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Abstract—Most work on tweet sentiment analysis is mono-
lingual and the models that are generated by machine learning
strategies do not generalize across multiple languages. Cross-
language sentiment analysis is usually performed through ma-
chine translation approaches that translate a given source lan-
guage into the target language of choice. Machine translation is
expensive and the results that are provided by theses strategies are
limited by the quality of the translation that is performed. In this
paper, we propose a language-agnostic translation-free method for
Twitter sentiment analysis, which makes use of deep convolutional
neural networks with character-level embeddings for pointing to
the proper polarity of tweets that may be written in distinct
(or multiple) languages. The proposed method is more accurate
than several other deep neural architectures while requiring
substantially less learnable parameters. The resulting model
is capable of learning latent features from all languages that
are employed during the training process in a straightforward
fashion and it does not require any translation process to be
performed whatsoever. We empirically evaluate the efficiency and
effectiveness of the proposed approach in tweet corpora based on
tweets from four different languages, showing that our approach
comfortably outperforms the baselines. Moreover, we visualize
the knowledge that is learned by our method to qualitatively
validate its effectiveness for tweet sentiment classification.

Keywords—Sentiment Analysis, Twitter, Convolutional Neural
Networks, Deep Learning, Character-based Embedding.

I. INTRODUCTION

In the social networks era, people often share their own
opinions about a variety of topics on the Internet. Twitter
is one of the largest microblogging services avalilable with
a substantial amount of data being generated every day. Its
content constitutes a rich source for researchers in different
scientific fields such as machine learning (ML) and natural
language processing (NLP). Many efforts have been dedicated
to accurately perform sentiment analysis for Twitter corpora
over the past few years [1]. In a nutshell, sentiment analysis
on Twitter data consists on assigning a polarity to each
tweet, which can be positive, neutral, or negative regarding its
main discussed topic. Tweets are short 140-character text that
represent the opinions of a given user regarding the discussed
topic, often reflecting the emotional state of mind of their
authors with respect to the subject being approached.

Tweet sentiment analysis is usually language-centric, which
means that the models derived from the learning process are
mostly not applicable across distinct languages. Therefore, if
one could build a classification approach that is not restricted to

analyzing a single language, much more data regarding a given
subject could be collected, eventually leading to more robust
sentiment classification models. The most common approach
for multilingual sentiment analysis is called Cross-Language
Sentiment Classification (CLSC), which mainly focuses on the
use of machine translation techniques for translating a given
source language to the desired target language [2]–[6].

There are typically two scenarios in which machine trans-
lation is used in the CLSC context: (i) to translate training data
and then perform learning and classification in the target lan-
guage; and (ii) to translate test data and then perform learning
and classification in the source language [7]. Notwithstanding,
due to the intrinsic differences between languages, several
problems may occur after translation. One of them is when a
word that frequently appears in the source language may rarely
appear in the target language after translation, generating a
severe discrepancy in the data distribution between source and
target languages [8]. Even if one could have perfect translation
for a particular corpus, there is also the potential cultural
distance between source and target languages, that may largely
influence the final classification performance [9]. Another
disadvantage of machine translation approaches concerns the
availability of state-of-the-art open-source translators. Indeed,
most of the translation APIs are not free of charge, so the task
of translating large corpora may end up being too costly.

Deep neural networks (DNNs) have recently achieved
significant performance gains in a variety of NLP tasks such
as language modeling [10], sentiment analysis [11], syntactic
parsing [12], and machine translation [13]. Convolutional neu-
ral networks (CNNs) and Long short-term memory networks
(LSTMs) have been extensively employed for sentiment classi-
fication [14]–[16]. However, automatic sentiment classification
of (unstructured) text data requires documents to be modeled as
structured data so they can be interpreted by the ML algorithm.
One of the solutions for this problem is to represent words
as dense vectors, which was firstly introduced in [10] for the
context of neural language modeling, and it was first applied to
NLP tasks in the pioneering work of Collobert et al. [12], [17].
Several distinct embedding strategies for converting free text
into vectors have arisen recently, each with their advantages
and disadvantages. Inspired by the success of recent work
on monolingual feature representation, much effort has been
dedicated towards learning suitable feature representations
for DNNs in the context of cross-lingual sentiment analysis,
specially in the case of learning bilingual representation [7],
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[18]. However, no approach to date can jointly deal with four
distinct languages in a translation-free fashion.

