
Evolving Decision-Tree Induction Algorithms
with a Multi-Objective Hyper-Heuristic

Márcio P. Basgalupp
Instituto de Ciência e Tecnologia
Universidade Federal de São Paulo

São José dos Campos–SP,
Brazil

basgalupp@unifesp.br

Rodrigo C. Barros
Faculdade de Informática
Pontifícia Universidade

Católica do RS
Porto Alegre–RS, Brazil

rodrigo.barros@pucrs.br

Vili Podgorelec
Institute of Informatics, FERI

University of Maribor
Maribor, Slovenia

vili.podgorelec@um.si

ABSTRACT
Multi-objective optimization has been widely used in
evolutionary computation for solving problems in which two
or more conflicting objectives need to be optimized in a
simultaneous fashion. This paper presents a multi-objective
hyper-heuristic based on evolutionary algorithms that
automatically designs complete decision-tree induction
algorithms. Such algorithms are designed to generate
decision trees that present an interesting trade-off between
predictive performance and complexity. The proposed
approach is tested over 20 UCI datasets, and it is
compared with a single-objective hyper-heuristic as well
as with traditional decision-tree induction algorithms.
Experimental results show that the proposed approach
can match the top predictive performance achieved by
the baseline methods, without significant loss in model
comprehensibility.

Categories and Subject Descriptors
I.2.6 [Induction and Knowledge Acquisition]:
[Learning]

Keywords
Hyper-Heuristics, Multi-Objective Optimization, Machine
Learning

1. INTRODUCTION
Evolutionary algorithms (EAs) have been extensively

applied to supervised learning in the past decades, specially
for the problem of data classification. Classification can be
regarded as an optimization problem, where the goal is to

find a function f̂ that better approximates the unknown true
function f responsible for mapping attribute values from the
input space into discrete categories (labels), f : X→ Y .

Among the several existing classification methods,
decision-tree induction algorithms are widely employed by
both researchers and practitioners, mainly due to the fact

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’15 April 13-17, 2015, Salamanca, Spain.
Copyright 2015 ACM 978-1-4503-3196-8/15/04...$15.00.
http://dx.doi.org/10.1145/2695664.2695828

that decision trees are comprehensible classification models.
Indeed, decision trees are directed acyclic graphs that can
be easily read as a disjunction of conjunctions in the form of
if-then classification rules. They are the preferred model
in application domains in which understanding the reasons
that lead to a certain prediction is as important as the
prediction itself (e.g., medical diagnosis [19] and protein
function prediction [15]).

Most decision-tree induction algorithms employ the
top-down greedy strategy for building the trees (e.g., C4.5
[20] and CART [10]). Nonetheless, the top-down approach is
prone to falling into local-optima since it locally optimizes a
criterion for each node of the tree in a recursive fashion. For
addressing this issue, researchers turned to EAs as a means
to avoid local-optima by performing a robust global search
on the space of candidate decision trees, usually achieving
enhanced predictive performance at the expense of increased
computational cost [3].

Recently, Barros et al. [2, 4, 5] have proposed a
paradigm shift, and instead of evolving decision trees for
individual datasets, they proposed the automatic design
of decision-tree induction algorithms tailored to specific
application domains such as software effort estimation
[9], classification of molecular docking data [7], and
cancer classification based on the levels of gene expression
[6]. For such, the authors developed a single-objective
hyper-heuristic EA that evolved a set of linear-genome-based
individuals throughout a fixed number of generations,
namely HEAD-DT. Even though the authors usually report
good results in terms of predictive performance, the decision
trees generated by the automatically-designed algorithms
are often more complex than those generated by the
top-down algorithms, and thus harder to interpret.

In this paper, we propose addressing the problem
faced by HEAD-DT by incorporating a multi-objective
strategy that accounts for both predictive performance
and tree complexity, two conflicting objectives that should
be simultaneously optimized if one desires effective and
comprehensible decision trees. We name our proposed
approach MOHEAD-DT, which stands for Multi-Objective
Hyper-Heuristic Evolutionary algorithm for Automatically
Designing Decision-Tree induction algorithms.

This paper is organized as follows. Section 2 briefly
offers a background on hyper-heuristics and their application
to machine learning. Section 3 details our proposed
approach for evolving decision-tree induction algorithms.
Section 4 describes the methodology that was employed
prior to performing the experimental analysis, which is itself
presented in Section 5. Finally, we end the paper with our

110

conclusions and suggestions for future work in Section 6.

2. HYPER-HEURISTICS
In the recent years, hyper-heuristics have emerged

as a novel field within optimization and evolutionary
computation. The main difference between metaheuristics
and hyper-heuristics is that, whereas the first operate
on a search space of solutions to a given problem, the
latter operate on a search space of heuristics, which
in turn generate solutions to the problem at hand.
Notwithstanding, hyper-heuristics usually employ typical
metaheuristics such as EAs as the search methodology to
look for heuristics to a given optimization task [18].

To illustrate that rationale, let us compare a metaheuristic
approach and a hyper-heuristic approach regarding
decision-tree induction for marketing data. In the first
approach, an EA is applied to evolve the best decision
tree for a dataset of a particular enterprise. In the second
approach, an EA is used to evolve the best decision-tree
induction algorithm to be further applied to marketing
datasets. Note that in the first case, the EA clearly works
as a metaheuristic, because it searches for the best decision
tree (solution) to the specific marketing dataset, and the
ultimate goal is to achieve an accurate decision tree for this
particular problem. In the second case, the EA works as a
hyper-heuristic, because it searches for the best decision-tree
induction algorithm (heuristic), which in turn generates
decision trees (solutions) for different instances of marketing
applications. The second approach is problem independent,
since it generates a decision-tree induction algorithm that
can be applied to several distinct marketing datasets.

