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ABSTRACT
In this paper, we propose a novel approach for classifying both the
sentiment and the language of tweets. Our proposed architecture
comprises a convolutional neural network (ConvNet) with two
distinct outputs, each ofwhich designed tominimize the classification
error of either sentiment assignment or language identification.
Results show that our method outperforms both single-task and
multi-task state-of-the-art approaches for classifying multilingual
tweets.
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1 INTRODUCTION
Nowadays, social media is already part of people’s everyday life.
Twitter is one of the most popular social network platforms on the
Internet, where users write micro-posts (referred as tweets, small
texts limited to 140 characters) to share their opinions on any topic.
Bearing in mind the immense amount of streaming data regarding
trending (i.e., up-to-date and heavily-commented) discussions, this
particular social network has become one of the most interesting
resources for a variety of applications, ranging from presidential
election data analysis [29] to football fans behavior modeling [36].
One of the computational tasks that are often used for several
purposes is tweet sentiment analysis, whose goal is to automatically
identify the polarity (i.e., positive, neutral, or negative) of the tweet
via natural language processing (NLP) techniques.
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In a globalized world, social media analysis should not be
restricted to single-language approaches, otherwise significant
information regarding a given phenomenonmay be lost. Specifically
for Twitter, it is estimated that half of its posts are written
in languages other than English1, reaffirming the importance
of multilingual strategies for tweet classification. In a nutshell,
multilingual sentiment analysis approaches are usually addressed
as follows:

• translating documents from their original source language
to English, and then performing sentiment analysis with
English-based approaches [8];

• translating documents from English to the target language
of the sentiment analysis method [19];

• making use of a lexicon with sentiment-denoting words for
all considered languages [10].

Translation approaches are often the preferred strategy for
addressing multilingual sentiment classification. However, even if
one could have perfect translation for a particular set of documents,
there is also the potential cultural distance between source and
target languages, whichmay largely influence the final classification
performance [2, 32].

Previous work [6] have shown that deep neural networks are
effective tools for NLP related tasks. Machine Translation [16],
Sentiment Analysis [24] and Part-of-speech tagging [38] are just
a few examples of NLP tasks that have greatly benefited from the
effectiveness of deep neural networks. Long short-term memory
networks (LSTMs) and convolutional neural networks (ConvNets)
besides being state-of-the-art approaches for computer vision tasks
[12, 23, 26, 30, 31, 34], they are now standard approaches for
sentiment [2, 37] and text classification [5], including language
identification.

In this paper, we propose to address the problem of multilingual
sentiment analysis on Twitter with a multi-task deep neural
network. Our architecture makes use of a character-based ConvNet
to perform both sentiment analysis and language detection at the
same time. To the best of our knowledge, this is the first paper
to present a multi-task character-based ConvNet architecture for
sentiment analysis and language detection. Moreover, we present
a visual approach to analyze the impact of each character in the
classification by exploring the gradients of the generated model.
This data visualization scheme allows the identification of similar
sentences in themultilingual Twitter dataset. Finally, we extensively
evaluate our proposed method by comparing it with state-of-art

1https://semiocast.com/downloads/Semiocast_Half_of_messages_on_Twitter_are_
not_in_English_20100224.pdf
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baselines. Results confirm that our approach is the best choice for
both sentiment and language classification on Twitter.

The remainder of this paper is organized as follows. Section 2
presents an overview of related work. Section 3 details our
strategy to perform sentiment analysis and language detection
in a multi-task character-based fashion. Section 4 describes the
experimental setup and the dataset characteristics, as well as the
baseline models. Section 5 provides the results of our empirical
analysis, and Section 6 concludes the paper, pointing to future work
directions.

2 RELATEDWORK
Sentiment classification techniques can be roughly divided into
three approaches: machine learning (ML)-based, lexicon-based, and
hybrid [17]. ML-based approaches address sentiment analysis as
a regular text classification problem that makes use of syntactic
and/or linguistic features [18]. Whereas some approaches identify
the aspects that are being discussed together with their polarity
(e.g., hotel reviews) [9], others simply assign an overall polarity to
the entire document (e.g., movie reviews) [22].

One key aspect regarding ML-based approaches for text
processing is regarding the data representation. Traditional ML
algorithms are not capable of dealing with raw text, requiring
some kind of feature engineering. Most studies make use of
n-grams to represent text [22], while word-embeddings [15] and
character-based representations are becoming popular as well
[2, 32, 37].

