Evaluating the Feasibility of Deep Learning
for Action Recognition in Small Datasets

Juarez Monteiro*, Roger Granada*, Jodo Paulo Aires*, Rodrigo C. Barros'
School of Technology
Pontificia Universidade Catdlica do Rio Grande do Sul
Av. Ipiranga, 6681, 90619-900, Porto Alegre, RS, Brazil
* Email: {juarez.santos, joao.aires.001, roger.granada}@acad.pucrs.br
t Email: rodrigo.barros @pucrs.br

Abstract—Action recognition is the computer vision task of
identifying what action is happening in a given sequence of
frames. Traditional approaches rely on handcrafted features
and domain-specific image processing algorithms, often resulting
in limited accuracy. The substantial advances in deep learning
and the availability of larger datasets have allowed techniques
that yield much better performance without domain-specific
knowledge to recognize actions being performed based on the raw
information from video sequences, a strategy called representation
learning. However, deep neural networks usually require very
large labeled datasets for training and properly generalizing, and
due to their high capacity, they often overfit small data, hence
providing suboptimal results. This work aims to check the real
feasibility of employing deep learning in the context of small-
sized action recognition datasets. Our goal is to verify whether
deep learning approaches can provide improved performance in
cases in which labeled data is not abundant. In order to do so, we
perform a thorough empirical analysis in which we investigate
distinct network architectures with hyperparameter optimization,
as well as different data pre-processing techniques and fusion
methods.

I. INTRODUCTION

The success of deep learning models has led to their deploy-
ment in most (if not all) areas of computer vision, including
image classification [1], [2], object detection [3], and video
understanding [4], [S]. One of the main tasks of video under-
standing is human action recognition, a fundamental and well-
studied problem in computer vision. Traditional approaches for
action recognition are based on handcrafted features, namely
dense trajectories [6], [7] and part-based/structured models [8],
[9]. More recently, representation learning (e.g., deep neural
networks) has achieved considerable success in that task [10],
[11], greatly benefiting from the advances in image-based
Convolutional Neural Networks (CNNs) [12], [13]. With the
rare exception of some 3D convolutional models [11], [14],
most state-of-the-art strategies for action recognition [15]-
[17] make use of a 2D-CNN [18] over the frames, often in
combination with motion information (e.g., dense optical flow)
from the input video.

While using standard deep networks over the full image has
shown great promise for the task [17], much is argued that
frame-based approaches fail to properly capture spatiotempo-
ral data [11], [19], [20]. Notwithstanding, 3D convolutional
models are said to only work in very large datasets, consid-

978-1-5090-6014-6/18/$31.00 ©2018 IEEE

ering that their large capacity leads them to overfit smaller
datasets, hurting their generalization ability. Indeed, state-of-
the-art approaches for smaller datasets are usually still based
on handcrafted features with simpler classification approaches
such as SVMs [21], [22].

Hence, in this paper we perform a thorough empirical
analysis to verify the feasibility of employing deep learning
models for action recognition in small datasets. By small,
we mean datasets that range from a few thousand frames
to hundreds of thousands [21], [23], [24]. In particular, we
evaluate three datasets that present different characteristics:

1) KSCGR [24], which contains images recorded with a
static camera;

2) DogCentric [21], which contains dynamic scenes with a
lot of camera motion and high inter-class similarity;

3) UCF-11 [23], which contains dynamic scenes with low
inter-class similarity.

For verifying the suitability of employing deep neural net-
works on those three datasets, we make use of several different
approaches that have been applied for action recognition in the
literature, though often for large datasets:

« Direct classification algorithms (also regarded as Static
Models) such as Support Vector Machines and Convo-
lutional Neural Networks: approaches that do not take
temporal information into account for classifying actions
in videos;

o Temporal state-space models (also regarded as Tempo-
ral Models) such as two-stream networks, and Long
Short-Term Memory networks: approaches that consider
temporal information, either through handcrafted motion
information like Optical Flow, via fusion methods, or
through recurrent networks.

In our thorough empirical analysis, we test a large variety of
approaches and also optimize their hyperparameters, so we can
properly verify the hypothesis of whether deep learning works
for action recognition in small datasets. Our results show
that deep learning approaches can achieve good results when
compared with the state-of-the-art methods for the datasets
tested in this paper.

II. SETTING UP THE ENVIRONMENT

In this section, we introduce three datasets and the archi-
tectures we use to perform experiments and analysis of deep
learning algorithms for action recognition using small datasets.
We selected three datasets containing different characteristics
from the camera motion point of view. Our architectures are
based on deep learning algorithms, such as Convolutional Neu-
ral Networks (CNN) and Long Short-Term Memory Networks
(LSTM).

A. Datasets

In our work we intend to analyze the performance of
algorithms for action recognition using deep learning in small
datasets. By small, we mean datasets that range from a few
thousand videos (clips) to hundreds of thousands [21], [23],
[24]. Therefore, we select three datasets with different charac-
teristics. For example, KSCGR [24] contains images recorded
with a static camera, while DogCentric [21] and UCF-11 [23]
contain dynamic scenes with large variations in camera mo-
tion. Unlike DogCentric, which contains egocentric images,
i.e., images recorded in first-person perspective, KSCGR and
UCF-11 contain a third-person view of the camera. Thus, all
three selected datasets comprehend different points of view.
Each dataset is detailed as follows.