With that in mind, our contributions in this paper are as
follows. First, we present an effective deep neural architecture
for learning feature representations of four distinct languages at
once. To the best of our knowledge, we are the first to present
a language-agnostic deep neural approach that learns multi-
ple different languages simultaneously. Second, the proposed
architecture is not just effective but highly efficient, given
that it comprises substantially less parameters to be learned
while reaching results that outperform the current state-of-the-
art such as LSTMs. Third, we explore the gradients of the
generated model in order to build a visualization strategy that
allows to visually detect the importance of sequences of char-
acters in the final classification. Finally, we make our collected
Twitter dataset with four labeled languages publicly-available
for research and experimental reproducibility purposes.

The remainder of this paper is organized as follows.
Section II presents an overview on related work. Section III
describes the problem statement, i.e., the precise task that we
are addressing in this work. Section IV presents strategies
for learning text representations in deep neural networks,
and in particular the proposed character-based architecture for
language-agnostic classification. Section V details the experi-
mental methodology that is used for performing the empirical
analysis, described in turn in Section VI. In Section VII, we
describe our approach for visualizing what was learned by
the proposed method over sequences of characters. Finally,
Section VIII concludes the paper and points to future research
directions.

II. RELATED WORK

Sentiment classification techniques can be roughly divided
into three approaches: ML-based, lexicon-based, and hybrid
[19]. ML approaches address sentiment analysis as a regular
text classification problem that makes use of syntactic and/or
linguistic features [20]. Whereas some approaches identify the
aspects that are being discussed together with their polarity
(e.g., hotel reviews) [21], others simply assign an overall
polarity to the entire document (e.g., movie reviews) [22].

Cross-language sentiment classification is often based on
machine translation strategies to reduce the data to a single
language [4]. Such an approach translates training and test
data into the same target language, and then allows the
application of a monolingual classifier. However, classification
performance is often negatively affected due to the cultural
gap between source and translated languages [23]. Many stud-
ies explore bilingual sentiment classification [18], [24]–[27].
Mihalcea et al. [24] make use of an English corpora to train
sentence-level subjectivity classifiers in Romanian language
using two approaches. In the first approach, they use a bilingual
dictionary to translate an existing English lexicon to build a
target language subjectivity lexicon. In the second one, they
generate a subjectivity-annotated corpus in a target language
by projecting annotations from an automatically-annotated
English corpus. The authors argue that both approaches can
be applied to any language, and not only Romanian. In
[25], the authors propose an attention-based LSTM network
to learn the document representations of reviews in English

and Chinese exploring word vectors as text representation.
Zhou et al. [18] propose a bilingual sentiment word embedding
algorithm based on denoising autoencoders by learning 2,000
sentiment words. A bilingual constraint is also explored in
[26] to build a consistent embedding space across languages
by learning pairs of translated sentences.

It is important to notice that, to the best of our knowledge,
no work to date proposes a translation-free language-agnostic
approach that is capable of dealing with multiple (e.g., > 2)
languages at once, which is the case of the method proposed
in this paper. We detail it in the next sections.

III. PROBLEM STATEMENT

In this paper, we are concerned with a particular task
that differs from cross-language learning, multilingual em-
bedding learning, and similar approaches. In this task, we
assume the existence of a multilingual corpora C, in which
Ci ∈ C is composed by a triple (Ti,Li,Pi), where Ti is
a given document/sentence/text, Li is the main language of
the document, and Pi is the document polarity. Thus, one
must approximate a mapping function σ so that σ(Ti) = P̂i,

where P̂i is the estimated polarity for the ith document of
the multilingual corpora. Note that such mapping must be
performed regardless of the document’s source language Li.
In this task, we assume that each language corpus contains
enough resources for learning function σ, eliminating the
necessity of machine translation tools.