Machine translation is often applied for multilingual sentiment
analysis applications [1]. Mihalcea et al. [19] make use of an English
corpora to train sentence-level subjectivity classifiers in Romanian
language using two approaches. First, they employ a bilingual
dictionary to translate an existing English lexicon to build a target
language subjectivity lexicon. In the second approach, they generate
a subjectivity-annotated corpus in a target language by projecting
annotations from an automatically-annotated English corpus. The
authors argue that both approaches can be applied to any language,
and not only Romanian.

Wehrmann et al. [32] propose an efficient deep learning
approach to perform multilingual sentiment analysis of four
languages. A simple convolutional network with one convolutional
layer, one max-pooling overtime layer, and a Softmax layer
achieves state-of-the-art results while requiring only 1225× fewer
parameters than the second-best baseline. The authors argue that
they were the first to investigate character-based neural networks
for language-agnostic translation-free sentiment classification in
multilingual scenarios.

Language identification is the task of automatically detecting
the language(s) present in a document based on the content of
the document. There are different approaches for feature selection
for language detection. Basically, these include the presence of
particular characters which act as discriminators [39] or particular
n-grams [25, 28]. Recently, language identification of short strings
became a hot topic in the research community. The size of the
input text is known to play a significant role in the accuracy of
automatic language identification, with accuracy decreasing on
shorter input documents [3]. Hammarstrom [11] presents a method

that augments a dictionary with an affix table and tests it over
synthetic data derived from a parallel bible corpus. In [4], different
approaches for language identification are compared. The authors
propose a method that relies on a decision tree to integrate outputs
from several different language-identification approaches. In [35],
the authors propose a language identification system based on a
Hidden Markov Model (HMM) for modelling character sequences.
That method was used to automatically identify five languages in
web documents: English, German, French, Spanish, and Italian.

3 METHOD
Feature space representation is a key aspect when using
ML-based text classification in general. The most common word
representation strategy consists in projecting tokenized words
into dense vectors. In this scheme, each word is embedded into a
d-dimensional vector space [20]. These so-called word embeddings
are often designed to have semantically-similar words as neighbors
in the multi-dimensional feature space. For instance, words
дood and awesome lie close to each other within the generated
d-dimensional space. In a multilingual scenario, this property
may allow semantically-similar words across different languages
to be close in an embedded space. Notwithstanding, word-level
approaches require the use of a vocabulary that stores the known
words, posing two major shortcomings: (i) for multilingual tasks,
the vocabulary size grows with the number of languages that are
employed, which may demand large amounts of memory; and (ii)
sensitivity to rare words and typos, since such words would rarely
be present in the stored vocabulary.

A recent approach for learning textual representation is based
on the atomic part of the words: the characters [37]. In this strategy,
all characters ci ∈ {c1, c2, ..., ct } in T are quantized into a binary
matrix of size t × η, for an alphabet with η characters. Recently,
researchers have experimented the use of dense vectors for a more
compact representation of the characters [7, 33].

The main advantage of the character-based approach is that
the cost of text representation depends only on the number of
characters in the text t and the number of known characters
η. For instance, a language-agnostic classifier that learns across
four syntactically similar languages (e.g, Portuguese, Spanish,
English, and German) requires only ≈ 80 different characters for
representing the whole content of the languages. On the other
hand, by using a word-embedding-based method the minimum
cost for the data representation alone is given byw × (VEnдl ish +

VGerman +VPor tuдuese +VSpanish ). Assuming that |V| for all
languages is similar, and contains ≈ 50, 000 words, the inherent
cost will be t × 200, 000. Even though t is often 5× larger than w ,
a character-level representation presents an advantage of about
t×200,000
5×t×80 = 500×.
In this paper we introduce NNLS, which is an architecture that

is capable of learning two tasks at once: multilingual sentiment
analysis and language identification. Our approach relies solely on
the use of character-level convolutions. This combination provides
more robustness to noisy data, allowing to save memory since it
does not process a pre-defined vocabulary, and it is faster given
that convolving temporal data is easily parallelized. For instance,
the ith temporal iteration of a recurrent neural network depends
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on the (i − 1)th iteration, while the temporal information learned
by convolutions are fused along the network’s depth.

