ FTTool (15) v O FTTodl (15118
¥ © LoadGenerationTaol ¥ O LoadGenerstionTaal (0/15)
HTTPLoadTestTaol HTTPLoadTestToal (0/14)
LoadGenarationandhonitaringT ool ¢ LoadGenerationAndtonitoringTool (0/7)
S04PLoadTestTool S04PLoadTestTaal (0/6)
¥ © MonitoringTool Reasoner ¥ © MonttoringTool (01/10)

LinuxdanitoringTaol (111 5)
LoadGenerationAndtonitoringTool (0/7)
Wincow sMonitoringTool (07101

TooldvailahleForLinux (0 /16)

TooldvailableForindovs (0715)

Linu=tonitoring Tool

LozdGenerstionAndionitoringTool

WindowshMonitoringTool
Tool&vailableForLinu::
Tool&vailableFordindows

Fig. 4. Executing the semantic reasoner Pellet in the proposed ontology

concept is any individual that is a MonitoringTool and has
at least one relationship with a LinuxBasedOperatingSystem
individual through the property canMonitor. An example ex-
ecuting a semantic reasoner is presented in Figure 4, where
18 individuals were classified in the PTTool hierarchy using
the Pellet [4] reasoner. In this example, from the 18 instances
of PTTool, 15 were classified as LoadGenerationTool, 10 as
MonitoringTool, and so on.

B. Executing Queries in SOWRL

Another way to explore the proposed ontology is using
semantic queries represented in SQWRL (Semantic Query-
enhanced Web Rule Language) [5]. SQWRL provides a simple
and expressive language for querying OWL ontologies in a
way that queries are serialized along with the ontology [5].
Below there is an example of a SQWRL query that retrieves
HTTP (HyperText Transfer Protocol) load generation tools,
which are instances of performance test tool that can gen-
erate load at the HTTP communication protocol: PTTool(?x)
A generatesLoadOn(?x, ?y) A sameAs(?y, HITP) —
sqwrl:select(?x, ?y) A sqwrl:columnNames(“Performance Test
Tool”, “Communication Protocol”) A sqwrl:orderBy(?y)

C. Extending Protégé Software

Protégé can be configured to allow intuitively ontology
visualization and manipulation by end users. Still, Protégé
has an architecture that allows development of plugins that
add new features to the tool [3]. Thus, it is possible to take
advantage of the existing functionality of Protégé, for example,
the use of semantic reasoners and execution of queries written
in SQWRL. Protégé allows different kinds of plugins, in this
work it was developed components known as tab widget and
slot widget plugins. Tab widget plugins are new tabs that can
be visualized at Protégé interface to implement new features.
In contrast, a slot widget plugin is a graphical component that
extends some Protégé graphical interface component aiming
at expanding the viewing and editing information of ontology
individuals and properties. The developed tab widget plugins
were named ActivitiesDependencies and TestPlanGenerator,
while the slot widget plugins received the names of Anno-
tationsWidget and RestrictionsWidget.

The ActivitiesDepedencies plugin is a new tab for Protégé
which infers what activities should be part of a given perfor-
mance test instance. To achieve this, the hasActivity property
must be considered, whose domain is the PerformanceTest

concept and the image is PTActivity, indicating that a per-
formance test might include multiple activities. In turn, each
activity can present a dependency relationship with instances
of PTActivity through the ontology property dependsOn. With
this knowledge, a graph was generated, using the JUNG API®
(Java Universal Network/Graph Framework), where the nodes
are activities already included in a specific performance test
instance plus the activities that should be added since they are
directly or indirectly requirements of an included test activity.

The TestPlanGenerator plugin uses the iText API* to create
a test plan in PDF containing the axioms related with a
given instance of the PerformanceTest concept. To generate
a test plan for a PerformanceTest individual, the algorithm
starts with an OWLIndividual object (from the OWL API) and
discovers all properties of the selected test using gerObject-
PropertyValues method. Then, for each property P, it writes
that property characteristics in the PDF and the characteristics
of each individual of the ontology referenced by that property
P with the selected test. More details about the use of OWL
API will be explained later in the paper.