1) KSCGR: The Kitchen Scene Context based Gesture
Recognition dataset' (KSCGR) [24] is a fine-grained kitchen
action dataset released as a challenge in ICPR 2012°. The
dataset contains scenes captured by a Kinect sensor fixed on
the top of the kitchen, where 7 different subjects perform
five menus for cooking eggs in Japan: ham and eggs, omelet,
scrambled egg, boiled egg, and kinshi-tamago. Each video
is 5 to 10 minutes long, containing 9,000 to 18,000 frames
with the subject performing multiple actions in sequence. The
entire dataset encompasses 227,874 frames in total, where each
frame is annotated with one of 8 actions: breaking, mixing,
baking, turning, cutting, boiling, seasoning, peeling, and none,
where none means that there is no action being performed in
the current frame or the current action does not fit in any other
classification.

2) DogCentric: The DogCentric Activity dataset® [21] con-
sists of first-person videos with outdoor scenes of wearable
cameras mounted on dogs’ back. The dataset contains 209
videos, where each video has a dog performing one of the
10 actions: “waiting for a car to pass by” (hereafter named
car), “drinking water” (drink), “feeding” (feed), “turning dog’s
head to the left” (left), “turning dog’s head to the right”
(right), “petting” (pet), “playing with a ball” (play), “shaking
dog’s body by himself” (shake), “sniffing” (sniff), “walking”
(walk). Not all dogs perform all actions and an action can be
performed more than once by the same dog. The dataset is
unbalanced according to the number of frames for each action
and contains 4,920 frames of Car, 3,300 frames of Drink,

Uhttp://www.murase.m.is.nagoya-u.ac.jp/KSCGR/
Zhttp://www.icpr2012.org/
3http://robotics.ait.kyushu-u.ac.jp/~yumi/db/first_dog.html

3,795 frames of Feed, 1,950 frames of Left, 1,380 frames of
Right, 3,740 frames of Pet, 3,545 frames of Play, 1,880 frames
of Shake, 4,960 frames of Sniff and 4,175 frames of Walk,
adding up to 33,645 frames.

3) UCF-11: UCF YouTube Action Dataset* [23] consists
of 1,600 videos extracted from YouTube containing 11 actions:
basketball shooting, biking/cycling, diving, golf swinging,
horse back riding, soccer juggling, swinging, tennis swinging,
trampoline jumping, volleyball spiking, and walking with a
dog. All videos in the dataset were manually collected from
YouTube with a fixed resolution of 240 x 320 pixels. Each
video was converted to a frame rate of 29.97 fps and an-
notations were done accordingly, containing a single action
associated with the entire video. The entire dataset contains
262,286 frames in total. This dataset is very challenging due to
large variations in camera motion, object appearance and pose,
object scale, viewpoint, cluttered background, illumination
conditions, etc.

B. Deep Learning Algorithms

In this work, we measure and analyze the performance of
deep architectures, such as Convolutional Neural Networks
(CNNs) and a Long Short-Term Memory (LSTM) for action
recognition in small datasets. Recently, deep architectures
achieved great success in classifying images containing ob-
jects, scenes and complex events [12], [25], [26], and prob-
lems in video-based action recognition [10], [11], [27]. As
described by Wang et al. [17], deep CNNs come with great
modeling capacity and are capable of learning discriminative
representation from raw visual data with the help of large-scale
supervised datasets. In this work, we test different architectures
of CNNs as well as an architecture containing an LSTM.

Due to hardware limitations, we could not set up the 3D
Convolution Network (C3D) proposed by Tran et al. [11].
This architecture uses 3D convolutional layers to extract
spatiotemporal features from a sequence of frames. As 3D
convolutions increase enormously the amount of memory
needed for training, we could not test this model.

1) Convolutional Neural Networks: CNNs have recently
enjoyed a great success in large-scale image and video recog-
nition. This success has become possible due to the advance
in technology with high-performance computing systems [28]
and the availability of large public datasets, such as Ima-
geNet [29]. In fact, since the successful results achieved by
AlexNet [25] in ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) [30] in 2012, the quality of deep ar-
chitectures significantly improved. The deep architectures we
use in this paper are described as follows.

VGG16: The VGG networks [12] developed by the Visual
Geometry Group (VGG) from Oxford exhibit a simple yet
effective strategy of constructing deep Convolutional Neural
Networks: stacking building blocks of the same shape. VGG16
contains 16 weight layers divided in groups of convolutions

“http://crev.ucf.edu/data/UCF_YouTube_Action.php

2018 International Joint Conference on Neural Networks (IJCNN)

using 3 %3 filters in each convolutional layer to represent com-
plex features. VGG comes with the idea that multiple 33 con-
volution in sequence can emulate the effect of larger receptive
fields, such as the 5x5 and 7x7 used in previous networks. In
the whole pipeline, the network receives a sequence of images
in the input, passing them through several convolutional layers,
pooling layers and fully-connected layers, ending in a softmax
function that generates the probability of the input image to
each class.

The robustness of VGG networks has been proven by
various visual recognition tasks [3], [16], [31], [32]. Although
VGG networks have the compelling feature of architectural
simplicity, they require a lot of computation. When compared
with previous networks such as AlexNet [25], the VGG
architecture employs three times more parameters. In order to
reduce the number of parameters, other deep networks were
proposed, such as Inception-V3 [33].

Inception-v3: Google’s Inception-V3 [33] (hereafter called
V3) is a 48-layers deep Convolutional Neural Network based
on inception modules. Such modules contain convolutional
filters with a number of different dimensionalities running
in parallel, covering different clusters of information. The
main idea of the inception modules is the split-transform-
merge strategy, where the input is split into low dimensional
embeddings, transformed by a set of different size filters, and
merged by concatenation. These modules intent to approach
the representational power of large and dense layers, having a
lower computational complexity.