We introduce two variations of NNLS, namely NNLS-v1 and
NNLS-v2. They consist of three flows of at least one convolutional
layer that processes the text input by using different filter sizes.
Hence, one can learn information from character-level input in
an explicit hierarchical manner. This architectural choice makes it
easier for the network to learn both fine-grained and mid-level
information. Hence, it is possible to encode most of the text
semantics related to sentiment analysis, while providing important
information regarding the document language. We do believe that
by forcing the network to detect the language as well, it can
then more easily learn specific features regarding each language’s
sentiment information. In addition, trying to approximate a shared
function for distinct tasks naturally constrain the learning, given
that the learned weights must work for both tasks, possibly
introducing a regularizing effect.

Figure 1 shows the overall architecture of NNLS-v1. In this
version we use only three parallel convolutional layers that
convolve the input by applying three different filter sizes (similarly
to [15, 26]). This enables the network to learn up to trigram-level
features, depending on the word length.

Char-level 
Input

Concat

Conv (5)

Global Pool

Conv (3)

Global Pool

Conv (7)

Global Pool

Dense Dense

Out (4) Out (2)

Figura 1: Overall structure of NNLS-v1.

NNLS-v2 is illustrated in Figure 2. It is quite similar to the first
version, but following [27] the 7 × η convolutions are replaced by
three 3 × η convolutions, and 5 × η layers are replaced with two
3 × η convolutions. This replacement provides the same receptive
field while increasing non-linearity and reducing the number of
parameters.

Overall, the first convolutional stack in both NNLS-[v1, v2]
processes the input text by applying three convolutional layers that
help increasing the receptive field and the non-linearity, being the
responsible for learningmid-level information. This can be seen as a
sophisticated way to learn n-grams. The second convolutional stack
is designed to learn short-term information, similarly to bigrams
(depending, of course, on the word length). The last one processes
the input by applying a single convolutional layer, which can learn

Char-level 
Input

Concat

Conv (3)

Conv (3)

Conv (3)

Global Pool

Conv (3)

Conv (3)

Global Pool

Conv (3)

Global Pool

Dense Dense

Out (4) Out (2)

Figura 2: Overall structure of NNLS-v2.

fine-grained information, making it easier to leverage the existence
of short character sequences (e.g., :), :/, :-D, omg, wtf, 4you, gooood,
etc).

All convolutional stacks are followed by a global max-pooling,
which selects the most important features across the temporal
dimension, increasing the receptive field to the entire input. This
pooling strategy results in vectors f ∈ Rk , where k is the
number of filters of the respective stack. Hence, our architecture
generates 3 independent f vectors. The final shared textual
representation F is built by concatenating all 3 f vectors, explicitly
encoding fine-grained, short-term, mid-level, and global features in
a hierarchical fashion.

The final part of the architecture consists of two two-layer neural
networks that are not shared across tasks, although both are fed
with F . This helps to increase the non-linearity needed for learning
particular features for each task. Hidden layers from all networks
comprise ReLU neurons. The final layer is responsible for linearly
mapping the hidden representation to the specific classes of both
tasks. Hence, the first network output generates four classes for
identifying each language we are learning from (considering a
4-language detection problem), and the second one learns binary
sentiment analysis (positive or negative sentiment). Note that our
overall architecture ends with two softmax outputs, normalizing
the scores into probability distributions.

3.1 Loss Function
Let ϕL(F ) = v be the function that approximates the language
identification by generating v scores, and ϕS (F ) = z be the scores
for the sentiment analysis task. Both functions are based on a global
shared function learned directly form the character-level text input
T through the convolutional layers, namely ϕG (T ) = F .
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Tabela 1: Tweet corpora. Each of the sets contain positive and negative tweets from 4 languages.

Training Validation Test

Language Negative Positive Negative Positive Negative Positive Total

English 7,764 7,765 1,122 1,085 2,229 2,205 22,170
German 7,476 10,570 1,062 1,549 2,075 3,089 25,821
Portuguese 17,248 12,228 2,484 1,715 4,854 3,565 42,094
Spanish 8,289 18,380 1,158 2,643 2,324 5,294 38,088

Multilingual 40,777 48,943 5,826 6,992 11,482 14,153 128,173

Amount of the total corpora 89,720 (70%) 12,818 (10%) 25,635 (20%)

Tabela 2: Examples of tweets from the multilingual dataset.