Most of the hyper-heuristic research aims at solving
typical optimization problems (e.g., production scheduling
[21] and educational timetabling [16], just to name a few).
Applications of hyper-heuristics to machine learning are
much more recent than optimization applications. For
instance, the work of Pappa and Freitas [17] proposes the
evolution of complete rule induction algorithms through
grammar-based genetic programming, whereas the work of
Vella et al. [22] proposes the evolution of heuristic rules
in order to select distinct split criteria in a decision-tree
induction algorithm. The work of Basgalupp et al. [8]
proposes a hyper-heuristic based on grammatical evolution
to automatically design split criteria in decision-tree
induction, generating novel criteria instead of selecting them
as in [22]. Finally, the work of Barros et al. [4, 5, 6] proposes
the evolution of complete decision-tree induction algorithms
through a single-objective EA called HEAD-DT. In this
paper, we extend HEAD-DT so it can deal with multiple
conflicting objectives, generating algorithms capable of
providing both accurate and compact decision trees.

3. HYPER-HEURISTIC DECISION-TREE
INDUCTION

This section presents a multi-objective EA that evolves
generic decision-tree induction algorithms following the
greedy top-down approach. The proposed system is
called MOHEAD-DT (Multi-Objective Hyper-Heuristic
Evolutionary Algorithm for Automatically Designing
Decision-Tree Algorithms), and it is a thorough extension
of HEAD-DT [5, 6], which is presented in greater
detail in the next subsection. MOHEAD-DT allows for
a trade-off between predictive performance and model

comprehensibility, the latter being of great importance in
several application domains [15].

3.1 Background on HEAD-DT
Barros et al. [4, 5, 6] have proposed HEAD-DT

(Hyper-Heuristic Evolutionary Algorithm for Automatically
Designing Decision-Tree Algorithms), which is a
hyper-heuristic single-objective EA capable of automatically
designing complete top-down decision-tree induction
algorithms. It can be regarded as an alternative to the
manual design of such algorithms, in a process called
bias-fitting algorithmic generation. HEAD-DT makes use
of a regular generational single-objective EA in which
individuals are collections of building blocks of top-down
decision-tree induction algorithms, and typical operators
from evolutionary computation are employed, such as
tournament selection, mutually-exclusive genetic operators
– reproduction, crossover, and mutation –, and a typical
stopping criterion that halts evolution after a predefined
number of generations.

The encoding of individuals in HEAD-DT is in the form of
integer vectors, as depicted in Figure 1. Each gene takes on
a value in a predefined range, which is later mapped into
specific procedures/functions within the top-down greedy
approach of decision-tree induction. The set of genes is
divided in four categories, namely: split genes, stopping
criteria genes, missing value genes, and pruning genes.

MISSINGVALUES

GENES

SPLIT

GENES

STOPPING

CRITERIA GENES

PRUNING

GENES

criterion9

0

4

70

2

7

1

3

11

binary split

criterion

parameter

split

distribution

classification

method

parameter

Figure 1: Individual representation in HEAD-DT.

3.1.1 Design Components
The integer vector that encodes individuals in HEAD-DT

holds two genes for the split component of decision
trees. These genes represent the design component that
is responsible for selecting the attribute to split the data
in the current node of the decision tree. HEAD-DT makes
use of two different genes to model this design component.
The first one, criterion, is an integer that indexes one of
the 15 splitting criteria that are implemented in HEAD-DT.
The second gene that controls the split component of a
decision-tree algorithm is binary split. It is a binary gene
that indicates whether the splits of a decision tree are going
to be binary or multi-way.

The top-down induction of decision trees is recursive
and it continues until a stopping criterion is satisfied.
HEAD-DT’s genotype holds two genes for representing
this design component: criterion and parameter. The
first gene, criterion, selects among five different strategies

111

for stopping the tree growth, whereas gene parameter
dynamically adjusts a value in the range [0, 100] to the
corresponding strategy.

The next design component of decision trees that is
represented in HEAD-DT’s genotype is the missing value
treatment. Missing values may be an issue during tree
induction and also during classification, and thus HEAD-DT
uses three genes to represent missing values strategies in
different moments of the induction/deduction process.

Finally, there are two genes for pruning strategies of
top-down decision trees in HEAD-DT. The first gene,
method, indexes one of five well-known approaches for
pruning a decision tree, and also the option of not pruning
at all. The second gene, parameter, is in the range [0, 100]
and its value is again dynamically mapped by a function
according to the selected pruning method.

In its current implementation, HEAD-DT searches in the
space of 21, 319, 200 decision-tree induction algorithms, and
it is ≈ 2, 138 times faster than the brute-force approach.
Of course there are no theoretic guarantees that the
(near-)optimal algorithm found by HEAD-DT is going to
be the same global optimal algorithm provided by the
brute-force approach, but its use is safely justified by the
time saved during the process.

3.1.2 Evaluation Framework
In order to compute the fitness of each individual

during the evolutionary process, HEAD-DT makes use
of a meta-training set. A meta-test set is used to
assess the quality of the evolved algorithm, which is the
best individual produced by HEAD-DT. The search for
good individuals during evolution can be performed under
two distinct frameworks: (i) Evolution of a decision-tree
algorithm tailored to one specific dataset at a time (specific
framework); and (ii) Evolution of a decision-tree induction
algorithm from multiple datasets (general framework).