A language-agnostic sentiment analysis method must be
capable of: (i) learning directly from the documents present
in the multilingual unpaired corpora; (ii) predicting the text
polarity regardless of the source language; (iii) providing
predictions even for multilingual documents, i.e., documents
that contain words from multiple languages at the same time.
In this paper, the annotated corpora C comprises tweets Ti,
where Li ∈ {English,German, Portuguese, Spanish} and
Pi ∈ {Negative, Positive}.

IV. LEARNING TEXT REPRESENTATIONS

One key aspect of ML-based sentiment classification is
regarding the feature space representation. One way of rep-
resenting words is through dense vectors, where each word is
embedded in a d-dimensional vector space [10], [28]. Instead
of using words, one can also use characters, in a strategy
similar to the one used in [29]–[31]. Character-based embed-
ding was recently introduced in the context of convolutional
neural networks [15], [32], and it is said to be better-suited for
machine translation than its word-based counterparts [13].

A. Word-level Embedding

Word-level embedding consists in mapping word ω into
a d-dimensional space in which semantically-similar words
are neighbors. For instance, in single-language analysis, words
such as nice and cool should be close to each other within
the generated d-dimensional feature space. In the multilingual
scenario, this property may be advantageous since similar
words in different languages should lie close in the embedded
d-dimensional space. However, word-level embedding requires
as input a vocabulary with several words, posing two major
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shortcomings: (i) for multilingual analysis, the vocabulary size
grows with the number of languages that are employed; and (ii)
false cognates – words syntactically identical but with different
meanings across languages – will most certainly confuse the
ML algorithm and harm classification performance.

Let T ∈ {ω1, ω2, ..., ωn} be a text with n words and
φ(ωi) = vi be a function that maps word wi into vector vi, the
text representation in a word-embedding space is defined by
Γ ∈ R

n×d. Note that n varies with the size of text T . Figure 1
depicts an example of the word-based representation.

0.207 -0.258 0.020 0.802 ... 0.012

0.122 0.297 -0.601 0.318 ... -0.322

0.881 0.356 -0.456 0.169 ... 0.426

0.550 0.093 -0.788 -0.291 ... 0.128

Embedding dimensions

Text

I

can

do

D-1 D-2 D-3 D-4 D-d...

it

Fig. 1. Word-level representation of sentence ”I can do it”.

For training multilingual classifiers with word-level embed-
ding, one needs to build a large dataset with instances from
the desired languages. In the context of Twitter analysis, one
can use the original tweets (from their respective languages)
without any preprocessing, and it is then possible to classify
sentences that contain words from multiple languages at once.
For example, a Spanish tweet that contains English cursing
can be easily classified, which is not true when training
independent per-language classifiers.

A recent but widely-used approach for modeling sentiment
classifiers is based on Recurrent Neural Networks (RNNs),
which process text encoded as a sequence of word embeddings
(Γ). RNNs are networks that learn recurrent weight matri-
ces for understanding temporal relationships among text of
variable size. This flexibility is quite attractive for text-based
learning such as sentiment analysis. LSTMs (Long Short-term
Memory) [33] are more complex RNN-based architectures that
are capable of learning long-term dependencies and forgetting
useless information within a given sentence. The baseline
LSTM approach that we employ in this paper for multilingual
sentiment analysis is hereby called as LSTM-Emb.