V3 is an evolution of the GoogleNet [26], which was a state
of the art network in ImageNet Large Scale Visual Recog-
nition Challenge (ILSVRC) [30] in 2014. In this challenge,
V3 achieved 4.2% error on the ILSVRC 2012 classification
benchmark. The main improvements in the V3 architecture
when compared with its previous version rely on the increase
in depth, from 22 layers to 48 layers, and a reduction in the
size of the filters to a maximum of 3 x3. Inception architecture
of GoogLeNet is designed to perform well with a reduced
number of parameters when compared with the previous ar-
chitectures. For example, GoogLeNet contains about 7 million
parameters, which represents a 9 times reduction with respect
to AlexNet [25] that contains 60 million parameters.

Two-Stream Network: Proposed by Simonyan and Zisser-
man [10], the network computes two separated recognition
streams (a spatial containing still images and a temporal
containing the motion performed in a sequence of images).
Both networks are merged by late fusion, where the prediction
scores are combined by concatenation or by the mean. This
network intends to fuse the features extracted from static
images by a CNN with the features extracted by passing the
optical flow of images through another CNN. In our work,
we use the VGG-16 network in both streams, receiving still
frames from videos in the static stream and images generated
by optical flow in the temporal stream.

2) Recurrent Neural Network: Recurrent Neural Network
(RNN) models are designed to deal with sequential infor-
mation, i.e., recognize patterns in data using not only the

current input, but also the information they have perceived
previously in time. Such networks are called recurrent because
they perform the same task for each element in a sequence
with the output being dependent on the previous information.
The recurrent unit can be understood as a memory about what
the network has processed so far. Although RNN models are
suitable to deal with temporal data such as video sequences, it
has a significant limitation known as the “vanishing gradient”,
which make it difficult to backpropagate an error signal
through a long-range temporal interval, and consequently, be-
ing difficult to train them to learn long-term dynamic. In order
to deal with this problem, Hochreiter and Schmidhuber [34]
propose a type of recurrent neural network called Long Short-
Term Memory (LSTM), which enables long-range learning by
incorporating memory units that allow the network to learn,
to forget and to update hidden states given new information.

LRCN: In this work, we use an adaptation of the Long-
term Recurrent Convolutional Network (LRCN) [15], which
combines a deep hierarchical visual feature extractor (CNN)
with a model that can learn to recognize and synthesize tem-
poral dynamics for tasks involving sequential data (LSTM).
The main idea of LRCN is to extract features from images
using a CNN and then use the LSTM to learn patterns from
the sequence of images that represent an action. Our LRCN
differs from the original since we do not train it end-to-end,
using the CNN as a feature extractor to the recurrent network.

III. EXPERIMENTS

In this section, we describe the main implementation details
applied in our experiments. We describe how each dataset is
divided into train, validation and test in order to perform the
experiments, pre-processing steps, and the hyperparameters
applied in each deep architecture.

A. Data pre-processing

Pre-processing consists of two steps: image resizing and op-
tical flow generation. Resizing is important since it reduces the
multidimensional space required by the CNNss to learn suitable
features for image classification, as well as the total processing
time. In this step, all images of the datasets are resized to
a fixed resolution of 256 x 256. The second step generates
the dense optical flow representation [35] of adjacent frames.
In a nutshell, optical flow represents the 2D displacement of
pixels between frames generating vectors corresponding to
the movement of points from the first frame to the second.
Dense optical flow generates the displacement vectors for
both horizontal and vertical displacements, regarding all points
within frames. In order to generate an image containing
the optical flow from the sequence of frames, we combine
the 2-channel optical flow vectors (horizontal and vertical),
associating color to their magnitude and hue value to their
direction. The output of the data pre-processing step consists
of two datasets (a) RGB images containing 256 x 256 images,
and (b) optical flow images containing 256 x 256 encoding
the motion across frames.

2018 International Joint Conference on Neural Networks (IJCNN)

B. Dataset Division

In order to perform experiments, we divided all datasets
used in this paper into training, validation, and test sets. The
division of each dataset is performed as follows:

DogCentric: Our method to divide the dataset is similar
to the one proposed by Iwashita et al. [21] and consists of
randomly selecting half of the videos of each activity as test
set. We use the validation set to obtain the model configuration
that best fits the training data, i.e., the configuration with the
highest accuracy, and the test set to assess the accuracy of the
selected model in unseen data. In case where the number of
videos (V) is an odd number, we separate (N27+1) videos for
the test set. The rest of the videos are divided into training and
validation sets. Validation set contains 20% of the videos and
the rest is separated to the training set. The complete division
contains 105 videos (17,400 frames) in testing set, 20 videos
(3,205 frames) in validation set and 84 videos (13,040 frames)
in training set.

KSCGR: For this dataset we follow the same division
performed in ICPR 20125 challenge and consists of a test
set containing 2 subjects, each performing 5 recipes, i.e., 10
videos with 55,781 frames in total. The rest of the dataset is
divided into train and validation sets, where the training set
contains 4 subjects, each of them performing 5 recipes, i.e.,
20 videos and 139,196 frames in total, and the validation set
contains 1 subject performing 5 recipes with 32,897 frames in
total.

UCF-11: In this dataset, each class contains 25 folders with
at least 4 action videos in it. We divided the videos into train
(folders 1-13), validation (folders 14-16) and test (folders 17-
25). The training, validation and test set contain all the 11
classes available in the dataset and respectively 824, 189 and
589 videos. The final division contains 133,551 frames for the
training set, 30,699 frames for the validation set and 98,036
frames for the test set.