Previous studies showed through empirical evaluation that
HEAD-DT is an effective approach for both specific [4,
5] and general frameworks. The latter was applied with
the goal of evolving a decision-tree algorithm tailored to
a particular domain, e.g., flexible-receptor docking data
[7], software effort prediction [9], and gene expression data
classification [6]. In the specific framework, the part of
the dataset that belongs to the meta-training set is further
divided into training and validation, with typical values
being 70% for training and 30% for validation. The term
“validation set”is used instead of“test set”to avoid confusion
with the meta-test set, and also due to the fact that the
“knowledge” within these sets are used to reach for a better
solution, and the same cannot be done with test sets.
The single-objective fitness function previously employed by
HEAD-DT in the specific framework was the F-Measure,
which is computed from the decision tree generated by the
individual and executed over the validation set.

3.2 Multi-Objective Optimization
This section introduces an extended version of the

single-objective HEAD-DT, namely MOHEAD-DT. The
main modifications were introduced in the fitness calculation
step, in the selection and elitism procedures, and also in the
process of selecting the best individual to be returned to the
final user. Prior to the description of those modifications,
we first briefly describe the multi-objective optimization
problem as follows.

When many objectives are simultaneously optimized,

there is no single optimal solution for the task at hand.
Instead, one has to choose within a set of optimal solutions,
each one taking into account a given trade-off among the
objectives. The final user can then select its preferred
solution from this set of high-quality solutions. Several
approaches for handling multi-objective problems were
proposed in the literature, and we comment on three of
them: i) Weighted-Formula; ii) Pareto Dominance; and iii)
Lexicographic Analysis.

The weighted-formula is by far the most common
approach in data mining applications [14]. It transforms
a multi-objective problem into a single-objective one by
assigning numeric weights to each objective to be optimized
and then combining the values of the weighted criteria
into a single value through arithmetic operations such as
addition and multiplication. It has the advantage of being
conceptually easy to use and implement, and also of being
computationally inexpensive for appointing the optimal
solution. Nevertheless, one of its disadvantages is the“magic
number” problem: the weights are usually assigned in an
ad-hoc fashion, based on the intuition of the user about the
relative importance of each objective. Researchers generally
justify their options with sentences like “the weights
were empirically determined”. Another drawback of this
approach is that it often mixes non-commensurable criteria,
resulting in a meaningless value of an unknown unity, which
goes against the trend that discovered knowledge should be
understandable to the user.

The Pareto-dominance approach, in turn, does not help
the user to select a single alternative from the set of optimal
solutions. The concept of Pareto-dominance is as follows. A
given solution S1 dominates solution S2 if, and only if [11]:
(i) S1 is not worse than S2 in any of the objectives; and (ii)
S1 is strictly better than S2 in at least one of the objectives.

Hence, the solutions which are not dominated by any other
in an EA population are said to comprise the estimated
Pareto front, which is an estimation of the true, unknown
Pareto front. The best estimated Pareto front found
by the EA is the set of solutions returned to the user,
who can then select the best one according to his/her
preference. Freitas [14] argues that the difference between
the weighted-formula approach and the Pareto approach
is the timing when the user has to make a subjective
decision. For instance, in the weighted-formula approach,
the user has to make a choice of the weight values for each
criterion, which is in practice a subjective decision made a
priori, before the learning algorithm is run. By contrast,
in the Pareto approach the user makes a subjective choice a
posteriori, after he/she has seen all non-dominated solutions
returned by the learning algorithm. We can notice that it
is much more comfortable to analyze trade-offs associated
with the different solutions produced by the algorithm and
choose one based on our preference instead of making, in
general, an uninformed decision by choosing weights before
the algorithm is run.

The lexicographic analysis (or lexicographic ordering)
intends to determine priorities among the objectives, and
the best solution is the one that is significantly better
according to a higher-priority objective. If there is no
decision whether a solution is better than the other
in a given objective, the next objective is chosen in
order of priority. The lexicographic approach might be
an interesting choice considering that it recognizes the
non-commensurability of the different criteria, and it allows

112

the user to determine which criteria are more important
without the need of identifying the correct weight of
each measure. In addition, it preserves the simplicity
of the weighted-formula approach and returns a single
solution as the best one. Its disadvantage is the threshold
values that must be defined a priori. Although defining
thresholds can be critically appointed as a “magic number”
problem, there is a commonplace approach to deal with this
situation: statistics-oriented procedures [14]. For instance,
standard-deviation based thresholds that allow us to reject
a null hypothesis of insignificant difference between two
criterion values with a certain degree of confidence. This is
a statistically sound solution for this approach, even though
the degree of confidence is a parameter that has to be chosen.

3.2.1 Novel Fitness Evaluation
When evolving a novel decision-tree induction algorithm,

there are two objectives which should be simultaneously
optimized: the predictive performance of the resulting
decision tree, which should be maximized, and its
complexity, which should be minimized. The advantage of
simultaneously optimizing these two conflicting objectives is
that we can implicitly control data overfitting, since larger
and more complex models usually overfit the training data,
losing performance when executed over unseen instances.
Moreover, it is much easier to interpret a simpler model
than a more complex one.

In MOHEAD-DT, the values of these two objectives are
obtained after each individual is converted from genotype
(integer vector) to phenotype (decision-tree induction
algorithm). The resulting algorithm is then trained with
the training part of the meta-training set, and its predictive
performance is assessed according to how well it performs on
the validation part of the meta-training set (see Figure 2).
MOHEAD-DT aims at simultaneously optimizing two
objectives: (i) F-Measure, which is a predictive performance
measure that indicates a trade-off between precision and
recall and is suitable for both balanced and imbalanced data;
and (ii) number of nodes in the tree, which is a suitable
estimation of model complexity for decision trees. The
smaller the model, the more comprehensible it is, and also
less-prone to overfitting1.