A more recent approach [34] employs a simple convolu-
tional layer together with a max-pooling-over-time operation
instead of LSTMs for learning over text. Such architecture
has the advantage of being faster than RNNs while providing
similar predictive performance. Formally, the convolutional
layer convolves Γ with f filters 3 × d resulting in feature
maps M ∈ R

f×(n−2). The max-pooling-over-time layer is
responsible for selecting the most relevant features within
the temporal dimension by using filters of size 1 × (n − 2).
The resulting representation is R ∈ R

f×1, which is linearly
mapped to the C classes. In the context of Twitter sentiment
analysis, classes can be the polarities positive and negative,
configuring a softmax output with two neurons. The baseline
models that are based in this architecture of convolutional

network are hereby referred as Conv-Emb.

B. Character-level Embedding

An alternative way of embedding words into multidimen-
sional spaces is through the use of its basic components,
the characters [15]. In a character-based representation, all
characters ci ∈ {c1, c2, ..., cm} in T are mapped to a binary
matrix of size m × η, where V is the alphabet with η
characters, as presented in Figure 2. This representation is
based on a 2D fixed-size input tensor for encoding text. The
original architecture proposed in [15], hereafter called Conv-
Char, comprises several convolutional layers that act as an
embedding learning step, with the advantage of requiring only
a small alphabet in memory instead of a large vocabulary. Even
though Conv-Char comprises more convolutional layers than
Conv-Emb, it requires fewer parameters to be learned.

0 0 0 0 0 0 0 1 ... 0

0 0 0 0 0 0 0 0 ... 0

0 0 1 0 0 0 0 0 ... 0

1 0 0 0 0 0 0 0 ... 0

0 0 0 0 0 0 0 0 ... 0

0 0 0 0 0 0 0 0 ... 0

0 0 0 1 0 0 0 0 ... 0

0 0 0 0 0 0 0 0 ... 0

0 0 0 0 0 0 0 0 ... 0

0 0 0 0 0 0 0 1 ... 0

0 0 0 0 0 0 0 0 ... 0

Alphabet

Text

I

c

a

n

d

o

i

a b c d e f ...

t

h i

Fig. 2. Character-level representation of sentence ”I can do it”.

In this paper, we propose a novel character-based language-
agnostic architecture for sentiment analysis, namely Conv-
Char-S, which borrows the advantages from both Conv-
Emb and Conv-Char. The architecture contains an amount
of parameters which can be from 6 up to 75 times smaller
than Conv-Char (depending on the number of convolutional
filters) without significant performance degradation.

Conv-Char-S is designed for solving the inherent prob-
lems of word-embedding and n-gram based approaches. The
proposed architecture understands sentences by processing a
character-level input. Figure 3 depicts the proposed approach.
It comprises essentially three components: (i) a convolutional
layer with f receptive fields 7× η; (ii) one max-pooling-over-
time layer for selecting the most important feature throughout
the sentence; and (iii) a final fully-connected layer that per-
forms the linear mapping of pooled values into class scores.

The convolutional layer is responsible for understanding
the input at character level. It can be seen as a feature creation
procedure with a learned preprocessing step that generates a
proper sentence-level embedding. In this step, the network
is capable of correcting typos, understanding relationships
between words, characters, and signals present in the known
vocabulary. The max-pooling-over-time is inspired by the work
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Fig. 3. Architectures based on character-level embedding: Conv-Char [15] and Conv-Char-R (ours).

TABLE I. AMOUNT OF PARAMETERS (CONSIDERING

WORD-EMBEDDING AS TRAINABLE PARAMETERS) AND MEMORY

REQUIRED FOR STORING BOTH DATA AND MODEL FOR EACH METHOD.

Network # Parameters Memory

LSTM-Emb [33] ≈ 49M ≈ 1.2GB
Conv-Emb [34] ≈ 47M ≈ 1GB
Conv-Char [14] ≈ 3M ≈ 0.30GB
Conv-Char-S(64) [Ours] ≈ 0.04M ≈ 0.23GB
Conv-Char-S(128) [Ours] ≈ 0.07M ≈ 0.23GB
Conv-Char-S(256) [Ours] ≈ 0.13M ≈ 0.23GB
Conv-Char-S(512) [Ours] ≈ 0.26M ≈ 0.30GB
Conv-Char-S(1024) [Ours] ≈ 0.53M ≈ 0.38GB

of Kim [34], and helps in reducing the dimensionality of the
tensors. It also generates a regularizing effect, considering that
it drastically reduces the input of the dense layer.