Language Text Class

English Have this abstract Om Painting to give beautiful vibrant colours to wall. http://t.co/ZSoQOYN8xD Positive
English Ok i dont want to wake up Negative

German Das schöne an Osnabrück? Kostenfreies WLAN in der ganzen Innenstadt! Positive
German Da haben die Eltern echt mächtig was falsch gemacht! :O Negative

Portuguese lol, é smp assim. em vez de tar a estudar tou no twitter :) Positive
Portuguese To com moh vontade de te exclui sabiia?! Negative

Spanish Me gustan los abrazos sin motivo. Positive
Spanish Me duele la cabeza. Negative

To approximate those functions, we need to maximize the
log-likelihood of the generated scores sT = {v, z} of the correct
class y given T , by

PT (y = j |T ) =
e
sTj∑K

k=1 e
sTk

(1)

Given the PT (y = j |T ) probabilities for T ∈ {L, S} tasks, we
minimize the negative log-likelihood for both T tasks:

LT = − log(PT (y = j |T )) (2)
where LL and LS denote, respectively, the the loss function for

the language identification and sentiment analysis tasks.
Finally, the overall loss function LG is given by

LG = αLL + βLS (3)
where α and β regulate the trade-off between both tasks. Here,

largerα values cause the language identification task to have greater
importance in the optimization process, while larger β values make
the network more sensitive to the performance in the sentiment
analysis task. Refer to Section 5.1 for an empirical analysis with a
detailed discussion regarding the impact of α and β .

4 EXPERIMENTAL SETUP
In this section we detail methodological aspects of the experimental
analysis for allowing reproducibility, such as the dataset we employ,
the baseline approaches, hyper-parameter settings, and training
protocol.

4.1 Dataset
We make use of the Twitter corpora from [21] to evaluate the
proposed architecture. This dataset contains around 1.6 million
annotated tweets from 13 European languages, and it is considered
one of the largest corpora publicly available nowadays. All tweets

have been manually labeled into three classes: positive, neutral, and
negative. Due to the semantic and syntactic structural differences
among the 13 languages, we only consider a subset of tweets from
four specific languages: English, Spanish, Portuguese, and German.
See Table 1 for statistics of the dataset, and Table 2 for a few
samples extracted from it. We also reduce the problem to binary
classification by discarding all neutral tweets. Note that the dataset
does not provide the tweet itself, but rather a URL that leads to the
tweets. Due to this particularity, some tweets are no longer available.
To build a language detection dataset, we manually labeled each
instance of the dataset according to its corresponding language.

4.2 Baseline Algorithms
We compare our results with the following algorithms: (i) LSTMs
[13], the standard deep neural network approach for handling
temporal data; (ii) ConvChar [37], the first work to learn textual
representations from raw characters; (iii) ConvEmb [15], a fast
architecture that applies a convolutional layer with multiple
filter sizes, followed by a global max-pooling; (iv) FastText
[14], an efficient convolutional network for text classification;
and (v) ConvChar-S [32], a neural network that convolves raw
characters and achieves state-of-the-art results for multilingual
sentiment analysis.

For the sake of fairness, we do not apply any preprocessing to
the data. All models were trained with the original raw data. For
the word-embedding-based approaches, the vocabularies are built
considering all words present in the training set.

Several authors [2, 32] have shown that traditional hand-crafted
features do not work well for multilingual sentiment analysis.
Hence, we will not use them for comparison. In addition, since
the dataset is reasonably balanced among the classes, results are
reported in terms of classification accuracy.
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Figura 3: Loss weights

4.3 Hyper-Parameters
The hyper-parameters of the baseline approaches are set following
their original implementations. For the cases where such values
are unknown, we follow those used in [32]. Namely, for
word-embedding-based networks, we use d = 300. Character-level
networks are trained with η = 70 characters. Since we are
classifying tweets, the number of characters is fixed in 140, while the
word-basedmethods process fixed-length texts where themaximum
number of words is defined by the sentence in the training set with
the largest number of words.

• LSTM [13]: single hidden layer with 512 units.
• ConvChar [37]: we use the very same architecture from the
original implementation, though we achieve better results
training with the Adam optimizer, weight initialization as
in [12], and learning rate of 1 × 10−3. We also use a larger
dropout rate, as in [32], in order to better regularize the
network.