C. Model Training

In order to identify our models, each model’s name is
composed by the name of the CNN (V3 for Inception-V3
and VGG16 for a VGG network containing 16 weight layers)
followed by the type of input (RGB for raw images and OF for
optical flow), or by the type of classifier (LRCN for Long-term
Recurrent Convolutional Network and SVM for Support Vec-
tor Machine) or the method of fusion used in the two-stream
network (2STREAM(CONCAT) when concatenating the ex-
tracted features and 2STREAM(MEAN) when calculating the
mean of each feature). When the model uses the extracted
features, we present the name of the layer inside brackets (e.g.,
V3[CONV] or VGG16[CONV] when extracting features from
the last convolutional layer and V3[FC] or VGG16[FC] when
extracting features from the fully connected layer. Thus, we
may have a model named V3-RGB that classifies raw images
using the default architecture of the Inception-V3 network.
A model named VGG16[CONV]-SVM classifies the features

Shttp://www.icpr2012.org/

extracted from the last convolutional layer of the VGG-16
network using a Support Vector Machine. A model named
V3[FC]-LRCN uses the Long-term Recurrent Convolutional
Network to classify a sequence of features extracted from the
fully connected layer of the Inception-V3 network. Finally,
a model named VGG16-2STREAM(MEAN) performs the
classification of the mean of the features extracted from two
VGG-16 networks containing one steams with raw images and
another stream with optical flow images.

Hyperparameter optimization: In this work we use
grid search in order to find the best hyperparameters for
our models. Grid search is simple and naive, however it
is a good approach when models do not take so long to
train. Basically, the grid search tests all the combination
between all the hyperparameters trying to find the model
that best fit into the problem. We focus the grid search in
dropout and learning rate hyperparemeters, since they are
commonly changed when trying to learn a deep model. For
dropout, we set the values 0.5, 0.7, 0.9 and 0.95, and for
learning rate, we set 5e73, le™3, 5e~?, le™*, 5e~® and
le=5. As mentioned before, the grid search method will
test all the possible combinations, thus, using 4 different
values for dropout and 6 values for learning rate we have in
a total 24 different combinations to perform. As we apply
the grid search in 8 models (V3-RGB, V3-OF, V3[FC]-
LRCN, V3[CONV]-LRCN, VGGI16-RGB, VGGI16-OF,
VGG16[FC]-LRCN, and VGG16[CONV]-LRCN), we obtain
192 trained models plus 8 models (V3[FC]-SVM, V3[CONV]-
SVM, V3-2STREAM(MEAN), V3-2STREAM(CONCAT),
VGGI16[FC]-SVM, VGGI16[CONV]-SVM, VGG16-
2STREAM(MEAN), and VGG16-2STREAM(CONCAT))
that do not use grid search for each dataset. Summing up,
we have a total of 600 trained models for all datasets used in
this paper.

Architecture configuration: All deep models used in this
work are implemented using Keras® and TensorFlow’ frame-
works. As highly recommended when using small datasets,
we pre-trained all the CNNs using the ImageNet dataset with
weights being directly loaded from Keras core library. For all
CNNss the training phase uses mini-batch stochastic gradient
with momentum (0.9). The activation of each convolution
(including those within the “inception” modules in V3) uses a
rectified linear unit (ReLU). In each iteration we use a mini-
batch with 128 images. To reduce the chances of overfitting,
we apply dropout on the fully-connected layers with the
range previously mentioned. Since we are working with small
datasets we do not need too many epochs to converge the
model, with that in mind we set the maximum limit of epochs
to 30. In fact, we implemented an early stopping and most
of our experiments take no longer than 15 epochs to finish.
For the SVM model, we use the Crammer and Singer [36]
implementation of the SVM is from scikit-learn® [37] with

Ohttps://keras.io/
"https://www.tensorflow.org/
8http://scikit-learn.org/

2018 International Joint Conference on Neural Networks (IJCNN)

the default parameters from scikit-learn.

IV. RESULTS AND ANALYSIS

In order to evaluate deep learning models, we compare the
output of each network using the test set. Table I shows the
accuracy values for all our developed architectures in each
dataset individually. As we tested a total of 600 models, Table I
only presents the scores based on the best combination of
learning rate and drop out for each architecture. The whole
content of our experiments as well as the results for all models
can be found in the project’s website’.

TABLE I: Accuracy, Precision, Recall and F-Score for all
models using three datasets.