INDIVIDUAL

DECISION-TREE

ALGORITHM
STATS

MULTI-OBJECTIVE FITNESS EVALUATION

objective 1:

 - F-Measure

objective 2:

 - Tree Size

training validation

META-TRAINING SET

70%

30%

DATA SET

90%

10%META-TEST SET

training

validation

test

Figure 2: Fitness evaluation scheme.

For optimizing both objectives, MOHEAD-DT allows the

1However, smaller models may eventually suffer from
underfitting, and thus the need of optimizing predictive
performance.

user to choose between the Pareto dominance approach and
the lexicographic analysis, according to his/her preference.
Depending on the multi-objective strategy selected by the
user, each individual is assigned a pseudo fitness value after
the F-Measure and tree size of the trees generated by them
have been computed.

In the case of the lexicographic analysis, the individuals
are compared in a pairwise fashion, and the pseudo fitness
value assigned to them is the total number of victories in all
possible pairwise lexicographical comparisons. Let A be a
given individual and Ai any other individual in the current
population. A is said to be the winner of the lexicographical
comparison regarding Ai if the difference between their
ith objective surpasses the objective’s threshold ∆i. The
objectives are analyzed in a pre-defined order of priority,
and in MOHEAD-DT F-Measure (predictive performance)
has greater priority than tree size (model complexity). Since
MOHEAD-DT analyzes two objectives, one needs to set two
parameters, the objectives’ thresholds ∆1 and ∆2.

Regarding the Pareto dominance approach, the pseudo
fitness value is given by nDom−nIsDom, in which nDom is the
number of times the individual dominates other individuals
in the population, and nIsDom is the number of times the
individual is dominated.

3.2.2 Selection and Elitism
For selection and elitism, MOHEAD-DT makes use of the

pseudo fitness value of each individual much the same as
it would do for a single-objective EA. We are aware that
other multi-objective algorithms adopt more sophisticated
strategies instead of using a single pseudo fitness values. For
instance, NSGA-II [12] and SPEA2 [23] give preference to
solutions found in the less-crowded regions of the solution
space. MOHEAD-DT does not implement any mechanisms
capable of enforcing the distribution of the solutions in
different areas of the search space, but we later argue
that its results show a good diversity of solutions in the
Pareto front. A comparative analysis between the current
implementation of MOHEAD-DT and the use of other
multi-objective strategies such as NSGA-II and SPEA2 is
left for future research.

As a final remark, note that, for the case of the Pareto
strategy in MOHEAD-DT, we have to be able to treat
one special case: individuals whose decision-tree induction
algorithms produce models consisting of only one node. In
other words, these individuals are generating trees that
are predicting the most frequent class among the training
instances for all new instances in the validation set. For
these individuals, the optimal number of nodes is achieved
(since we are minimizing tree size), but in this case the
results obtained by the candidate algorithm is simply a
trivial majority classifier. To avoid this situation, the
number of nodes of a model with 1 node is set to 1,000.

4. EXPERIMENTAL METHODOLOGY
In Table 1, we present the public datasets from the

UCI machine-learning repository [1] in order to assess
the relative performance of the algorithms automatically
designed by MOHEAD-DT. We compare the resulting
decision-tree induction algorithms with the two most
widely-used decision-tree induction algorithms: C4.5 [20]
and CART [10]. For each dataset, we report the F-Measure
and the size of the generated decision tree. The results
are based on the average of 10-fold cross-validation runs.

113

Table 1: UCI datasets that were employed in the experimental analysis.

dataset # instances # attributes # numeric attributes # nominal attributes % missing # classes

abalone 4177 9 7 1 0.00 28
anneal 898 39 6 32 0.00 6
arrhythmia 452 280 206 73 0.32 16
audiology 226 70 0 69 2.03 24
bridges version1 107 13 3 9 5.53 6
car 1728 7 0 6 0.00 4
cylinder bands 540 40 18 21 4.74 2
glass 214 10 9 0 0.00 7
hepatitis 155 20 6 13 5.67 2
iris 150 5 4 0 0.00 3
kdd synthetic 600 62 60 1 0.00 6
segment 2310 20 19 0 0.00 7
semeion 1593 266 265 0 0.00 2
shuttle landing 15 7 0 6 28.89 2
sick 3772 30 7 22 5.54 2
tempdiag 120 8 1 6 0.00 2
tep.fea 3572 8 7 0 0.00 3
vowel 990 14 10 3 0.00 11
winequality red 1599 12 11 0 0.00 10
winequality white 4898 12 11 0 0.00 10

Additionally, since MOHEAD-DT is a non-deterministic
method, we averaged the results of 5 different runs by
varying the random seed.

The baseline algorithms CART [10] and C4.5 [20] were
set with their default parameters, which typically represent
robust values that work well across different datasets. None
of the algorithms, including HEAD-DT and MOHEAD-DT,
had their parameters optimized to individual datasets.

HEAD-DT and MOHEAD-DT were employed using
the specific framework. They were configured with the
parameters described in Table 2, which are typical values for
EAs in the context of decision trees [3]. The lexicographic
thresholds (∆1 and ∆2 in Section 3.2.1) for MOHEAD-L
were set to 2% and 2 nodes for F-Measure and tree size,
respectively.

Table 2: Parameter values for MOHEAD-L, HOEAD-P and
HEAD-DT.

