
A Portable OpenCL-based Approach
for SVMs in GPU

Henry E.L. Cagnini∗, Ana T. Winck†, Rodrigo C. Barros∗
∗Pontifı́cia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil

Email: henry.cagnini@acad.pucrs.br, rodrigo.barros@pucrs.br
†Universidade Federal de Santa Maria, Santa Maria, RS, Brazil

Email: ana@inf.ufsm.br

Abstract—Support Vector Machines (SVMs) is one of the
most efficient methods for data classification in machine learning.
Several efforts were dedicated towards improving its performance
through source-code parallelization, particularly within the
Graphics Processor Unit (GPU). Those studies make use of the
well-known CUDA framework, which is provided by NVIDIA
for its graphics cards. Nevertheless, the main disadvantage of
CUDA-based solutions is that they are specific to NVIDIA cards,
reducing the applicability of such solutions in heterogeneous
environments. In this work, we propose the parallelization
of SVMs through the OpenCL framework, which allows the
generated solution to be portable to a wide range of GPU
manufacturers. The proposed approach parallelizes the most
costly steps that are performed when training SVMs. We
show that the proposed solution achieves a significant speedup
regarding the algorithm’s original version, and also that it
outperforms the state-of-the-art CUDA-based approach in terms
of computational performance in 11 out of the 12 datasets that
were tested in this work.

I. INTRODUCTION

One of the most studied tasks within the machine learning
literature is data classification, which can be roughly seen
as the task of labeling objects. Given a set X of N
objects (examples, instances), a classification algorithm seeks
to create a model that properly represents the relationship
among d predictive attributes (features) of such objects (i.e.,
{xi}Ni=1,xi ∈ R

d) and their corresponding labels ({yc}kc=1 ∈
Y). Such a model should be capable of automatically
predicting the label of unseen objects based solely on their
known attribute values.

One can see classification as an optimization problem,
where the goal is to find a function f̂ that reasonably
approximates the unknown true function f responsible for
mapping attribute values into labels, f : X → Y . Nowadays,
one of the most widely-used machine learning algorithms
for classification are the Support Vector Machines (SVMs)
[1], especially due to their effectiveness in solving complex
high-dimensional classification problems.

Notwithstanding, SVMs are computationally expensive,
especially due to the fact that they must compute mathematical
operations between every pair of training objects. Therefore, as
the size of the dataset increases, the computational resources
required to run SVMs over the given problem also increase,
eventually becoming unfeasible. Considering that most current
interesting problems can demand several hours/days for the
sequential SVMs to be executed, one must look for novel

computational approaches to run these complex machine
learning algorithms, one of them being their parallelization
within the Graphics Processor Unit (GPU).

A number of studies parallelize SVMs in GPU through
the well-known CUDA framework [2], achieving considerably
better computational performance than the original sequential
version of the algorithm. However, CUDA-based approaches
lack the capability of running in a wider range of GPUs, being
strictly restricted to NVIDIA cards. One framework that does
not suffer from this lack of portability is OpenCL [3], which is
capable of running in several hardware architectures, such as
GPUs, CPUs, APUs (a GPU that shares area in the processor
chip along the CPU cores) and even mobile microprocessors
[4]. Recent surveys conducted by specialized consultants [5]
and online videogames distributors [6] indicate that the number
of GPUs from other manufacturers than NVIDIA – and
hence only capable of running OpenCL-based approaches –
is significantly larger than the number of NVIDIA GPUs. In
a world that currently relies on cloud platforms that usually
provide heterogeneous environments, there is a clear necessity
of developing portable approaches for scaling machine learning
algorithms.

In this work, we propose to improve the efficiency of
binary classification tasks through the parallelization of SVM
in GPU, with the final goal of improving the computational
efficiency of SVMs in a portable fashion. For such, we
parallelize the well-known LIBSVM library [7] using the
previously-mentioned OpenCL framework. As an additional
contribution, the source code of our approach is made
fully available1. For comparison purposes, we evaluate the
performance of our proposed approach with regard to the
original sequential version of the SVMs and also to the
state-of-the-art CUDA-based parallelization algorithm [8].