Dataset Architecture A P R F
V3-RGB 0571 0.680 0.570 0.590
V3-OF 0.128 0.030 0.130 0.040
V3[FC]-LRCN 0594 0.670 0.590 0.600
V3[CONV]-LRCN 0.581 0.680 0.580 0.590
V3[FC]-SVM 0.558 0.660 0.560 0.560
V3[CONV]-SVM 0.550 0.650 0.550 0.550
o V3-2STREAM(CONCAT) 0.556 0.690 0.560 0.570
= V3-2STREAM(MEAN) 0.541 0.670 0.540 0.550
3 VGG16-RGB 0.540 0.588 0.541 0.538
g VGG16-OF 0.118 0.110 0.120 0.090
A VGG16[FC]-LRCN 0.556 0.590 0.560 0.550
VGGI16[CONV]-LRCN 0.600 0.640 0.600 0.600
VGGI16[FC]-SVM 0.508 0.620 0.510 0.500
VGGI16[CONV]-SVM 0301 0.760 0300 0.340
VGG16-2STREAM(CONCAT) 0.535 0.620 0.540 0.540
VGG16-2STREAM(MEAN) 0529 0.610 0.540 0.540
V3-RGB 0615 0.773 0.615 0.660
V3-OF 0.630 0.650 0.630 0.600
V3[FC]-LRCN 0.733 0.750 0.730 0.710
V3[CONV]-LRCN 0.729 0.740 0.730 0.700
V3[FC]-SVM 0723 0.740 0.720 0.680
V3[CONV]-SVM 0.713 0.730 0.710 0.670
V3-2STREAM(CONCAT) 0722 0.750 0.720 0.680
% V3-2STREAM(MEAN) 0.721 0.740 0.720 0.690
2 VGG16-RGB 0592 0.590 0.590 0.550
X VGG16-OF 0415 0460 0420 0370
VGG16[FC]-LRCN 0.571 0.560 0.570 0.550
VGGI16[CONV]-LRCN 0.560 0.600 0.560 0.510
VGGI16[FC]-SVM 0.563 0.600 0.560 0.480
VGG16[CONV]-SVM 0499 0.290 0.500 0.360
VGG16-2STREAM(CONCAT) 0.604 0.620 0.600 0.570
VGG16-2STREAM(MEAN) 0.598 0.650 0.600 0.560
V3-RGB 0.744 0.760 0.740 0.740
V3-OF 0.668 0.680 0.670 0.660
V3[FC]-LRCN 0.752 0.770 0.750 0.750
V3[CONV]-LRCN 0752 0.750 0.750 0.740
V3[FC]-SVM 0.750 0.780 0.750 0.750
V3[CONV]-SVM 0.757 0790 0.760 0.760
V3-2STREAM(CONCAT) 0.755 0.770 0.760 0.760
= V3-2STREAM(MEAN) 0.786 0.800 0.790 0.780
& VGG16-RGB 0.708 0.700 0.710 0.700
=] VGG16-OF 0480 0470 0480 0.470
VGGI16[FC]-LRCN 0.711 0.710 0.710 0.700
VGGI16[CONV]-LRCN 0.752 0.750 0.750 0.740
VGGI16[FC]-SVM 0.696 0.730 0.700 0.700
VGG16[CONV]-SVM 0397 0.770 0400 0.410
VGG16-2STREAM(CONCAT) 0.710 0.730 0.710 0.710
VGG16-2STREAM(MEAN) 0.720 0.720 0.720 0.720

9https://github.com/jrzmnt/ActionRecognitionSmallDatasets

A. Overall Performance

Observing Table I, in general, architectures that take into
account the temporal aspect (LRCN, 2STREAM) achieved
better results when compared to approaches that use only
static frames. For example, the best results for DogCentric
and KSCGR are achieved by approaches using LRCN, while
for UCF-11 it is achieved by the two-stream network. We
faced some relevant correlations obtained in the validation
phase in aspect of hyperparameters. Due to space constraints,
we do not add the values of learning rate and drop out in
Table 1. However, we note that the best results were achieved
using high values of dropout and low values of learning rate
parameter for all datasets used in this research.

As it is interesting to have not only a global view of the
accuracy of the models but also a better visualization about
how well the model performs on different actions, we generate
a confusion matrix as illustrated in Figure 1. The normalized
confusion matrix shows the performance of the best models
for each dataset used in this paper, where rows represent the
true classes and columns the predicted classes. Shades of blue
represent the value in each cell, going chromatically from a
darker blue for higher values to a lighter blue for lower values.
We can observe that actions are easier to classify in UCF-11
than the other datasets, probably due to the low inter-class
similarity. Actions in datasets with high inter-class similarity
like DogCentric are harder to classify, having many misclassi-
fied classes. For example, the class “Right” in DogCentric is
usually misclassified as “Left”, “Play” and “Walk”, as well as
the class “Peeling” in KSCGR is misclassified as “Breaking”.

B. Static Networks

By static networks, we consider the networks that do not
take into account the temporal aspect, e.g., V3-RGB, V3[*]-
SVM, VGG16-RGB, VGGI16[*]-SVM. In general, it is a
challenge task for a static approach to classify actions since it
is not using the temporal aspect. Despite such challenge, the
static networks obtained good results when compared with
approaches that include the temporal aspect.

Looking at the results obtained using the DogCentric
dataset, the best result is achieved using the Inception-V3
with RGB images, which obtained the follow results, 57% of
accuracy, 68% of precision, 57% of recall and 59% of F-score.
For the KSCGR dataset, the best static model obtained 72.3%,
74%, 72% and 68% of respectively accuracy, precision, recall,
and F-score, using the features extracted from the fc layer of
the Inception-V3 network and then passing these features to
the SVM. The best results for UCF-11 is using an Inception-
V3 architecture with extracted features from the conv layer and
then passing these features to the SVM. This model achieved
75.7% of accuracy, 79% of precision, 76% of recall and 76%
of F-score. In general, we can see that the architecture that
stands out over the others is the Inception-V3 using the SVM
as a classifier, which obtained the best results for the static
approaches for the three datasets used.

2018 International Joint Conference on Neural Networks (IJCNN)

DogCentric KSCGR

UCF-11

1.0
Car. None. Basketball
0.9
i Bikin
Drink Breaking . 9
Feed Diving 08
Mixing .
Left Golf_swing . 0.7
e
Baking . Horse_riding 0.6
Right
Turning Soccer 0.5
Pet .
| Cutting . Swing 0.4
Pla
4 Tennis_swing 0.3
Shak Boiling . !
ake Trampoline 0.2
: Seasonin '
Sniff| . 9 . Volleyball
0.1
Walk Peeling Walking .
—10.0
£ D &K & & AN @ LA © O . O .O.O.O.O.O O OO0 OO DO
P & & &S @R SO & 7SS LSS E O R E
StV NI & PR ()’6 ‘b\ s Qe‘b\ & 0\\\(”& ® S & & \5\\?\7}‘_
& 3 N ST
2 £ & N

Fig. 1: Normalized confusion matrix for the best models in respectively DogCentric, KSCGR and UCF-11 datasets.