By extending the class SlotWidget available in Protégé
API (package edu.stanford.smi.protege.widget) it is possible
to customize interface components in order to display features
not available in the standard version. Graphical components
extending SlotWidget are presented to the user when ontol-
ogy concepts are instantiated. The RestrictionsWidget plugin
allows the visualization of constraints for a given concept as
represented in the ontology, which are the axioms imposing
restrictions for individuals of a specific concept. On the other
hand, the AnnotationsWidget component displays the annota-
tions and comments of a particular ontology concept.

This approach of manipulating the ontology through
Protégé offers the advantage of reusing already implemented
features such as the instantiation of concepts and properties.
The use of semantic reasoners (e.g., for consistency checking)
or semantic queries (e.g., SQWRL) are other important features
that can be highlighted. Moreover, the ontology parsing is
transparently handled by the Protégé framework.

D. Developing an OWL API Application

Since our ontology is encoded in an OWL file generated
by Protégé [3], it is possible to develop a custom application
to manipulate its axioms. To investigate this approach, it was
build a Java application that handles the axioms of this OWL
file with the goal of enhancing performance tests planning and
management. The OWL API [6] version 3.2.4 was used to
access the knowledge in the ontology. This library is an open
source Java API (Application Programming Interface) that
enables the creation, manipulation, and serialization of OWL
ontologies through classes such as OWLOntologyManager,
OWLOntology and OWLDataFactory. The application aims to
help the software tester to establish performance tests and
generate corresponding test plans. To establish a performance
test the user has to create an instance of the concept test
performance in the ontology and link this instance with at
least one goal, one application, one activity, one tool and one
performance metric. Moreover, the application allows creating,

3JUNG API is available open source at http:/jung.sourceforge.net/
4iText API is available at http:/itextpdf.com/

406

retrieving and updating instances of the ontology concepts and
properties, such as tools, activities, artifacts and performance
metrics. The application enables the binding of a specific
instance of performance testing with instances of test tools,
activities, objectives, metrics and other concepts based on
the properties in the ontology. The OWL API was used, for
example, to create a new instance in the ontology and to add an
assertion axiom that declares this new instance as belonging to
a given concept. This is done in order to create new instances
of concepts such as PerformanceTest, PTActivity and PTTool.

This section demonstrated different applications on top of
the proposed ontology. Diverse technologies were investigated
in practice during the development of these applications, such
as, Protégé [3], Pellet [4], SQWRL [5], OWL API [6], Java,
JUNG and iText API. Moreover, this section presented a
number of technical details about the development of ontology-
based applications for the domain of software performance
testing. The following section concludes this paper.

VI. FINAL REMARKS

This paper contributes with a literature review covering the
use of ontologies in software testing and software performance.
Its goal is to identify trends and patterns considering the state
of art about ontology approaches in these domains. The re-
sults obtained in this review highlighted ontology applications
already developed, advantages of using ontologies, ontology
technologies most frequently applied, and so on. After this
theoretical review, we investigated, in practice, the develop-
ment of both a performance testing domain ontology and
ontology-based applications built on top of it. The proposed
software performance testing ontology was build with the best
academic reported techniques, tools and methodologies from
the literature of ontological engineering. The ontology was
represented in OWL [2] language, developed inside Protégé
tool [3], according with the methodology reported in [25].
The concepts, relationships, properties, axioms and instances
that represent the knowledge of the ontology were extracted
from the literature of the domain such as the IEEE Stan-
dard Glossary of Software Engineering Terminology [30], the
IEEE Standard for Software Test Documentation [26] and the
Software Engineering Body of Knowledge (SWEBOK) [29].
In this context, OWL ontologies of software testing, such as
OntoTest [27] and SwWTO [28], were also studied, and our
ontology was evaluated by comparing it with these related
ontologies through metric-based approaches.

The proposed ontology was explored by means of semantic
reasoners (e.g., Pellet [4]), semantic queries (in SQWRL [5]),
custom developed Protégé plugins [3] and Java applications
using OWL API [6]. This ontology was used as the basis
for applications designed for planning and management of
performance tests. Since ontologies are representations of
domain knowledge that enable knowledge sharing between
different applications, this work aimed at investigating their
practical potential. Although other ontologies in related do-
mains have been proposed, this work is the first to tackle
the performance test domain, including specific concepts and
properties not represented in the software testing field. More-
over, the ontology can be extended with new concepts, such as
EnduranceTest or StressTest, which would be both subclasses
of PerformanceTest, but the former would include a restriction