MOHEAD-L MOHEAD-P HEAD-DT

population size 100 100 100
number of generations 100 100 100
tournament size 2 2 2
elitism rate - 5% 5%
crossover rate 90% 90% 90%
reprodution rate 5% 5% 5%
mutation rate 5% 5% 5%

In order to provide some reassurance about the validity
and non-randomness of the results, statistical tests are
applied by following the approach proposed by Demšar [13].
These tests seek to compare multiple algorithms on multiple
datasets, and are based on the use of the Friedman test
with a corresponding post-hoc test. Let Rji be the rank

of the jth of k algorithms on the ith of N datasets, the
Friedman test compares the average ranks of algorithms,
Rj = 1

N

∑
iR

j
i . The original Friedman statistic and its

adjusted less-conservative version are given by:

χ2
F =

12N

k(k + 1)

[∑
j

R2
j −

k(k + 1)2

4

]
(1)

Ff =
(N − 1)× χ2

F

N × (k − 1)− χ2
F

, (2)

where the adjusted version is distributed according to the
F -distribution with k − 1 and (k − 1)(N − 1) degrees of
freedom. If the null hypothesis of similar performance is
rejected, then we proceed with the Nemenyi post-hoc test
for pairwise comparisons. The performance of two classifiers
is significantly different if their corresponding average ranks
differ by at least the critical difference

CD = qα

√
k(k + 1)

6N
(3)

where critical values qα are based on the Studentized range
statistic divided by

√
2.

5. RESULTS
Table 3 shows the classification F-Measure and

tree sizes ± the standard deviations from the trees
induced by algorithms automatically designed by the
two versions of MOHEAD-DT: MOHEAD-L (based on
the lexicographic analysis) and MOHEAD-P (based on
the Pareto dominance), as well as the results of the
single-objective approach HEAD-DT.

Results show that HEAD-DT generates better algorithms
in terms of predictive performance (F-Measure) in 15 out of
the 20 datasets. MOHEAD-L generates the best algorithm
in 6 datasets, whereas MOHEAD-P does it for two datasets.

To evaluate the statistical significance of the F-Measures
results, we calculated the average Friedman rank for
MOHEAD-L, MOHEAD-P, and HEAD-DT: 1.875, 2.625,
and 1.5, respectively. The average rank suggests
that HEAD-DT outperforms both multi-objective versions
regarding predictive performance. The calculation of Iman’s
F statistic resulted in Ff = 9.28. Critical value of F (k −
1, (k − 1)(n − 1)) = F (2, 38) for α = 0.05 is 3.25. Since
Ff > F0.05(2, 38) (9.28 > 3.25), the null-hypothesis is
rejected. We proceed with a post-hoc Nemenyi test to find
which method provides better results in a pairwise fashion.
The critical difference is CD = 0.74. The differences
between the average rank of HEAD-DT and the rank of
the multi-objective versions MOHEAD-L and MOHEAD-P
are 0.38 and 1.13, respectively, and the difference between
MOHEAD-L and MOHEAD-P is 0.75.

Therefore, we can assert that both MOHEAD-L and
HEAD-DT generate algorithms significantly better than

114

Table 3: Results for the comparison among the hyper-heuristics.

F-Measure Tree Size
MOHEAD-L MOHEAD-P HEAD-DT MOHEAD-L MOHEAD-P HEAD-DT

abalone.data 0.23 0.01 0.23 0.01 0.20 0.02 48.78 31.05 21.54 4.91 4068.12 13.90
anneal 0.97 0.01 0.97 0.01 0.99 0.01 14.38 2.12 15.92 1.66 55.72 3.66
arrhythmia 0.66 0.06 0.64 0.06 0.63 0.06 20.04 3.51 13.20 2.65 171.84 5.18
audiology 0.71 0.06 0.63 0.08 0.79 0.07 45.86 6.14 19.32 3.44 118.60 3.81
bridges-version1 0.59 0.05 0.55 0.05 0.56 0.12 20.56 3.91 8.44 1.50 156.88 14.34
car 0.95 0.02 0.91 0.01 0.98 0.01 58.68 9.71 31.28 6.76 171.92 4.45
cylinder-bands 0.70 0.04 0.69 0.03 0.72 0.04 40.56 20.22 12.52 2.94 211.44 9.39
Glass 0.67 0.08 0.63 0.08 0.72 0.09 26.72 4.99 14.52 3.49 86.44 3.14
hepatitis 0.75 0.07 0.78 0.08 0.80 0.08 11.32 5.24 3.68 0.87 71.80 4.77
iris 0.95 0.06 0.94 0.06 0.95 0.05 6.24 0.76 5.60 0.60 20.36 1.81
segment 0.95 0.01 0.94 0.02 0.97 0.03 38.32 6.89 28.92 3.03 26.16 2.45
semeion 0.99 0.01 0.97 0.02 0.97 0.01 19.64 1.51 14.56 3.77 132.76 3.48
shuttle-landing-control 0.99 0.01 0.97 0.02 1.00 0.00 19.64 1.51 14.56 3.77 19.00 0.00
sick 0.98 0.00 0.98 0.01 0.93 0.20 5.72 0.67 9.28 3.63 5.64 1.69
synthetic control 0.88 0.04 0.85 0.02 0.99 0.00 28.00 4.55 16.96 2.79 153.70 8.89
tempdiag 1.00 0.00 0.99 0.01 1.00 0.00 5.00 0.00 4.80 0.28 5.32 1.04
tep.fea 0.60 0.02 0.61 0.02 0.61 0.02 3.00 0.00 7.20 1.62 18.84 1.97
vowel 0.79 0.03 0.67 0.07 0.89 0.03 206.12 32.63 86.60 26.13 361.42 5.54
winequality-red 0.56 0.03 0.55 0.02 0.63 0.03 74.12 50.74 17.16 2.13 796.00 11.22
winequality-white 0.55 0.02 0.51 0.03 0.63 0.03 653.80 147.32 125.04 109.26 2525.88 13.17

CD

1 2 3

HEAD-DT MOHEAD-P
MOHEAD-L

Figure 3: Critical diagram for the F-Measure of the
hyper-heuristics.