C. Static Networks vs. Two-Stream Networks

For the most models which used the two-stream architec-
ture, they could not surpass the results obtained by static
networks. As we can see, the best results for a static network
using the DogCentric dataset is 57% of accuracy, 68% of
precision, 57% of recall and 59% of F-score. Comparing these
results with the best two-stream combination for DogCentric
that obtained 55.6%, 69%, 56%, 57% of respectively accuracy,
precision, recall, and F-score, we can see that the two-stream
model only surpass in 1% of precision the static model.
This difference occurs because the network using optical flow
achieved low results in this dataset, pushing down the score
of two-stream networks.

Experiments using the other datasets show that the two-
stream models surpass the static networks. The most relevant
difference between the results using static and two-stream
approaches are presented when using the UCF-11 dataset,
where the best results are achieved by the mean of the
streams using the Inception-V3 network. This model achieved
a difference of =~ 3% of accuracy, =~ 1% of precision, ~ 3%
of recall, ~ 2% of F-score, when compared with the best
static model in UCF-11 dataset. We believe that the two-stream
results were not so significant because this kind of approach
requires more data to learn how to capture the context of the
action through time. Even if the UCF-11 is considered a small
dataset, we know that this dataset is larger than the other two
used in this work, increasing the results to the two-stream
approach when compared with other datasets.

D. Static Networks vs. Recurrent Networks

In general, recurrent neural networks performed slightly
better than static networks. The best configuration extracts
features using the last convolutional layer of the CNN and
feed the LSTM to classification. It seems better to use the
Inception-V3 CNN to extract features instead of VGG-16
before passing the features to the LSTM. In fact, VGG16[*]-
LRCN and V3[*]-LRCN achieve similar results in most

datasets but KSCGR where V3[FC]-LRCN obtains 73% of
accuracy while VGG16[FC]-LRCN obtains only 57%.

When comparing static networks with recurrent network
approaches, the difference between the best accuracies is

3% for DogCentric dataset, ~ 1% for KSCGR dataset and
~ 1% for UCF-11 dataset. It is important to note that for
the UCF-11 dataset the static model which uses conv features
from an Inception-V3 architecture surpass the results obtained
for the recurrent models. We suspect that the small difference
between the results using static and recurrent model in UCF-11
dataset (=~ 1%) is related to the fact that the dataset contains
short videos, making it difficult to the recurrent model to learn
temporal features. Finally, it would be worth to choose static
models over recurrent models, since the difference between
the results of both models is not so significant, and because
static models are faster to train and to classify than recurrent
models.

~
~

E. Recurrent Networks vs. Two-Stream Networks

Comparing the temporal approaches, we can see that recur-
rent networks and two-stream achieve the best results for all
the datasets we use in this work. The difference between the
results is not higher than 3.5% of accuracy, 5% of precision
and 4% of recall. The main issue on using two-stream is its
dependency of having two trained models to perform the final
classification. We train one model with optical flow images
and the other with raw RGB images. If the optical flow images
are not so representative, the neural network model will not
generate good results, which leads the two-stream to limited
results, as can be seen when using the DogCentric dataset.
On the other hand, recurrent networks that do not have the
dependency of optical flow as two-stream models may have
some issues when trying to learn features from short videos.

V. COMPARISON WITH THE STATE OF THE ART

In this section, we compare the results we achieved with
the results achieved by the state-of-the-art algorithms in each

2018 International Joint Conference on Neural Networks (IJCNN)

dataset. Table II presents the precision, recall, and F-scores
for our best models and for the state-of-the-art algorithms.
Missing values in the table means that the work does not
present any measure in the paper, e.g., the work of Iwashita
et al. [21] performs action recognition using Linear Kernel
in the DogCentric dataset, reporting only values of accuracy,
and thus, the columns P, R, F' in the table do not contain any
value. Below we explain each work described in Table II.

A. DogCentric dataset

Iwashita et al. [21] perform the activity recognition extract-
ing hand-crafted global features from dense optical flow and
local features from a cuboid feature detector [38] and STIP
detector [39]. All features are clustered using the concept
of visual words and integrated using a linear kernel and
three non-linear kernels (RBF kernel, multi-channel X2 kernel,
and multi-channel histogram intersection kernel in order to
recognize first-person animal activities. Using hand-crafted
features they achieve the highest accuracy of 60.5%.

Ryoo et al. [40] develop a feature representation named
pooled time series (PoT) that applies time series pooling
of feature descriptors, detecting short-term/long-term changes
in each descriptor element. Their approach extracts appear-
ance/motion descriptors from a sequence of frames and rep-
resents them as a set of time series. Temporal pooling is
applied to each time series in order to summarize the infor-
mation represented in a sequence of video frames that are
classified using a Support Vector Machine (SVM) classifier.
This approach achieves 74% of accuracy when combined with
INRIA’s improved trajectory feature (ITF) [7].

Monteiro et al. [S] apply a two-stream network containing
two CNNs with different configuration running in parallel in
the DocCentric dataset. After a pre-processing step to resize
images, both streams extract different features that are merged
by a late score fusion using SVM. A post-processing step is
applied in order to reduce noisy predicted classes, and consist
of using a sliding window with a fixed size that assures to
the target frame the majority voting of all frames within the
window. Their approach achieved 74% of precision, 76% or
recall, 75% of F-score and 76% of accuracy.