upon its instances of including at least one relationship with
an instance of LongRunPerformanceEvaluation, and the later
could be defined as requiring a relationship with a Perfor-
manceBottleneckldentification. Similarly, other concepts could
be specialized, for example, PerformanceTester with concepts
such as TestAnalyst, TestDeveloper, TestSenior, and so on.
As advantages of using ontologies, we can mention that a
software performance ontology standardizes the vocabulary
of the area and facilitates the exchange of knowledge [27].
Besides, ontologies can improve learning about the domain
since they provide a shared understanding of the concepts
and relationships on the field [27]. Other usage examples
of ontologies identified in related papers are for test case
generation [13] and runtime performance improvement [10].
We investigated if ontology, as a knowledge representation
technique, can be applied in the performance testing process,
for example, to make better decisions, decrease costs and
increase quality. For this reason, the proposed ontology-based
applications have the goals of supporting technical decisions
over performance testing domain and enabling access both to
domain knowledge and knowledge of previous tests. Thus, it
can be concluded that, since software testing requires skilled
testers with both technical as well as domain knowledge, there
is a gap that ontology approaches can fulfil’.

REFERENCES
[1] L. Cai, W. Tong, Z. Liu, and J. Zhang, “Test Case Reuse Based on
Ontology,” in 2009 15th IEEE Pacific Rim International Symposium on
Dependable Computing, 2009, pp. 103-108.

S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. L. McGuin-
ness, P. F. Patel-Schneider, and L. A. Stein, “OWL Web Ontology Lan-
guage Reference,” W3C, http://www.w3.org/TR/owl-ref/, Tech. Rep.,
February 2004.

Stanford Medical Informatics, “Protégé software web site,” 2005.
[Online]. Available: http://protege.stanford.edu/

E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz, “Pellet: A
practical OWL-DL reasoner,” Journal of Web Semantics, vol. 5, no. 2,
pp. 51-53, Jun. 2007.

M. J. O’Connor and A. K. Das, “SQWRL: A query language for OWL,”
in OWLED, ser. CEUR Workshop Proceedings, R. Hoekstra and P. F.
Patel-Schneider, Eds., vol. 529. CEUR-WS.org, 2009.

M. Horridge and S. Bechhofer, “The OWL API: A Java API for OWL
ontologies,” Semantic web journal, vol. 2, no. 1, pp. 11-21, Jan. 2011.

B. Kitchenham, R. Pretorius, D. Budgen, O. Pearl Brereton, M. Turner,
M. Niazi, and S. Linkman, “Systematic literature reviews in software
engineering - a tertiary study,” Inf. Softw. Technol., vol. 52, no. 8, pp.
792-805, Aug. 2010.

H. Ryu, D.-K. Ryu, and J. Baik, “A strategic test process improvement
approach using an ontological description for MND-TMM,” in Proceed-
ings of the Seventh IEEE/ACIS International Conference on Computer
and Information Science (icis 2008), ser. ICIS *08. Washington, DC,
USA: IEEE Computer Society, 2008, pp. 561-566.

V. Cortellessa, “How far are we from the definition of a common soft-
ware performance ontology?” in Proceedings of the 5th international
workshop on Software and performance. ACM, 2005, pp. 195-204.

C. Guerrero, C. Juiz, and R. Puigjaner, “Web Performance and Behavior
Ontology,” in International Conference on Complex, Intelligent and
Software Intensive Systems. 1EEE, 2008, pp. 219-225.

P. P. Sancho, C. Juiz, R. Puigjaner, L. Chung, and N. Subramanian,
“An approach to ontology-aided performance engineering through nfr
framework,” in Proceedings of the 6th international workshop on
Software and performance. ACM, 2007, pp. 125-128.

[2]

[6]

[7]

[9]

[10]

[11]

5Ontology available at https:/code.google.com/p/performance-ontology/

407

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

S. Guo, J. Zhang, W. Tong, and Z. Liu, “An application of ontology
to test case reuse,” in 2011 International Conference on Mechatronic
Science, Electric Engineering and Computer (MEC). IEEE, Aug. 2011,
pp. 775-778.

V. H. Nasser, W. Du, and D. Maclsaac, “Knowledge-based software
test generation,” in Proceedings of the 21st International Conference on
Software Engineering & Knowledge Engineering (SEKE’2009), 2009,
pp. 312-317.