• ConvEmb [15]: we use same settings of the original work.
• FastText [14]: we use same hyper-parameters of the original
work, though we employ only unigram features for not
exploding the memory requirements.

• ConvChar-S [32]: we use its original implementation for
replicating the results.

• NNLS-[v1, v2]: we use both 128 and 200 (default)
convolutional filters per layer, referred as NNLS-vk(number
of filters).

All models are trained for a maximum of 100 epochs,
early-stopping when validation accuracy stop improving for 5
consecutive epochs. All models are trained with a learning rate
of 1 × 10−3 and optimized using the Adam update rule, which
performs per-weight learning rate annealing, and hence we do not
perform any additional learning rate reduction.

Note that all multi-task models are trained with the loss function
defined in 3.1. For finding the best values of both α and β ,
we performed a grid-search ∈ {0.01, 0.02, 0.03, ..., 1.00}. Such a
procedure required us to train at least 100 models per approach,
resulting in a total of 500 fully-trained networks. This took about a
week running experiments in a single server equipped with 4 GPU

Tesla 1080Ti 11GB (Pascal architecture). The loss hyper-parameters
were chosen based on validation accuracy.

5 EXPERIMENTAL ANALYSIS
In this section we provide an extensive set of experiments
for evaluating some architectural choices and hyper-parameters.
We first analyze the impact of the weights in our multi-task
loss function. Next, we compare our architecture with the
state-of-the-art approaches. In addition, we show qualitative
examples of tweets retrieved using features embedded in different
levels of the network, and finally, we use gradients of the network
for visualizing and understanding our models.

5.1 Loss weights
In this section we analyze the impact of the loss weights in our
architecture, namely α and β .

Figure 3 depicts the results of the 100 models trained in the
grid-searching procedure. As expected, smaller values of α imply
in worse language detection performance, and smaller values of β
tend to generate poor results for sentiment analysis. However, one
can observe that some loss weights settings help in achieving good
results for both tasks. By verifying the predictive performance in
the validation set for both tasks, we chose values of α = 0.9 and
β = 1.0. Despite the fact that this configuration does not generate
the best global results for both tasks, it is the setting that maximizes
the conjoint performance.

5.2 Comparison with the state-of-the-art
Since we designed a multi-task neural network architecture that
learns conjointly two distinct tasks, we provide results for two
training strategies: (i) we train all networks separately for each
task to evaluate their full capacity for learning those tasks; and (ii)
we train all baselines approaches adapting them to be multi-task,
similarly to our approach.

We perform several experiments to evaluate our models and
compare them with the baselines. Table 3 presents the results for
all methods when adapting the baselines to perform multi-task
learning.
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Tabela 3: Multi-task learning results for all methods.

Method Sentiment Language
Analysis Detection

LSTM 71.33% 97.62%
ConvEmb 71.75% 97.74%
FastText 71.31% 97.52%
ConvChar 70.59% 97.55%
ConvChar-S 73.37% 98.37%

NNLS-v1 73.63% 98.11%
NNLS-v2 74.43% 98.40%

Our models outperform all baselines in the multi-task scenario.
The baseline character-based models also reach good results in
both tasks. ConvChar comprises several convolutions through
its structure increasing the model non-linearity, which could be
especially interesting when working in a multilingual scenario.
However, our proposed model has fewer convolutional and pooling
layers, and improves classification accuracy in relative terms by
≈ 5.15% for sentiment analysis and ≈ 0.87% for language detection.
Results of the ConvChar-S architecture show that this model is
capable of performing both tasks at the same time with quite
competitive results when compared with our approach. Overall,
our models have proven to be superior, as illustrated in Figure 4,
which presents all trained models and their respective performance
in both tasks.
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Figura 4: All trained models.

When comparing our model with word-embeddings-based
approaches, we note that the time-consuming phase of learning
textual representation does not reflect in better results. LSTM,
FastText, and ConvEmb reach similar results in both tasks,
with LSTM providing slightly better accuracy than the other
embedding-based models.

5.2.1 Single-Task Learning. All baseline models where also
evaluated only for language detection, or only for sentiment
analysis. These experiments aim to analyze whether the baseline
methods can outperform our approaches when considering
single-task learning.

Table 4 presents results regarding language detection and
sentiment analysis as single-tasks. In this scenario, we trained each

classifier to perform only one of the tasks, not sharing network
weights across the tasks.

