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Abstract

Sentiment analysis of tweets is often monolingual and the
models provided by machine learning classifiers are usu-
ally not applicable across distinct languages. Cross-language
sentiment classification usually relies on machine translation
strategies in which a source language is translated to the de-
sired target language. Machine translation is costly and the
provided results are limited by the quality of the transla-
tion that is performed. In this paper, we propose an efficient
translation-free deep neural architecture for performing mul-
tilingual sentiment analysis of tweets. Our proposed approach
benefits from a cost-effective character-based embedding and
from optimized convolutions to learn from multiple distinct
languages. The resulting model is capable of learning latent
features from all languages used during training at once and
it does not require any translation process to be performed
whatsoever. We empirically evaluate the efficiency and ef-
fectiveness of the proposed approach in tweet corpora from
four different languages and we show that it presents the best
trade-off among four distinct state-of-the-art deep neural ar-
chitectures for sentiment analysis.

Introduction

Twitter is one of the largest microblogging services on the
Internet, in which users share their opinions about any topic.
The large amount of generated data has become a rich source
for researchers in different scientific fields such as machine
learning (ML) and natural language processing (NLP). One
of the most studied tasks regarding Twitter data is sentiment
analysis, which is concerned with assigning polarity to each
tweet. Tweets are short text with up to 140 characters regard-
ing a given topic, and they may reflect the emotional state
of mind of their authors with respect to the subject being
approached. Thus a tweet may indicate a positive, neutral,
or negative sentiment regarding its main topic. Many efforts
have been dedicated to sentiment analysis for Twitter cor-
pora over the past years (Martı́nez-Cámara et al. 2014).

Sentiment analysis over tweets is usually language-
centric, and the models derived from the analysis are of-
ten not applicable across distinct languages. Therefore, a
classification approach that is not restricted to analyzing a
single language would be capable of collecting much more
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data from Twitter, eventually providing more robust cross-
language models. The most common approach for cross-
language analysis is called cross-language sentiment clas-
sification (CLSC) (Narr, Hulfenhaus, and Albayrak 2012).

Previous work on CLSC mainly focuses on the use of ma-
chine translation techniques (Banea et al. 2008; Denecke
2008). These methods operate by translating documents
from the source language to the target language and then
applying ML classification algorithms over the translated
data. However, due to the intrinsic differences between lan-
guages, several problems may occur after translation. One
of them is word-drifting, in which a word that frequently ap-
pears in the source language may rarely appear in the target
language after translation, generating a discrepancy in the
data distribution between source and target languages (Guo
and Xiao 2012). However, even if one could have perfect
translation for a particular document set, there is also the
potential cultural distance between source and target lan-
guages, which may largely influence the final classification
performance. Another disadvantage of machine translation
approaches is regarding the availability of state-of-the-art
open-source translators. Indeed, most of the robust transla-
tion APIs are not free of charge, and hence the task of trans-
lating large corpora may end up being too expensive.

Deep neural networks have recently achieved significant
advancements in different NLP tasks such as language mod-
eling (Bengio et al. 2003), sentiment analysis (Socher et al.
2013), syntactic parsing (Collobert and Weston 2008), and
machine translation (Lee, Cho, and Hofmann 2016). Convo-
lutional neural networks (CNNs) and Long short-term mem-
ory networks (LSTMs) have been extensively employed for
sentiment classification (Zhang, Zhao, and LeCun 2015;
Zhang and LeCun 2015; Tang, Qin, and Liu 2015). However,
automatic sentiment classification of (unstructured) text data
requires documents to be modeled as structured data so
they can be interpreted by the ML algorithm. Represent-
ing words as dense vectors was first introduced in (Ben-
gio et al. 2003) for the context of neural language model-
ing, and it was first applied to NLP tasks in the pioneer-
ing work of Collobert et al. (Collobert and Weston 2008;
Collobert et al. 2011). Several distinct embedding strategies
for converting free text into vectors have arisen recently,
each with their advantages and disadvantages.

Our contributions in this paper are as follows. First, we
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present an efficient method for performing multilingual sen-
timent analysis over tweets. To the best of our knowledge,
we are the first to present a multilingual deep neural ap-
proach for sentiment analysis that does not rely on machine
translation. Second, we extensively compare three different
neural architectures in the context of multilingual sentiment
analysis, pointing to the advantages and disadvantages of
these approaches when classifying tweets from 4 different
languages. Each architecture is based on a distinct embed-
ding strategy, and hence demands different computational
resources for classifying tweets. Finally, we show that our
method presents the best trade-off regarding accuracy and
efficiency among the neural architectures that are empiri-
cally analyzed, and also regarding traditional SVM-based
classification.