L. Xue-Mei, G. Guochang, L. Yong-Po, and W. Ji, “Research and
implementation of knowledge management methods in software testing
process,” in 2009 WRI World Congress on Computer Science and
Information Engineering, 2009, pp. 739-743.

S. Lee, X. Bai, and Y. Chen, “Automatic Mutation Testing and Simu-
lation on OWL-S Specified Web Services,” in 41st Annual Simulation
Symposium (anss-41 2008), Apr. 2008, pp. 149-156.

V. H. Nasser, W. Du, and D. Maclsaac, “An ontology-based software
test generation framework,” in Proceedings of the 22nd International
Conference on Software Engineering & Knowledge Engineering, 2010,
pp. 192-197.

H. Zhu and Y. Zhang, “Collaborative testing of web services,” IEEE
Transactions on Services Computing, vol. 5, no. 1, pp. 116-130, 2012.

E. Y. Nakagawa, E. F. Barbosa, and J. C. Maldonado, “Exploring
ontologies to support the establishment of reference architectures: An
example on software testing,” in 2009 Joint Working IEEE/IFIP Con-
ference on Software Architecture & European Conference on Software
Architecture, Sep. 2009, pp. 249-252.

Y. Wang, X. Bai, J. Li, and R. Huang, “Ontology-Based Test Case
Generation for Testing Web Services,” in 8th International Symposium
on Autonomous Decentralized Systems, Mar. 2007, pp. 43-50.

Y. Zhang and H. Zhu, “Ontology for Service Oriented Testing of Web
Services,” in 2008 IEEE International Symposium on Service-Oriented
System Engineering, Dec. 2008, pp. 129-134.

X. Bai, S. Lee, W.-T. Tsai, and Y. Chen, “Ontology-Based Test Model-
ing and Partition Testing of Web Services,” in 2008 IEEE International
Conference on Web Services. 1EEE, sep 2008, pp. 465-472.

X. Li and W. Zhang, “Ontology-Based Testing Platform for Reusing,” in
2012 Sixth International Conference on Internet Computing for Science
and Engineering, Apr. 2012, pp. 86-89.

I. Lera, P. P. Sancho, C. Juiz, R. Puigjaner, J. Zottl, and G. Haring,
“Performance assessment of intelligent distributed systems through
software performance ontology engineering (SPOE),” Software Quality
Journal, vol. 15, no. 1, pp. 53-67, Jan. 2007.

I. Lera, C. Juiz, R. Puigjaner, C. Kurz, G. Haring, and J. Zottl,
“Performance assessment on ambient intelligent applications through
ontologies,” in Proceedings of the 5th international workshop on
Software and performance. ACM Press, 2005, pp. 205-216.

N. F. Noy and D. L. mcguinness, “Ontology Development 101: A
Guide to Creating Your First Ontology,” Online, 2001. [Online].
Available: http://www.ksl.stanford.edu/people/dlm/papers/ontology 101/
ontology 101-noy-mcguinness.html

IEEE, “IEEE 829-1998 — Standard for Software Test Documentation,”
Tech. Rep., 1998. [Online]. Available: http://ieeexplore.ieee.org/
xpls/abs_all.jsp?arnumber=741968

E. F. Barbosa, E. Y. Nakagawa, and J. C. Maldonado, “Towards the
establishment of an ontology of software testing,” in [/8th Interna-
tional Conference on Software Engineering and Knowledge Engineering
(SEKE 2006), San Francisco, CA, July 2006, pp. 522-525, short Paper.
D. Bezerra, A. Costa, and K. Okada, “SwTO (Software Test Ontology
Integrated) and its application in linux test,” in International Workshop
on Ontology, Conceptualization and Epistemology for Information
Systems, Software Engineering and Service Science, 2009, pp. 25-36.
A. Abran, J. W. Moore, P. Bourque, R. Dupuis, and L. L. Tripp, Guide
to the Software Engineering Body of Knowledge (SWEBOK). IEEE,
2004, ISO Technical Report ISO/IEC TR 19759. [Online]. Available:
http://www.swebok.org/

IEEE, “IEEE Std 610.12-1990 — IEEE standard glossary of software
engineering terminology,” Tech. Rep., Dec. 1990. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=159342