This paper is organized as follows. Section II presents
a brief background on SVMs, whereas Section III discusses
related work. Section IV describes our proposed approach for
parallelizing SVMs within the GPU, and Section V details the
empirical analysis we conducted to validate its performance.
Finally, we end this paper with our conclusions on the matter
and we point to some interesting future work directions in
Section VI.

1Omitted due to blind review.

2015 Brazilian Conference on Intelligent Systems

978-1-5090-0016-6/15 $31.00 © 2015 IEEE

DOI 10.1109/BRACIS.2015.27

198

II. BACKGROUND

In this section, we briefly explain how SVMs work while
also providing our motivation for the choice of this particular
machine learning algorithm for its further parallelization in
GPUs.

A. Support Vector Machines

Support Vector Machines (SVMs) is a machine learning
algorithm introduced by Vapnik and Cortes [9] based on the
Statistical Learning Theory [1]. SVMs belong to the class
of algorithms that generate the so-called geometric models,
which assume the objects of a given dataset are located in a
d-dimensional cartesian space, and the ultimate goal is to find a
large-margin separating hyperplane that is capable of labeling
novel objects with respect to predefined categories.

SVMs are presented as follows. The algorithm assumes
each attribute to be a cartesian axis in the feature space, and
hence each object can be regarded as a point in this R

d

multi-dimensional space. SVMs then try to linearly separate
the data with g(x):

g(x) =

{
+1 if w · x + b > 0
−1 if w · x + b < 0

(1)

where w is the hyperplane’s normal vector, x is a training set
instance, and b/||w|| the distance to the origin, with b ∈ R.
There are, however, an infinite number of hyperplanes that can
linearly separate the classes by multiplying w and b by the
same constant. The canonical hyperplane is the one in which
w and b are chosen to satisfy:

|w · xi + b| = 1 (2)

this constraints the hyperplane to be one such as{
w · x + b ≥ +1 if yi = +1
w · x + b ≤ −1 if yi = −1 (3)

Note that this effectively leaves a margin between the
outermost objects of the positive class (that is, the objects
closest to the negative class objects), and vice versa. Objects
that define these margins are called support vectors, and the
hyperplane is situated between these support vectors. Figure 1
shows a hyperplane between objects from two classes, as well
as their corresponding support vectors.

If the problem is not linearly-separable in the original
feature space, SVMs are capable of casting the data into
higher dimensional spaces where the problem becomes
linearly-separable [1], by making use of a function called
kernel. In this enhanced feature space, the optimization
problem can then be seen as the one of maximizing the distance
of the hyperplane to the boundary objects from each class,
which is equivalent to minimizing half of the squared norm of
w:

min
w,b

1

2
||w||2 (4)

with constraints: yi(w · x + b)− 1 ≥ 0, ∀i = 1, ..., N .

The constraints are defined in order to prevent training
instances from locating within the margins. These constraints
can be relaxed by adding slack variables ξ to Equation 4:

Fig. 1. A hyperplane (A) that maximizes the distance among objects from
two different classes (B). The circled objects are the corresponding support
vectors. Adapted from [10].

min
w,b

1

2
||w||2 + C

(
N∑
i=1

ξi

)
(5)

where
∑N

i=1 ξi denotes the penalty for misclassifying instances
from the training set, and C is a regularization term that
seeks for a tradeoff between minimizing the misclassification
error and maximizing the hyperplane’s margins – the
well-known tradeoff between predictive performance and
model complexity.

SVMs are also capable of solving multi-class classification
problems, where the class attribute {Cj}kj=1, k > 2. There
are several approaches to deal with multi-class problems, but
the most straightforward strategies are the decompositional
ones: i) either train k(k − 1)/2 predictive models, one for
each pair of classes; or ii) train k models, considering that
any instance that does not belong to the positive class Cj

belongs to a hypothetical negative class (formed by objects
from the remaining classes) [11]. Following the training of
multiple models, it is necessary to merge the results in order
to correctly predict the class of the test instances.