Table I presents the amount of parameters and memory
required for storing both model and data of each deep neural
architecture that was discussed. Note that our proposed ap-
proach is substantially more efficient in terms of parameters
and memory consumption than the other neural architectures.
Conv-Char-S has up to 1, 225 fewer parameters than LSTM-
Emb, and consumes up to 5 times less memory than the word-
embedding models. We empirically show in the next sections
that Conv-Char-S is not just much more efficient but also more
effective than the baseline deep neural architectures, reaching
the novel state-of-the-art in language-agnostic multilingual
Twitter sentiment analysis.

V. EXPERIMENTAL SETUP

We make use of the Twitter corpora from [35] to evaluate
the proposed architecture. It contains data from 13 European
languages, around 1.6 million annotated tweets, which is by far
the largest corpora made publicly available so far. All tweets
have been manually labeled into three classes: positive, neutral,
and negative. Due to the semantic and syntactic structural
differences among the 13 languages, we only consider a subset
of tweets from four specific languages: English, Spanish,
Portuguese, and German. We also reduce the problem to binary
classification, i.e., we discard all neutral tweets. Note that the
dataset does not provide the tweet itself, but rather a URL that
leads to the tweets, and thus some tweets may no longer be
available. Statistics of this subset can be seen in Table II.

Regarding the baseline approaches, our method differs
from them by the fact that we explore not two but four
languages at the same time, and also that we do not rely on any
machine translation strategy. In our experiments we explore
balanced data across languages as presented in Table II,
which goes against the typical constraint faced by previous
CLSC systems in which there are scarce resources in the
training language and a large amount of unlabeled data in the
target language. Hence, we do not consider work on bilingual
sentiment classification and similar approaches that rely on
machine translation as a baseline method in the experimental
analysis. We compare Conv-Char-S with LSTM-Emb, Conv-
Emb, Conv-Emb-Freeze (a variant of Conv-Emb in which
we do not update the word embedding), Conv-Char, and with
a traditional SVM-based approach [36], [37].

For finding the proper number of convolutional fil-
ters f (or LSTM hidden layer neurons) and dropout γ,
we performed a grid search by investigating the following
values: f ∈ {64, 128, 256, 512, 640, 768, 1024} and γ ∈
{0.5, 0.6, 0.7, 0.8, 0.9}. Regarding Conv-Emb, we set the em-
bedding size to d = 300 as in [34]. The word embedding
are initialized with random values and then optimized through
backpropagation during training. The vocabulary size is set
to 157, 000 words, composed by words in the training set
from the four languages. We use 128 convolutional filters and
dropout of 0.8 in the final dense layer. The learning rate is
set to 1× 10−4. The variant Conv-Emb-Freeze has the same
parameters than Conv-Emb though the word embeddings are
not updated throughout the training process. For LSTM-Emb,
we use the default LSTM implementation with input and forget
gates, though discarding peephole connections. The LSTM
comprises a single hidden layer with 256 tanh neurons. We
set the embedding size to d = 300, and use dropout rate (γ)
of 0.5 in the final layer. For Conv-Char, it takes as input
m = 140 characters and accepts an alphabet size of η = 73.
Given the large amount of parameters and its capability of
quickly overfitting the training data, we apply dropout rates of
0.8 and 0.9 in the two final layers of the network, respectively.
Learning rate is set to α = 10−3. Conv-Char-S has the
same hyper-parameters, and dropout of 0.9 is applied over
its single dense layer. For all neural networks, we employ
the Adam update rule for optimization with mini-batches of
128 training instances. Since the convolutional architectures
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TABLE II. TWEET CORPORA. EACH OF THE SETS CONTAINS POSITIVE AND NEGATIVE TWEETS FROM 4 LANGUAGES.