Related Work

Sentiment classification techniques can be roughly divided
into three approaches: ML-based, lexicon-based, and hybrid
(Maynard and Funk 2011). Employing ML algorithms con-
sists in treating sentiment analysis as a common text classi-
fication problem that makes use of syntactic and/or linguis-
tic features (Medhat, Hassan, and Korashy 2014). Whereas
some approaches identify the aspects that are being dis-
cussed together with their polarity (e.g., hotel reviews) (Ga-
mon et al. 2005), others simply assign an overall polarity
to the entire document (e.g., movie reviews) (Pang and Lee
2004).

One way of approaching CLSC consists in machine
translation strategies to reduce the data to a single lan-
guage (Banea et al. 2008). Such an approach usually trans-
lates training and test data into the same target language, and
then applying a monolingual classifier. Nevertheless, classi-
fication performance is often negatively affected due to the
cultural gap between source and translated languages (Shi,
Mihalcea, and Tian 2010). In (Mihalcea, Banea, and Wiebe
2007), the authors use English corpora to train sentence-
level subjectivity classifiers in Romanian language using
two approaches. In the first approach, they use a bilingual
dictionary to translate an existing English lexicon to build a
target language subjectivity lexicon. In the second one, they
generate a subjectivity-annotated corpus in a target language
by projecting annotations from an automatically-annotated
English corpus. The authors argue that both approaches can
be applied to any language, and not only Romanian. A co-
training approach is proposed in (Wan 2009) to leverage
resources from both source and target languages. Experi-
ments were conducted on automatic sentiment classification
of product reviews in Chinese, successfully making use of
both cross-language and within-language knowledge. For a
complete review of the state-of-the-art in multilingual sen-
timent analysis, the reader is referred to (Dashtipour et al.
2016).

Learning Text Representations

One key aspect regarding ML-based sentiment classifica-
tion relies on the feature space representation. One way of
representing words is through dense vectors, where each

word is embedded in a d-dimensional vector space (Bengio
et al. 2003; Mikolov et al. 2013). Instead of using words,
one can also use characters, in a strategy similar to the
one used by NLP approaches (Dave, Lawrence, and Pen-
nock 2003; Wiebe et al. 2004; Abbasi, Chen, and Salem
2008). Character-based embedding was recently introduced
in the context of convolutional neural networks (dos Santos
and Gatti 2014; Zhang and LeCun 2015), and it is said to
be better-suited for machine translation than its word-based
counterparts (Lee, Cho, and Hofmann 2016).

Word-level Embedding

Word-level embedding consists in mapping word ω onto a d-
dimensional space in which semantically-similar words are
neighbors. For instance, in single-language analysis, words
such as nice and cool should be close to each other within
the generated d-dimensional feature space. In the multilin-
gual scenario, this property may be advantageous since sim-
ilar words in different languages should lie close in the em-
bedded d-dimensional space. However, word-level embed-
ding requires as input a vocabulary with several words, pos-
ing two major drawbacks: i) for multilingual analysis, the
vocabulary size grows substantially; and ii) false cognates
– words syntactically identical but with different meanings
across languages – will most certainly confuse the ML algo-
rithm and harm classification performance.

Let T ∈ {ω1, ω2, ..., ωn} be a text with n words and
φ(ωi) = vi be a function that maps word wi onto vector
vi, the text representation in a word-embedding space is de-
fined by Γ ∈ R

d×n. Note that n varies with the size of text
Tj . Figure 1 depicts the word-based representation.
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Figure 1: Word-level representation of sentence “I can feel”.

For training multilingual classifiers with word-level em-
bedding, one needs to build a large dataset with instances
from the desired languages. In the context of Twitter anal-
ysis, one can use the original tweets (from their respective
languages) without any preprocessing, and it is then possi-
ble to classify sentences that contain words from multiple
languages at once. For example, a Spanish tweet that con-
tains English cursing can be easily classified, which is not
truth when training independent per-language classifiers.