B. KSCGR dataset

Bansal er al. [22] perform daily life cooking activity recog-
nition based on hand-crafted features for hand movements
and objects use. Their method uses hand regions as well as
objects in use to feed a dynamic Support Vector Machine
(SVM) and Hidden Markov Model (HMM) hybrid model to
combine the structural and temporal information to jointly
infer the activity. Their method achieves 64% of overall
accuracy, 62% of precision, 63% of recall and 60% of F-
score. A post-processing on the predicted actions is performed
by creating a context grammar to select the most likely guess
for misclassified frames. Using the post-processing step, they
increased accuracy in ~ 7%, achieving a final accuracy of
72%, 68% of precision, 68% of recall and 72% of F-score.

TABLE II: State of the art results to each dataset.

Dataset Architecture A P R F
Linear kernel [21] 0.53 -
RBF kernel [21] 0.54 -
Histogram intersection [21] 0.57 -
Multi-channel [21] 0.61 -
PoT+STIP+Cuboid [40] 0.73 - - -
DOG PoT+ITF+STIP+Cuboid [40] 0.74 - - -
PoT+ITF [40] 0.75 - - -
2 CNNs-SVM [5] 068 0.69 068 0.69
2 CNNs-SVM-PP [5] 076 0.74 076 0.75
VGG16[CONV]-LRCN 0.60 0.64 060 0.60
HCF [22] 064 062 063 0.6l
HCF-PP [22] 068 0.68 068 072
KSCGR | 3 CNNs-LSTM [4] 078 078 078 0.78
3 CNNs-LSTM-PP [4] 079 080 078 0.79
V3[FC]-LRCN 073 075 073 071
DTAM [41] 0.90 -
UCF-11 Visual-DTAM [41] 0.91 - - -
V3-2STREAM(MEAN) 0.79 0.80 0.79 0.78

Monteiro et al. [4] merge three different architectures of
CNNs (AlexNet [25], GoogLeNet [26] and SqueezeNet [42])
using a Long-Short Term Memory (LSTM) [34]. All the
architectures are pre-trained on the 1.3-million-image ILSVRC
2012 ImageNet dataset [30] and CNNs are used as feature
extractor to the LSTM classification. Using this approach, they
achieve 78% in all measures. As developed in Monteiro et
al. [5], a post-processing represented by a sliding window is
applied on the predicted classes, increasing the accuracy to
79%, the precision to 80%, and the F-score to 79%.

C. UCF-11 dataset

Wang et al. [41] uses a dynamic tracking attention model
(DTAM) composed by a CNN and an LSTM to recognize
human action in video sequences. While the CNN performs
feature extraction, the LSTM is applied to handle sequential
information about actions that are extracted from videos.
DTAM uses local dynamic tracking to identify moving objects,
and global dynamic tracking to estimate the motion of the
camera and correct the weights of the motion attention model.
Using a merge of visual attention [43] with their proposed
DTAM, they achieve 91% of accuracy. Values of precision,
recall, and F-score are not reported in their work.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we presented an analysis using deep learning
algorithms in small datasets for action recognition. We trained
a total of 600 models using different deep learning approaches.
We tested different deep architectures using different hyper-
parameters in order to have a large number of results for
each dataset. We achieved relevant results with deep learning
models when compared with the state-of-the-art results for
the datasets used in this work, which leads us to believe that
deep learning approaches do work properly for small datasets.
We perform a discussion about the results and compare the
approaches in order to shed a light on the approaches when

2018 International Joint Conference on Neural Networks (IJCNN)

using small datasets. Finally, we discuss the viability of using
the best models generated.

As future work, we intend to construct deep learning ap-
proaches capable of suppressing the limitations of the small
datasets, i.e., overfitting. Avoid overfitting is not an easy
task, thus, we intend to build an architecture that focuses
on regularization and that does not have an abundance of
parameters.

ACKNOWLEDGEMENT

We would like to thank Motorola Mobility for funding this
work.

[1]

[2]

[3]

[4]

[7]
[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

REFERENCES

J. Wehrmann and R. C. Barros, “Convolutions through time for multi-
label movie genre classification,” in Proceedings of SAC’17, 2017, pp.
114-119.

G. S. Simoes, J. Wehrmann, R. C. Barros, and D. D. Ruiz, “Movie
genre classification with convolutional neural networks,” in Proceedings
of IJCNN’16, 2016, pp. 259-266.

S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 39, no. 6, pp. 1137-
1149, 2017.

J. Monteiro, R. Granada, R. C. Barros, and F. Meneguzzi, “Deep neural
networks for kitchen activity recognition,” in Proceedings of IJCNN’17,
2017, pp. 2048-2055.

J. Monteiro, J. P. Aires, R. Granada, R. C. Barros, and F. Meneguzzi,
“Virtual guide dog: An application to support visually-impaired peo-
ple through deep convolutional neural networks,” in Proceedings of
IJCNN’17, 2017, pp. 2267-2274.

H. Wang, A. Kliser, C. Schmid, and C.-L. Liu, “Action recognition by
dense trajectories,” in Proceedings of CVPR’11, 2011, pp. 3169-3176.
H. Wang and C. Schmid, “Action recognition with improved trajecto-
ries,” in Proceedings of ICCV 2013, 2013, pp. 3551-3558.

V. Delaitre, I. Laptev, and J. Sivic, “Recognizing human actions in still
images: A study of bag-of-features and part-based representations,” in
Proceedings of BMVA 2010, 2010, pp. 97.1-97.11.

B. Yao and L. Fei-Fei, “Grouplet: A structured image representation for
recognizing human and object interactions,” in Proceedings of CVPR’10,
2010, pp. 9-16.