Training Validation Test

Language Negative Positive Negative Positive Negative Positive Total

English 7,784 7,645 1,131 1,146 2,200 2,264 22,170
German 7,502 10,727 1,063 1,544 2,057 2,944 25,837
Portuguese 17,170 12,202 2,427 1,745 4,990 3,560 42,094
Spanish 8,211 18,491 1,189 2,574 2,372 5,251 38,088

Multilingual 40,667 49,065 5,810 7,009 11,619 14,019 128,189

Share of entire corpora 89,732 (70%) 12,819 (10%) 25,638 (20%)

Fig. 4. Performance of Conv-Char-S by varying architectural choices. On the left the impact of dropout and number of filters on model accuracy. On the right,
the impact of the same components on F -Measure.

comprise ReLU neurons, we initialize their weight matrices
with the procedure described in [38]. We only use dropout
to regularize dense layers. All models are trained with the
negative log-likelihood loss function over a softmax layer
that comprises two neurons (positive and negative). The SVM
baseline employs a Gaussian kernel over the features, whose
representation is based on unigrams, bigrams, and trigrams. We
train an SVM model with a traditional pre-processing phase
in NLP that consists of the following steps: normalization by
setting all text to lowercase, stop-words and noise (URLs,
@user and #) removal and stemming.

We evaluate the experiments with two traditional clas-
sification performance measures: accuracy and F -Measure.
Accuracy is the rate of correctly classified instances whereas
F -Measure is the harmonic mean of precision and recall. Both
measures range within [0, 1], with better scores indicated by
higher values.

VI. RESULTS

In this section, we report several experiments for inves-
tigating: (a) the impact of architectural modifications in the
predictive performance; (b) suitability of each method for
learning language-agnostic features; (c) overfitting robustness;
and (d) performance achieved by each methods.

We perform experiments for analyzing the relation between
the number of convolutional filters, regularization, and pre-
dictive power of the proposed Conv-Char-S method. Such
analysis allows to better understand the robustness of our
architecture regarding the hyper-parameters’ choices. Figure 4
depicts the relation between the number of convolutional filters

versus the amount of required regularization. We can see that
the number of filters is directly related to the accuracy of
the model, achieving better results when using more filters.
Values of F -Measure show the importance of dropout when
training a large number of convolutional filters. Overall, mod-
els with ≥ 512 convolutional filters provide better predictive
performance, although the differences are not significant, not
surpassing 3% (varying between 0.73 and 0.76). Indeed, such
architecture proved to be robust to severe hyper-parameter
changes. Note that it achieves competitive results even with
very reduced configurations, e.g., with 64 convolutional filters
it requires ≈ 1225× fewer parameters than the LSTM-based
model and achieves similar results.

Figure 5 depicts both training and validation loss values
throughout the optimization process. We show only the top
three hyper-parameter configurations to better visualize the
resulting behaviors. Note that the models trained with 90%
of dropout need more epochs for convergence, despite being
much more robust in terms of overfitting, whereas the model
trained with 60% of dropout converges much faster, though
quickly shows alarming signs of overfitting.

A. Conv-Char-S vs. Baselines

We compare the four different deep neural network archi-
tectures, as well as SVM-based approaches regarding their
predictive performance in the multilingual Twitter dataset:
LSTM-Emb, Conv-Emb[-Freeze], Conv-Char, Conv-Char-
S, and SVM-[U,B,T]. For the SVM-based models, we eval-
uate the performance of using only unigrams (SVM-U), only
bigrams (SVM-B), only trigrams (SVM-T), and combinations
among them (SVM-UB, SVM-UBT). Results of accuracy and
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Fig. 5. Training and validation loss per epoch. Continuous lines depict values
of training loss. Dotted lines indicate validation loss.

F -Measure are presented in Table III. We also show the per-
language results for the neural architectures, so we can evaluate
if there is significant variation of results in a language basis
(see Tables IV and V).

TABLE III. ACCURACY AND F -MEASURE VALUES.