A recent but widely-used approach for modeling sen-
timent classifiers is based on Recurrent Neural Networks
(RNNs), which process text encoded as a sequence of word
embeddings (Γ). RNNs are networks that learn recurrent
weight matrices for understanding temporal relationships
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Figure 2: Character-level representation of “I can feel”.

among text of variable size. This flexibility is quite attractive
for text-based learning such as sentiment analysis. LSTMs
(Long Short-term Memory) (Hochreiter and Schmidhuber
1997) are more complex RNN-based architectures that are
capable of learning long-term dependencies and forgetting
useless information within a given sentence. The LSTM-
based approach that we employ in this study for multilingual
sentiment analysis is hereby called as LSTM-Emb.

Character-level Embedding

A recent approach employs a simple convolutional layer to-
gether with a max-pooling-over-time operation instead of
LSTMs (Kim 2014). Such architecture is faster than RNNs
and seems to provide similar predictive performance. For-
mally, the convolutional layer convolves Γ with f filters
3 × d resulting in feature maps M ∈ R

f×(n−2). The max-
pooling-over-time layer is responsible for selecting the most
relevant features within the temporal dimension by using
filters of size 1 × (n − 2). The resulting representation is
R ∈ R

f×1, which is linearly mapped to the C classes. In the
context of Twitter sentiment analysis, classes can be the po-
larities positive and negative, configuring a softmax output
with two neurons. Models that are based in this architecture
of convolutional network are hereby referred as Conv-Emb.

An alternative way of embedding words into multidimen-
sional spaces is through the use of its basic components, the
characters (Zhang and LeCun 2015). In a character-based
representation, all characters ci ∈ {c1, c2, ..., cm} in T are
mapped to a binary matrix of size m × η, where V is the
alphabet with η characters, as presented in Figure 2. This
representation is based on a 2D fixed-size input tensor for
encoding text. The original architecture proposed in (Zhang
and LeCun 2015), hereafter called Conv-Char, comprises
several convolutional layers that act as an embedding learn-
ing step, with the advantage of requiring only a small alpha-
bet in memory instead of a large vocabulary.

Even though Conv-Char comprises more convolutional
layers than Conv-Emb, it requires fewer parameters to
be learned. In addition, we propose in this paper a novel
character-based architecture, namely Conv-Char-R, that
contains about 6× less parameters than Conv-Char with-
out significance performance degradation. Figure 3 depicts

Table 1: Amount of parameters (considering word-
embedding as trainable parameters) and memory required
for storing both data and model for each method.

Network # Parameters Memory

LSTM-Emb (Hochreiter and Schmidhuber 1997) ≈ 49M ≈ 1.2GB

Conv-Emb (Kim 2014) ≈ 47M ≈ 1GB

Conv-Char (Zhang, Zhao, and LeCun 2015) ≈ 3M ≈ 0.30GB

Conv-Char-R [Ours] ≈ 0.53M ≈ 0.32GB

both Conv-Char and Conv-Char-R architectures.
Conv-Char-R is based on the use of 1× 1 convolutional

filters to improve the non-linearity within the model while
reducing the dimensionality of the tensors, resulting in fewer
parameters. We modify the Conv-Char structure by adding
1× 1 convolutions after each convolutional layer except for
the last one. We also removed the fully-connected (dense)
layers, mapping the max-pooled tensors (256×4) to the two
classes. We also slightly changed the second convolutional
layer by using 1× 3 filters instead of the original 1× 7, re-
quiring ≈ 2.4× fewer parameters to be learned in that layer.
Table 1 shows the total number of parameters for each deep
neural architecture. Note that Conv-Char-R contains only
≈ 527, 000 learnable parameters, as opposed to 49, 000, 000
(LSTM-Emb) and 47, 000, 000 (Conv-Emb). In addition, it
has 6 times fewer parameters than Conv-Char. We show in
the next sections that Conv-Char-R presents the best trade-
off regarding model complexity and predictive performance
among the 4 architectures.

Experimental Setup

Dataset

During the experimental analysis, we make use of the Twit-
ter data from (Mozetič, Grčar, and Smailović 2016) to eval-
uate the proposed architecture. It contains data from 13
European languages, around 1.6 million annotated tweets,
which is by far the largest corpora made publicly available
so far. All tweets have been manually labeled into three
classes: positive, neutral, and negative. Due to the semantic
and syntactic structural differences among the 13 languages,
we only consider tweets from four specific languages: En-
glish, Spanish, Portuguese, and German. We also reduce the
problem to binary classification, i.e., we discard all neutral
tweets. Note that the dataset does not provide the tweet it-
self, but rather a URL that leads to the tweets. Due to this
particularity, some tweets are no longer available. Statistics
of the data used in this work are presented in Table 2.