Tabela 4: Single-task learning results for all methods.

Method Sentiment Language
Analysis Detection

LSTM 71.57% 98.43%
ConvEmb 71.19% 98.38%
FastText 71.39% 98.01%
ConvChar 70.71% 96.91%
ConvChar-S 71.78% 97.61%

NNLS-v1(128) 72.52% 97.72%
NNLS-v1(200) 72.87% 97.53%
NNLS-v2(128) 72.97% 97.59%
NNLS-v2(200) 73.55% 97.83%

Our model outperforms all baselines in single-task sentiment
analysis, whereas LSTMs reaches the best accuracy for language
detection when training for it as a single-task.

5.2.2 Per-Language Sentiment Analysis. We also investigate the
performance of all methods in per-language sentiment analysis,
which means we train all models in a multilingual fashion but
we then test their performance in per-language datasets. Table 5
presents the results of this analysis.

Tabela 5: Per language results of SA by training with
multilingual data and testing with per language datasets.

Method English German Portuguese Spanish

LSTM 70.57% 76.58% 71.12% 69.32%
ConvEmb 72.30% 77.58% 69.28% 69.50%
FastText 70.04% 77.22% 71.01% 69.15%
ConvChar 70.24% 72.07% 71.24% 69.74%
ConvChar-S 74.97% 75.50% 74.36% 69.83%

NNLS-v1 75.35% 76.31% 74.86% 70.01%
NNLS-v2 76.68% 76.72% 75.13% 70.02%

5.3 Network Visualization
In this section we use the method proposed in [32] for visualizing
features learned by the network. This visualization technique
consists of back-propagating gradients to the character-level input.
Such information is normalized and plotted to highlight the
character sequences that were most important for providing a
given sentiment prediction. All visualizations in this section are
resulting of our best architecture, namely NNLS-2. Figures 5 and 6
show examples of correctly classified tweets from the positive and
negative polarities (validation data). Character sequences in red
depict the most relevant parts of the tweet for the corresponding
prediction. Note that our method can easily leverage the existence
of emoticons, some particular words, and sequences of words as
well.

5.4 Multi-Task Embedding Space
A final qualitative analysis concerns retrieving the most similar
tweets by using latent features optimized by training two tasks
at once. More specifically, given a query tweet we extract the
F features and compare to the F features extracted from 1, 000
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Figura 5: Positive sentences from the Twitter multilingual dataset.

Figura 6: Negative sentences from the Twitter multilingual dataset.

Tabela 6: Analysis of the multi-task embedding space. Retrieved tweets from query sentences.

Query Retrieved Sentences

Alot of enjoyment on this weekend. ! :-D
RT @usr: photography is such a great thing in life :-)
@usr i got the same one :D
@usr Love U!!! Please tweet me, i just wanna that happen :D

não consigo mais, acho que já morri de tanto estudar
Não peço muito, só ser rica e não ter que ir à escola
Não oiço certas musicas porque me lembram certas coisas
não vou deixar que o pior aconteça só porque estás a ser parvo.

Ah, das neue Mo Hayder Buch ist da.
@usr Sehr gut! XD
@usr ja. Sachsenhausen ist gut! Du suchst sicher was schönes raus :-)
@usr @usr ok, wenn’s ein trinkspiel gibt bin ich *definitiv* dabei!

@usr Muchas gracias Paloma :)
@usr buenos días :D
@modery Gratuliere ;)
@Ivihermanostodo Hoy comemos juntos ;)

randomly selected tweets from the validation data. All features
are normalized to have unit norm so that the vector multiplication
results in the cosine distance. Hence, we use the cosine for ranking
themost similar tweets. Table 6 depicts examples of retrieved tweets
given four queries, one query per language. Note that by using the
features optimized via our multi-task loss function, we are able
to automatically retrieve tweets from the same language and the
same polarity. Moreover, some retrieved tweets are quite similar in
structure when compared to the query sentence.

6 CONCLUSION
In this paper we proposed a multi-task neural network architecture
for performing sentiment analysis and language detection at
the same time. Our architecture outperforms all state-of-the-art
approaches by a good margin. In addition, our networks are light
and fast, requiring about two orders of magnitude fewer parameters
than the word-embedding baselines. For future work, we intend
to compare our approach with translation approaches, as well as
increasing the number of languages and including distinct alphabets
(e.g., Chinese or Japanese).
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