Method Accuracy F -Measure

SVM-U 0.694 0.751
SVM-UB 0.672 0.746
SVM-UBT 0.660 0.743
SVM-B 0.562 0.717
SVM-T 0.556 0.712

Conv-Emb-Freeze 0.688 0.728
Conv-Emb 0.715 0.747
LSTM-Emb 0.711 0.752

Conv-Char 0.696 0.721
Conv-Char-S [ours] 0.720 0.756

Note that our method (Conv-Char-S) achieves both the best
F -Measure (0.756) and accuracy (0.720) values, followed by
LSTM-Emb and Conv-Emb. Also, observe that the SVM-
based models with n-grams are quite competitive, although
requiring an extensive preprocessing phase. The SVM-based
models are a strong baseline much due to the cleaning prepro-
cessing techniques (e.g., stopwords removal and stemming)
applied over the input data, together with their ability in
handling high-dimensional feature spaces even for medium-
sized datasets. Note that for deploying an SVM for sentiment
analysis, one needs access to the stopwords and stemmers for
each individual language, which can be time-demanding and
costly when handling several languages in the dataset. Also,
recall that the unigram feature representation tends to be very
sparse when adding novel languages, which can be particularly
problematic having in mind the curse of dimensionality.

Regarding the convolutional models that employ different
text representations, one can observe that word-embedding
models seem to perform consistently better when updating
the embeddings. Note that learning the embedding through
backpropagation is always better than freezing the embedding
and then only learning the remaining parameters. As presented
in Table I, the excessively large amount of parameters to
be learned in word-embedding-based models is a prominent
disadvantage when adopting this representation. The character-

based models are much cheaper, and even though Conv-
Char is not capable of outperforming the word-embedding
architectures, one can argue it still presents a good trade-off
between predictive power and model complexity. In addition,
typos and words slightly different require new vectors for the
embedding of word-based models, demanding lots of memory
for storing such large vocabulary. The same is not true for
character-based models, which do not rely on any fixed-size
word list.

TABLE IV. PER-LANGUAGE F -MEASURE.

Method English German Portuguese Spanish

Conv-Emb-Freeze 0.736 0.752 0.583 0.795
Conv-Emb 0.763 0.782 0.608 0.804
LSTM-Emb 0.779 0.783 0.619 0.806

Conv-Char 0.729 0.758 0.589 0.776
Conv-Char-S [ours] 0.771 0.797 0.647 0.799

TABLE V. PER-LANGUAGE ACCURACY VALUES.

Method English German Portuguese Spanish

Conv-Emb-Freeze 0.734 0.694 0.671 0.678
Conv-Emb 0.766 0.733 0.695 0.693
LSTM-Emb 0.770 0.734 0.686 0.697

Conv-Char 0.736 0.718 0.688 0.668
Conv-Char-S [ours] 0.762 0.755 0.706 0.694

Regarding our proposed approach, Conv-Char-S, one can
see that it presents much better results than its counter-
part character-based network, Conv-Char [14]. Conv-Char-
S arguably presents the best results in terms of predictive
performance and amount of parameters among all neural ar-
chitectures. Indeed, Conv-Char-S in its larger version presents
results roughly 5% better than Conv-Char in terms of accuracy
and F -Measure, despite having fewer parameters. By analyz-
ing Tables V and IV, we can observe that our approach is
consistently better for German and Portuguese, which seem
to be the more complicated languages to learn, and present
virtually the same results for English and Spanish.

Finally, we argue on the advantages of the multilingual
strategy rather than using one classifier per language. For the
latter, one would need to train a prior classifier that first detects
the language of the tweet and then redirects it to the proper
per-language classifier. This cascade of classifiers enhances
the cost of the classification process and may eventually
deteriorate the final results, since the incorrect identification
of the language will harm the chances of correctly classifying
the sentiment of the tweet. Hence, our multilingual approach
seems to be much more reasonable, since it uses a single
classifier that can understand any of the languages that were
used during training. Another advantage of the multilingual
setup is that the tweet to be analyzed can contain terms from
distinct languages without affecting the classification process,
which is not true for the per-language classification approach.