B. Motivation for Using SVMs

SVMs have gained space among other machine learning
algorithms due to its powerful generalization performance even
in high-dimensional problems, making it a suitable method
for tasks such as image recognition, bioinformatics, and text
mining, just to name a few [12]. Moreover, considering
the availability of stable open-source code libraries such as
the LIBSVM [7], it has attracted considerable interest from
researchers and practitioners alike. We present in Figure 2
the amount of SVM-based scientific publications indexed by
Scopus between the years of 1998 and 2013, as a means to
illustrate the growing interest on such a technique.

SVMs are available in the widely-used Weka toolkit [10],
which is a well-known machine learning and data mining API.
When comparing SVMs to other Weka-available classification
algorithms, we can notice the growing attention it has received

199

Fig. 2. Number of publications containing the term “Support Vector
Machines” between 1998 and 2013 according to the Scopus knowledge
database.

in recent years. Figure 3 shows the amount of returned papers
when searching for different machine learning algorithms
followed by the term ”classification”.

Fig. 3. Classification algorithms available at Weka which were searched
within Scopus alongside the term ”classification”. The search was performed
in July 2014 and returned 58,279 results. Algorithms with more than 1,000
results are shown separately.

III. RELATED WORK

Many approaches have been proposed in the literature
for speeding up the computational performance of SVMs.
These approaches vary in aspects such as the source-code
library that implements the SVMs and the hardware in which
they are exploited. The parallelization strategy used in the
work of Lu et al. [13] is to swap support vectors between
machines executing the SVMlight [14] source code in a
strongly connected network of computers. The authors swap
support vectors using several network layouts, pointing out
that strongly connected ones perform better than others, whilst
also speeding up the performance of the sequential SVMs
algorithm.

With regard to employing GPUs for speeding up SVMs,
Cantarazo and Sundaran [12] propose several approaches to
improve LIBSVM [7] performance in terms of efficiency,
such as modifying the Sequential Minimal Optimization
(SMO) strategy to port it to the GPU. They also perform
memory mapping using third party source code to reduce
useless computation. Athanasopoulos et al. [8] also make
use of CUDA as the GPU framework to speed up SVMs
implemented through the LIBSVM library. They propose to

pre-compute the kernel matrix to avoid recomputing these
values during the cross-validation step. They use the RBF
kernel of SVMs to detect high level features of video shots
within several hours of videos. Since both the studies of
Cantarazo and Sundaran [12] and of Athanasopoulos et al. [8]
make use of the CUDA framework [2] to port the source
code to the GPU, their solutions are restricted to hardware
environments with NVIDIA graphics cards.

IV. PROPOSED APPROACH

In this section, we describe how we identified the most
computationally expensive functions in LIBSVM’s source
code, as well as the viability analysis that was performed to
port it to the GPU. We also detail how our proposed approach
was actually implemented.

A. Profiling

As previously mentioned, we make use of the OpenCL
framework to run the source code within the GPU, widening
the range of compatible computers. Microsoft Visual Studio
2012 [15] was used used as an IDE for code developing and
also as a profiler – i.e., a program that counts the number
of function calls. Finally, we used the following computer
configuration in all the performed tests: Intel Core i7 4770
processor, 12 GB DDR3 RAM, NVIDIA GTX 750Ti GPU,
128GB SSD secondary storage (in which the datasets were
stored) and 1TB HD secondary storage.

The first step of this work aims at identifying the most
processor-consuming functions within the SVM source code.
We employed the Radial Basis Function (RBF) kernel as the
function responsible for creating the novel linearly-separable
feature space of the SVMs. We identified that its inner dot
product between pairs of dataset objects is the bottleneck in
terms of computational resources. The RBF kernel has to
compute the dot product between all training instances, and
as the size of a given dataset grows, so does the CPU’s share
of processing regarding the dot product.

The dot product is perfectly suitable for parallelization,
since there is no data dependency between iterations.
LIBSVM’s original source code computes the dot product as
a double loop over the dataset objects, hence being of O(N2)
complexity, where N is the number of dataset objects.

B. Implementation

The proposed computation of the kernel’s dot product is
similar to the one available in the original LIBSVM’s source
code – to compute it only when requested. The difference
between the sequential and parallel implementations is that
the GPU computes dot products much faster than a CPU
due to its stream processors. The CPU used in this work
has 8 cores capable of processing all kinds of instructions.
The GPU, in turn, has 640 stream processors, each one being
capable of processing only a limited range of instructions,
which conveniently include the dot product’s arithmetics.