K. Simonyan and A. Zisserman, “Two-stream convolutional networks
for action recognition in videos,” in Proceedings of NIPS’14, 2014, pp.
568-576.

D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “Learning
spatiotemporal features with 3d convolutional networks,” in Proceedings
of ICCV’15, 2015, pp. 4489—-4497.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in Proceedings of ICLR’15, 2015.

C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4,
inception-resnet and the impact of residual connections on learning,” in
Proceedings of AAAI 2017, 2017, pp. 4278-4284.

A. Piergiovanni, C. Fan, and M. S. Ryoo, “Title learning latent subevents
in activity videos using temporal attention filters,” in Proceedings of
AAAI'17, 2017, pp. 4247-4254.

J. Donahue, L. A. Hendricks, M. Rohrbach, S. Venugopalan, S. Guadar-
rama, K. Saenko, and T. Darrell, “Long-term recurrent convolutional
networks for visual recognition and description,” /IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 39, no. 4, pp. 677-691,
2017.

C. Feichtenhofer, A. Pinz, and A. Zisserman, “Convolutional two-
stream network fusion for video action recognition,” in Proceedings of
CVPR’16, 2016, pp. 1933-1941.

L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and L. V. Gool,
“Temporal segment networks: Towards good practices for deep action
recognition,” in Proceedings of ECCV’16, 2016, pp. 20-36.

S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in Proceedings
of ICML’15, 2015, pp. 448-456.

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

[31]

(32]

(33]

[34]
(35]

[36]

[37]

[38]

[39]
[40]

[41]

[42]

[43]

S. Ji, W. Xu, M. Yang, and K. Yu, “3d convolutional neural networks
for human action recognition,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 35, no. 1, pp. 221-231, January 2013.
J. Carreira and A. Zisserman, “Quo vadis, action recognition? a new
model and the kinetics dataset,” in Proceedings of CVPR’17, 2017, pp.
4724-4733.

Y. Iwashita, A. Takamine, R. Kurazume, and M. S. Ryoo, “First-person
animal activity recognition from egocentric videos,” in Proceedings of
ICPR’14, 2014, pp. 4310-4315.

S. Bansal, S. Khandelwal, S. Gupta, and D. Goyal, “Kitchen activity
recognition based on scene context,” in Proceedings of ICIP 2013, 2013,
pp. 3461-3465.

J. Liu, J. Luo, and M. Shah, “Recognizing realistic actions from videos
“in the wild”,” in Proceedings of CVPR’09, 2009, pp. 1996-2003.

A. Shimada, K. Kondo, D. Deguchi, G. Morin, and H. Stern, “Kitchen
scene context based gesture recognition: A contest in icpr2012,” in
Proceedings of WDIA’12, 2013, pp. 168-185.

A. Krizhevsky, 1. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proceedings of NIPS’12,
2012, pp. 1097-1105.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in Proceedings of CVPR’15, 2015, pp. 1-9.

A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and
L. Fei-Fei, “Large-scale video classification with convolutional neural
networks,” in Proceedings of CVPR’14, 2014, pp. 1725-1732.

J. Dean, G. S. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le, M. Z.
Mao, M. Ranzato, A. Senior, P. Tucker, K. Yang, and A. Y. Ng, “Large
scale distributed deep networks,” in Proceedings of NIPS’12, 2012, pp.
1223-1231.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in Proceedings of CVPR’09,
2009, pp. 248-255.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-
Fei, “Imagenet large scale visual recognition challenge,” International
Journal of Computer Vision, vol. 115, no. 3, pp. 211-252, 2015.

R. Girshick, “Fast r-cnn,” in Proceedings of ICCV 15, 2015, pp. 1440-
1448.

G. Cheron, I. Laptev, and C. Schmid, “P-cnn: Pose-based cnn features
for action recognition,” in Proceedings of ICCV 2015, 2015, pp. 3218-
3226.

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Proceedings of
CVPR’16, 2016, pp. 2818-2826.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735-1780, 1997.

G. Farnebick, “Two-frame motion estimation based on polynomial
expansion,” in Proceedings of SCIA’03, 2003, pp. 363-370.

K. Crammer and Y. Singer, “On the algorithmic implementation of
multiclass kernel-based vector machines,” Journal of Machine Learning
Research, vol. 2, no. Dec, pp. 265-292, 2001.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in python,” Journal of Machine
Learning Research, vol. 12, no. Oct, pp. 2825-2830, 2011.

P. Dolldr, V. Rabaud, G. Cottrell, and S. Belongie, “Behavior recognition
via sparse spatio-temporal features,” in Proceedings of VSPETS 2005,
2005, pp. 65-72.

I. Laptev, “On space-time interest points,” International Journal of
Computer Vision, vol. 64, no. 2-3, pp. 107-123, 2005.

M. S. Ryoo, B. Rothrock, and L. Matthies, “Pooled motion features for
first-person videos,” in Proceedings of CVPR 2015, 2015, pp. 896-904.
C.-Y. Wang, C.-C. Chiang, J.-J. Ding, and J.-C. Wang, “Dynamic
tracking attention model for action recognition,” in Proceedings of
ICASSP’17, 2017, pp. 1617-1621.

F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han, W. J. Dally,
and K. Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and <1mb model size,” arXiv:1602.07360, 2016.

V. Mnih, N. Heess, A. Graves, and K. Kavukcuoglu, “Recurrent models
of visual attention,” in Proceedings of NIPS’14, 2014, pp. 2204-2212.

2018 International Joint Conference on Neural Networks (IJCNN)