Baseline Algorithms and Hyper-Parameters

We compare Conv-Char-R with LSTM-Emb, Conv-Emb,
Conv-Emb-Freeze (a variant of Conv-Emb in which we do
not update the word embedding), Conv-Char, and with a
traditional SVM approach (Vapnik and Cortes 1995; Vapnik
1999). The parameters used by each method are as follows.

For LSTM-Emb, we use the default LSTM implemen-
tation with input and forget gates, though discarding peep-
hole connections. The LSTM comprises a single hidden
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Figure 3: Architectures based on character-level embedding: Conv-Char (Zhang and LeCun 2015) and Conv-Char-R (ours).

Table 2: Tweet corpora. Each of the sets contains positive and negative tweets from 4 languages.

Training Validation Test

Language Negative Positive Negative Positive Negative Positive Total

English 7,784 7,645 1,131 1,146 2,200 2,264 22,170
German 7,502 10,727 1,063 1,544 2,057 2,944 25,837
Portuguese 17,170 12,202 2,427 1,745 4,990 3,560 42,094
Spanish 8,211 18,491 1,189 2,574 2,372 5,251 38,088

Multilingual 40,667 49,065 5,810 7,009 11,619 14,019 128,189

Share of entire corpora 89,732 (70%) 12,819 (10%) 25,638 (20%)

layer with 512 tanh neurons. We set the embedding size
to d = 300, and use dropout of 0.8 in the final layers.

Regarding Conv-Emb, we set the embedding size to d =
300 as in (Kim 2014). The word embedding are initialized
with random values and then optimized through backpropa-
gation during training. The vocabulary size is set to 157, 000
words, composed by words in the training set from the four
languages. We use 100 convolutional filters and dropout
of 0.8 in the final dense layer. The learning rate is set to
1 × 10−4. The variant Conv-Emb-Freeze has the same pa-
rameters than Conv-Emb though the word embeddings are
not updated throughout the training process.

For Conv-Char, it takes as input m = 140 characters and
accepts an alphabet size η = 73. Given the large amount of
parameters and its capability of quickly overfitting the train-
ing data, we apply dropout rates of 0.8 and 0.9 in the two
final layers of the network, respectively. Learning rate is set
to α = 10−3. Conv-Char-R has the same hyperparameters,
and dropout of 0.8 is applied over its single dense layer.

For all neural networks, we employ the Adam update rule
for optimization with mini-batches of 128 training instances.
Since the convolutional architectures comprise ReLU neu-
rons, we initialize their weight matrices with the procedure
described in (He et al. 2015). We only use dropout to regu-
larize dense layers. All models are trained with the negative
log-likelihood loss function over a softmax layer that com-
prises two neurons (positive and negative).

The SVM baseline employs a Gaussian kernel over the
features, whose representation is based on unigrams, bi-
grams, and trigrams. We do not remove stopwords nor ex-
ecute any kind of language preprocessing since our goal is
to verify the effectiveness of each approach over the embed-
ded data without data preprocessing.

Evaluation Criteria

We evaluate the experiments with two traditional classifi-
cation performance measures: accuracy and F1-score. Ac-
curacy is the rate of correctly classified instances ((TP +
TN)/TP + TN + FP + FN ) whereas F1-score is the
harmonic mean of precision (TP/(TP + FP )) and recall
(TP/(TP +FN)), as defined in Equation 1. Both measures
range within [0, 1], with better scores at higher values.

F1 = 2× precision× recall

precision+ recall
(1)

Experimental Results and Discussion

We compare four different deep neural network architec-
tures, as well as SVM-based approaches regarding their
predictive performance in the multilingual Twitter dataset:
LSTM-Emb, Conv-Emb[-Freeze], Conv-Char, Conv-
Char-R, and SVM-[U,B,T]. For the SVM-based models, we
evaluate the performance of using only unigrams (SVM-U),
only bigrams (SVM-b), only trigrams (SVM-t), and combi-
nations among them (SVM-UB, SVM-UBT). Results of ac-
curacy and F1-score are presented in Table 3. We also show
the per-language results for the neural architectures, so we
can evaluate if there is significant variation of results in a
language basis (see Tables 4 and 5).