CD

1 2 3

MOHEAD-P HEAD-DT
MOHEAD-L

Figure 4: Critical diagram for the tree size of the
hyper-heuristics.

those generated by MOHEAD-P. Nevertheless, it is
important to note that there is no significant difference
between MOHEAD-L and HEAD-DT in terms of F-Measure
(see the critical diagram in Figure 3).

When analyzing the size of trees, we can observe that
MOHEAD-P provided algorithms that generate smaller
trees in 17 out of the 20 datasets. MOHEAD-L did it
for 2 datasets, while HEAD-DT did it for only 1 dataset.
Regarding the statistical analysis, the computed value of
Ff = 24.43. Since Ff > F0.05(2, 38) (24.43 > 3.25),
the null-hypothesis is rejected. Once again, we proceed
with a post-hoc Nemenyi test, and the critical difference
is CD = 0.74. The differences between the average
rank of HEAD-DT and the rank of the multi-objective
versions MOHEAD-L and MOHEAD-P are 0.75 and
1.5, respectively, and the difference between MOHEAD-L
and MOHEAD-P is 0.75. Hence, we can affirm that
both MOHEAD-L and MOHEAD-P automatically design
algorithms whose decision trees are significantly smaller
than the ones generated by HEAD-DT. The critical diagram
is depicted in Figure 4).

Since smaller trees are only preferable in scenarios
where the predictive performance of the models is similar,
the fact that MOHEAD-P designs algorithms whose
trees are smaller than both MOHEAD-L and HEAD-DT

should not be relevant. Indeed, the previous analysis
clearly indicates that MOHEAD-P generates algorithms
whose trees are outperformed by both MOHEAD-L
and HEAD-DT regarding F-Measure with statistical
significance. The Occam’s razor assumption that among
competitive hypotheses, the simpler is preferred, does not
apply in this case. Notwithstanding, we can make use of the
Occam’s razor assumption when comparing MOHEAD-L
with HEAD-DT, considering that there is no significant
difference between them in terms of predictive performance,
and that MOHEAD-L generates algorithms whose decision
trees are significantly smaller than those generated by the
algorithms designed by HEAD-DT.

Given that MOHEAD-L presents the best
trade-off between predictive performance and model
comprehensibility among the hyper-heuristics that
automatically design decision-tree induction algorithms,
we proceed to compare the results of MOHEAD-L with
the baseline greedy top-down decision-tree induction
algorithms, namely CART [10] and C4.5 [20].

Table 4 shows the classification F-Measure provided by
C4.5, CART, and MOHEAD-L’s automatically designed
algorithm. It presents the average F-Measure over the
10-fold cross-validation runs ± the standard deviation (best
absolute values in bold). Note that MOHEAD-L generates
algorithms whose trees have superior predictive performance
in 10 out of the 20 datasets. CART provides better trees in
5 datasets, and C4.5 in 9 datasets. Observe that there are
cases in which all methods provided the same tree (tempdiag
dataset), and also that there are cases in which both CART
and C4.5 (but not MOHEAD-L’s algorithm) induced the
same tree (anneal and synthetic control datasets).

To evaluate the statistical significance of the F-Measure
results, we calculated the average rank for MOHEAD-L,
CART, and C4.5: 1.825, 2.25 and 1.985, respectively.
The average rank suggests that MOHEAD-L is the best
performing method regarding predictive performance. The
calculation of Iman’s F statistic resulted in Ff = 0.99.
Critical value of F (2, 38) for α = 0.05 is 3.25. Since
Ff < F0.05(2, 38) (0.99 < 3.25), the null-hypothesis is
accepted. Even though the Friedman test does not indicate
a significant difference among the methods, we can proceed
to the pairwise Nemenyi’s test, which is less conservative

115

Table 4: Results for the comparison among MOHEAD-L, CART, and C4.5.

F-Measure Tree Size
MOHEAD-L CART C4.5 MOHEAD-L CART C4.5

abalone.data 0.23 0.01 0.22 0.02 0.21 0.02 48.78 31.05 44.40 16.00 2088.90 37.63
anneal 0.97 0.01 0.98 0.01 0.98 0.01 14.38 2.12 21.00 3.13 48.30 6.48
arrhythmia 0.66 0.06 0.67 0.05 0.64 0.05 20.04 3.51 23.20 2.90 82.60 5.80
audiology 0.71 0.06 0.70 0.04 0.75 0.08 45.86 6.14 35.80 11.75 50.40 4.01
bridges-version1 0.59 0.05 0.44 0.06 0.52 0.10 20.56 3.91 1.00 0.00 24.90 20.72
car 0.95 0.02 0.93 0.97 0.93 0.02 58.68 9.71 108.20 16.09 173.10 6.51
cylinder-bands 0.70 0.04 0.54 0.07 0.42 0.00 40.56 20.22 4.20 1.03 1.00 0.00
Glass 0.67 0.08 0.67 0.10 0.67 0.05 26.72 4.99 23.20 10.56 44.80 5.20
hepatitis 0.75 0.07 0.74 0.07 0.77 0.06 11.32 5.24 6.60 8.58 15.40 4.40
iris 0.95 0.06 0.93 0.05 0.93 0.06 6.24 0.76 6.20 1.69 8.00 1.41
segment 0.95 0.01 0.88 0.03 0.90 0.04 38.32 6.89 1.00 0.00 37.80 4.34
semeion 0.99 0.01 0.95 0.01 0.96 0.09 19.64 1.51 78.00 8.18 80.60 4.97
shuttle-landing-control 0.99 0.01 0.93 0.01 0.95 0.02 19.64 1.51 34.00 12.30 55.00 8.27
sick 0.98 0.00 0.56 0.03 0.56 0.38 5.72 0.67 1.00 0.00 1.00 0.00
synthetic control 0.88 0.04 0.98 0.00 0.98 0.00 28.00 4.55 45.20 11.33 46.90 9.41
tempdiag 1.00 0.00 1.00 0.00 1.00 0.00 5.00 0.00 5.00 0.00 5.00 0.00
tep.fea 0.60 0.02 0.60 0.02 0.61 0.02 3.00 0.00 13.00 2.83 8.20 1.69
vowel 0.79 0.03 0.81 0.03 0.82 0.03 206.12 32.63 175.80 23.72 220.70 20.73
winequality-red 0.56 0.03 0.61 0.02 0.60 0.03 74.12 50.74 151.80 54.58 387.00 26.55
winequality-white 0.55 0.02 0.57 0.02 0.60 0.02 653.80 147.32 843.80 309.01 1367.20 58.44