VII. NETWORK VISUALIZATION

For visualizing what was really learned by our approach,
we propose a visualization scheme based on [39], which
presents a visualization strategy for image-based Convolutional
Networks. By employing such a strategy, we aim at discovering
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Fig. 6. Character-level visualization of the most relevant input generated via backpropagated gradients. All sentences above are of positive polarity. Best
visualized in colors. Red means greater influence in the sentiment classification, whereas blue tones are less significant.

Fig. 7. Character-level visualization of sentences of negative polarity. Best visualized in colors. Red means greater influence in the sentiment classification,
whereas blue tones are less significant.

whether the network learns meaningful interpretable informa-
tion. Note that our network performs text understanding from
scratch by analyzing all characters without any preprocessing.
We propose the visualization as follows. A single weight
update of a weight matrix Θ through vanilla stochastic gradient
descent is given by

Θ ← Θ− α
∂E(ŷ,P)

∂Θ
. (1)

Intuitively, gradients with respect to a given class carry
information regarding the updates needed for each weight in
the model. In a similar fashion, by backpropagating gradients
back to the input, we learn the importance of each input feature
in performing the classification. In this step, let D be the final
dense layer, S the max-over-time-pooling, G the convolutional
layer, and finally Γi is an input instance encoded at character
level. Thus, we want to evaluate the gradients Γ̂ of the input
which is given by:

Γ̂ =
∂E(ŷ,P)

∂Γi
=

∂G
∂Γi

∂S
∂G

∂D
∂S

∂E(ŷ,P)

∂D (2)

For generating the visualization, we discard the negative
gradients, keeping only information that positively impacts
for minimizing the loss function. We also normalize gradient
values by setting the maximum value at 1. Note, however, that
Γ̂ is somehow the character-level input reconstruction, which
is a matrix m × η, and we want to visualize the impact of
each character in the provided classification, which requires
a vector. Now, let I ∈ R

1×m be the character-level text
reconstruction generated by the gradients magnitude, which
is finally generated by:

Ij =
η∑

i

max(Γ̂ji, 0) (3)

Figures 6 and 7 depicts several scenarios generated by
using this strategy. Our findings based on this qualitative
analysis are as follows: (i)our character-level based network
is capable of identifying the most important words within
sentences. This is true even for typos, which are particularly
problematic in word-embedding and n-grams approaches; (ii)
in particular cases, the network itself learns the most important
parts of the words (and sentences). Some cases seem to
mimic the stemming preprocessing step; (iii) our approach can
leverage emoticons information such as :) and : D, as well
of prolonged words such as gooood; and (iv) the proposed
network does properly identify polarity within sentences even
when facing words from multiple languages together.

VIII. CONCLUSIONS

In this paper, we proposed a novel and efficient neural ar-
chitecture for performing language-agnostic sentiment analysis
over tweets in four languages. To the best of our knowledge,
this is the first paper to investigate character-based neural
networks for language-agnostic translation-free sentiment clas-
sification in multilingual scenarios. Our approach does not rely
on machine translation, paired datasets, nor word-embeddings
to perform the proposed task. We have demonstrated that our
method outperforms all other proposed deep architectures and
also traditional SVM-based approaches, achieving state-of-the-
art results in the proposed task. Moreover, our method is
far more efficient than the second-best baseline, requiring up
to 1225× fewer parameters in its smaller version while not
requiring any kind of preprocessing whatsoever. Our approach
generates models that are easily implemented and require half
a megabyte for storage. As a final contribution, we proposed
a novel method for visualizing and understanding character-
level networks. Our models proved to be reasonable and
interpretable even when dealing with sentences whose words
come from multiple distinct languages. As future work, we
intend to build a larger corpora of tweets and reviews that
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spans more languages, and also to explore tasks other than
sentiment analysis.
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