Note that the best F1-score is achieved by LSTM-Emb,
0.753, and that the LSTM model also achieves the second
best accuracy value, 0.713, losing only to the Conv-Emb
model. Note that the SVM-based models with n-grams do
not perform nearly as good as the neural architectures. These
poor results are most certainly due to the lack of preprocess-
ing techniques (e.g., stopwords removal or stemming) over
the input data. Preprocessing was not applied to any of the
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Table 3: Accuracy and F1-score values.

Method Accuracy F1-score

SVM-U 0.558 0.424
SVM-UB 0.548 0.433
SVM-UBT 0.549 0.433
SVM-B 0.502 0.032
SVM-T 0.511 0.057

Conv-Emb-Freeze 0.688 0.728
Conv-Emb 0.714 0.749
LSTM-Emb 0.713 0.753

Conv-Char 0.696 0.721
Conv-Char-R 0.695 0.722

methods so the evaluation could be as fair as possible, and
we could clearly verify the ability of each model when di-
rectly dealing with embedded text.

Regarding the convolutional models that employ different
text representations, one can observe that word-embedding
models seem to perform slightly better than character-based
models. Also, note that learning the embedding through
backpropagation is always better than freezing the embed-
ding and then only learning the remaining parameters. How-
ever, as presented in Table 1, the excessively large amount of
parameters to be learned in word-embedding-based models
is a prominent disadvantage when adopting this representa-
tion. The character-based models are much cheaper and their
slightly inferior performance does not seem to justify the use
of the much larger word-based models.

Table 4: Per-language F1-score.

Method English German Portuguese Spanish

Conv-Emb-Freeze 0.736 0.752 0.583 0.795
Conv-Emb 0.763 0.782 0.608 0.804
LSTM-Emb 0.779 0.783 0.619 0.806

Conv-Char 0.729 0.758 0.589 0.776
Conv-Char-R 0.722 0.755 0.605 0.774

Table 5: Per-language accuracy values.
Method English German Portuguese Spanish

Conv-Emb-Freeze 0.734 0.694 0.671 0.678
Conv-Emb 0.766 0.733 0.695 0.693
LSTM-Emb 0.770 0.734 0.686 0.697

Conv-Char 0.736 0.718 0.688 0.668
Conv-Char-R 0.727 0.721 0.694 0.660

Regarding our proposed approach, Conv-Char-R, which
is an optimized reduced version of Conv-Char, one can see
that it presents virtually the same performance than its larger
version, arguably presenting the best trade-off in terms of
predictive performance and amount of parameters among all
neural architectures. Indeed, Conv-Char-R is only ≈ 2%

short of the best model (LSTM-Emb) in terms of accuracy
and ≈ 3% in terms of F1-score, while containing ≈ 90
times fewer parameters than the word-based models, and
consuming ≈ 4 times less memory.

Finally, we argue on the advantages of the multilingual
strategy rather than using one classifier per language. For
the latter, one would need to train a prior classifier that first
detects the language of the tweet and then redirects it to the
proper per-language classifier. This cascade of classifiers en-
hances the cost of the classification process and may even-
tually deteriorate the final results, since the incorrect identi-
fication of the language will harm the chances of correctly
classifying the sentiment of the tweet. Hence, our multilin-
gual approach seems to be much more reasonable, since it
uses a single classifier that can understand any of the lan-
guages that were used during training. Another advantage of
the multilingual setup is that the tweet to be analyzed can
contain terms from distinct languages without affecting the
classification process, which is not true for the per-language
classification approach.

Conclusions
In this paper, we have presented an efficient method for per-
forming multilingual sentiment analysis over tweets in four
languages. This is the first approach that uses character-
based models with Convolutional Neural Networks in the
multilingual scenario. Our approach does not rely on ma-
chine translation to perform multilingual sentiment classi-
fication. We also present a comparison of distinct neural
models in multilingual sentiment analysis and we empir-
ically test different convolutional architectures to find the
most efficient set of parameters. Our results indicate that
the proposed architecture, Conv-Char-R, reaches compet-
itive results when compared with state-of-the-art deep neu-
ral models for sentiment classification, with the main advan-
tage of containing ≈ 90 times fewer parameters than word-
based models and consuming ≈ 4 times less memory. In
future work, we plan to investigate the impact of including
more languages in the Twitter multilingual corpora, and we
intend to compare Conv-Char-R with traditinal machine-
translation-based approaches.
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