CD

1 2 3

MOHEAD-L CART
C4.5

Figure 5: Critical diagram for the F-Measure of
MOHEAD-L, CART, and C4.5.

than Friedman’s. The critical difference is CD = 0.74. The
difference between the average rank of MOHEAD-L and
C4.5 is 0.1 and that between MOHEAD-L and CART is
0.425. Since there is no difference greater than 0.74, we can
reinforce Friedman’s conclusion that there is no significant
difference among the three methods regarding F-Measure.
The critical diagram is depicted in Figure 5.

In terms of model comprehensibility, results in Table 4
show that MOHEAD-L generates smaller trees in 10 out
of the 20 datasets. CART also generates smaller trees in 10
datasets, and C4.5 in only three datasets. We calculated the
average Friedman rank for MOHEAD-L, CART, and C4.5:
1.7, 1.625, and 2.675, respectively. Regarding the statistical
analysis, the computed value of Ff = 9.92. Since Ff >
F0.05(2, 38) (9.92 > 3.25), the null-hypothesis is rejected.
Once again, we proceed with the post-hoc Nemenyi’s test,
and the critical difference is CD = 0.74.

The difference between MOHEAD-L and CART is 0.075,
much smaller than CD (0.74). On the other hand, the
difference between MOHEAD-L and C4.5 is 0.975, and
between CART and C4.5 is 1.05. Thus, we can assert that
both MOHEAD-L’s algorithms and CART generate decision
trees significantly smaller than those generated by C4.5. It
should be also stressed out that there are no significant
differences between MOHEAD-L and CART in terms of tree
size (see the critical diagram in Figure 6).

Since there is no significant difference between
MOHEAD-L and CART, we can observe that, in terms
of predictive performance (F-Measure) the average rank
of MOHEAD-L (1.825) is better than CART’s (2.25). In
addition, MOHEAD-L generated better trees than CART
in 11 out 20 datasets, whereas CART generated better trees
in only 6 datasets, in terms of F-Measure. Also, considering

CD

1 2 3

CART C4.5
MOHEAD-L

Figure 6: Critical diagram for the tree size of MOHEAD-L,
CART, and C4.5.

the absolute values, the same superiority could not be
observed when analyzing tree sizes, since MOHEAD-L’s
algorithms generated smaller trees in 9 out of 20 datasets
and CART in 10 out 20. Even though the results are not
conclusive in terms of which algorithm generates better
decision trees (MOHEAD-L or CART), we believe they are
encouraging since they show that MOHEAD-L’s algorithms
often generate more accurate decision trees than CART
without significant loss in model comprehensibility.

6. CONCLUSIONS AND FUTURE WORK
This work presented a multi-objective evolutionary

algorithm based hyper-heuristic capable of automatically
designing top-down greedy decision-tree induction
algorithms, namely MOHEAD-DT (Multi-Objective
Hyper-Heuristic Evolutionary Algorithm for Automatically
Designing Decision-Tree Algorithms). MOHEAD-DT
is an extended version of HEAD-DT [4, 5], which is a
single-objective hyper-heuristic that achieved promising
results in generating decision-tree induction algorithms
for application domains such as software effort prediction
[9], gene expression classification [6], and flexible-receptor
molecular docking data [7].

Comparisons between MOHEAD-DT and HEAD-DT
show that the first is capable of designing decision-tree
induction algorithms with competitive predictive
performance and more compact models, following the
Occam’s razor science principle of preference for simpler
solutions. Given that in many application domains
interpretability is crucial and as important as predictive
performance, these seem to be quite positive results.

When comparing MOHEAD-DT with two other
traditional greedy top-down decision-tree induction

116

algorithms, similar conclusions were drawn, as it was often
the case that the algorithms provided by MOHEAD-DT
generated significantly smaller trees with similar predictive
performance than the trees provided by C4.5 [20]. Even
though the statistical analysis did not suggest significant
differences between MOHEAD-DT and CART [10], we
believe the lexicographic version of MOHEAD-DT is
preferable because of its better results regarding predictive
performance, measured in terms of F-Measure.

As future research, we believe that employing different
multi-objective optimization techniques such as NSGA-II
[12] and SPEA2 [23] are good opportunities for improving
MOHEAD-DT’s performance. In addition, we believe that
objectives such as algorithmic complexity or execution time
could be optimized in order to generate algorithms suitable
for big data processing.

7. ACKNOWLEDGMENTS
The authors would like to thank Coordenação de

Aperfeiçoamento de Pessoal de Nı́vel Superior (CAPES),
Conselho Nacional de Desenvolvimento Cient́ıfico e
Tecnológico (CNPq), and Fundação de Amparo à Pesquisa
do Estado de São Paulo (FAPESP) for funding this research.

8. REFERENCES
[1] K. Bache and M. Lichman. UCI machine learning

repository, 2013.

[2] R. C. Barros, M. P. Basgalupp, A. C. P. L. F.
de Carvalho, and A. A. Freitas. Towards the
automatic design of decision tree induction algorithms.
In 13th Annual Conference Companion on Genetic
and Evolutionary Computation (GECCO 2011), pages
567–574, 2011.

[3] R. C. Barros, M. P. Basgalupp, A. C. P. L. F.
de Carvalho, and A. A. Freitas. A Survey of
Evolutionary Algorithms for Decision-Tree Induction.
IEEE Transactions on Systems, Man, and
Cybernetics, Part C: Applications and Reviews,
42(3):291–312, 2012.

[4] R. C. Barros, M. P. Basgalupp, A. C. P. L. F.
de Carvalho, and A. A. Freitas. A hyper-heuristic
evolutionary algorithm for automatically designing
decision-tree algorithms. In 14th Genetic and
Evolutionary Computation Conference (GECCO
2012), pages 1237–1244, 2012.

[5] R. C. Barros, M. P. Basgalupp, A. C. P. L. F.
de Carvalho, and A. A. Freitas. Automatic Design of
Decision-Tree Algorithms with Evolutionary
Algorithms. Evolutionary Computation, 21(4), 2013.

[6] R. C. Barros, M. P. Basgalupp, A. A. Freitas, and
A. C. P. L. F. de Carvalho. Evolutionary Design of
Decision-Tree Algorithms Tailored to Microarray Gene
Expression Data Sets. IEEE Transactions on
Evolutionary Computation, in press, 2014.

[7] R. C. Barros, A. T. Winck, K. S. Machado, M. P.
Basgalupp, A. C. P. L. F. de Carvalho, D. D. Ruiz,
and O. S. de Souza. Automatic design of decision-tree
induction algorithms tailored to flexible-receptor
docking data. BMC Bioinformatics, 13, 2012.

[8] M. P. Basgalupp, R. C. Barros, and T. Barabasz. A
Grammatical Evolution Based Hyper-heuristic for the
Automatic Design of Split Criteria. In Proceedings of
the 2014 Conference on Genetic and Evolutionary

Computation (GECCO 2014), GECCO ’14, pages
1311–1318, New York, NY, USA, 2014. ACM.

[9] M. P. Basgalupp, R. C. Barros, T. S. da Silva, and
A. C. P. L. F. de Carvalho. Software effort prediction:
a hyper-heuristic decision-tree based approach. In 28th
Annual ACM Symposium on Applied Computing,
pages 1109–1116, 2013.

[10] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J.
Stone. Classification and Regression Trees.
Wadsworth, 1984.

[11] K. Deb. Multi-Objective Optimization Using
Evolutionary Algorithms. John Wiley & Sons, Inc.,
New York, NY, USA, 2001.

[12] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A
Fast Elitist Non-dominated Sorting Genetic Algorithm
for Multi-objective Optimisation: NSGA-II. In
Proceedings of the 6th International Conference on
Parallel Problem Solving from Nature, PPSN VI, pages
849–858, London, UK, UK, 2000. Springer-Verlag.

[13] J. Demšar. Statistical comparisons of classifiers over
multiple data sets. J. Mach. Learn. Res., 7:1–30, 2006.

[14] A. A. Freitas. A critical review of multi-objective
optimization in data mining: a position paper.
SIGKDD Explor. Newsl., 6(2):77–86, 2004.

[15] A. A. Freitas, D. C. Wieser, and R. Apweiler. On the
importance of comprehensible classification models for
protein function prediction. IEEE/ACM Trans.
Comput. Biol. Bioinformatics, 7:172–182, January
2010.

[16] G. Ochoa, R. Qu, and E. K. Burke. Analyzing the
landscape of a graph based hyper-heuristic for
timetabling problems. In Proceedings of the 11th
Annual conference on Genetic and evolutionary
computation, GECCO ’09, pages 341–348, New York,
NY, USA, 2009. ACM.

[17] G. L. Pappa and A. A. Freitas. Automating the Design
of Data Mining Algorithms: An Evolutionary
Computation Approach. Springer Publishing
Company, Incorporated, 2009.

[18] G. L. Pappa, G. Ochoa, M. R. Hyde, A. A. Freitas,
J. Woodward, and J. Swan. Contrasting meta-learning
and hyper-heuristic research: the role of evolutionary
algorithms. Genetic Programming and Evolvable
Machines, 15:3–35, 2014.

[19] V. Podgorelec, P. Kokol, B. Stiglic, and I. Rozman.
Decision trees: An overview and their use in medicine.
Journal of Medical Systems, 26:445–463, 2002.
10.1023/A:1016409317640.

[20] J. R. Quinlan. C4.5: programs for machine learning.
Morgan Kaufmann, San Francisco, CA, USA, 1993.

[21] J. A. Vázquez-Rodŕıguez and S. Petrovic. A new
dispatching rule based genetic algorithm for the
multi-objective job shop problem. Journal of
Heuristics, 16(6):771–793, Dec. 2010.

[22] A. Vella, D. Corne, and C. Murphy. Hyper-heuristic
decision tree induction. W CONF NAT BIOINSP
COMP, pages 409–414, 2010.

[23] E. Zitzler, M. Laumanns, and L. Thiele. SPEA2:
Improving the strength pareto evolutionary algorithm
for multiobjective optimization. In K. Giannakoglou,
D. Tshalis, J. Periaux, K. Papailiou, and T. Fogarty,
editors, Evolutionary Methods for Design,
Optimization, and Control, pages 19–26. 2002.

117

	MAIN MENU
	Help
	Search
	Print
	Author Index
	Keyword Index
	Table of Contents

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20120516081844
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 320
 None
 Up
 0.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryList_V1
 qi2base