The implementation makes use of an image, allocated at
the GPU memory, to store values of the objects’ attributes.
Images are optimized for use in GPUs, since their main
purpose is graphics’ processing. Even though GPUs have lately

200

TABLE I. ARTIFICIAL AND REAL DATASETS USED IN THE PROFILING FOR BOTH ORIGINAL AND PARALLEL VERSIONS OF THE SVMS.

Dataset # Attributes # Objects
Instance /

Attribute ratio Size (bytes)

adult 123 32,561 264.72 16,020,012
UCI letter 16 20,000 1.25 1,280,000

census-income-full 42 299,295 7.13 50,279,880

RDG6k10k 10,000 6,000 0.60 240,000,000
RDG7k10k 10,000 7,000 0.70 280,000,000
RDG8k10k 10,000 8,000 0.80 320,000,000
RDG9k10k 10,000 9,000 0.90 360,000,000

Artificial RDG10k10k 10,000 10,000 1.00 400,000,000
RDG10k6k 6,000 10,000 1.67 240,000,000
RDG10k7K 7,000 10,000 1.43 280,000,000
RDG10k8k 8,000 10,000 1.25 320,000,000
RDG10k9k 9,000 10,000 1.00 360,000,000

evolved into a more generic programming hardware, capable
of handling buffers of memory, the choice for coding objects
as images is merely due to convenience: OpenCL provides a
built-in function that calculates dot products between regions
of images. Regardless of the choice for representing objects
within the GPU memory, OpenCL limits the size of available
memory to approximately half of all physical memory. For
the NVIDIA GTX 750Ti GPU, for instance, each image
can have up to 16,384 floating-point values wide by 16,384
floating-point values high, totalizing 1GB of memory. We sort
out the image space to store the dataset from left to right
(regarding the attributes) and up to down (with respect to the
objects). The four cases of dataset storage that may arise are
shown in Figure 4.

Fig. 4. Four possible situations (A, B, D, and E) for storing a dataset into
a GPU’s image. In (A), the dataset is smaller than the boundaries of the
image, dispensing any treatment. In (B), the dataset has more instances than
the image, but as the image has more horizontal space to fit another column of
attributes, the overflowed instances are stored in the second column, as shown
in (C). Cases (D) – the dataset has more attributes than the GPU has columns
to store it – and (E) – dataset has both more attributes and instances than
GPU’s storage capability – are not supported by the current implementation,
and will result in failure.

Due to the fact that the data are encoded as an image,
the number of attributes must be a factor of 4, since this
is the number of channels of a pixel (red, green, blue, and
alpha). If a dataset does not have a compatible number of
attributes, we insert dummy attributes with zeros for all objects
at the end of the image matrix. It is important to notice that
this modification is exclusive to the dataset encoding within
the GPU memory. The objects stored in host memory remain
unaltered. Additionally, the results of the dot products do not
change, which means the augmented feature space does not
affect the effectiveness of the SVMs. For instance, the dot

product between objects [2 3 5]T and [7 11 13]T will be the
same as the dot product of [2 3 5 0]T and [7 11 13 0]T ,
(2× 7) + (3× 11) + (5× 13) + (0× 0) = 112.

The parallelism is exploited object-wise: several dot
products can be calculated at the same time – it depends on
the number of threads that the GPU hardware can handle. The
dot product is now calculated within a single pass over the
dataset. A simplified explanation of the algorithm is presented
in Figure 5.

1: procedure GPUDOTPRODUCT(objIndex, pivotIndex)
2: sum ← 0
3: //one pixel is 4 attributes
4: for i ← 0 until attributeCount do
5: pixel1 ← image[pivotIndex][i]
6: pixel2 ← image[objIndex][i]
7: sum ← sum + dotProduct(pixel1, pixel2)

8: return sum

Fig. 5. Dot product calculation at the GPU. pivotIndex is passed to the GPU’s
parameters to let it know which object is having its dot product currently
calculated. objIndex may be any number ranging from 0 to the number of the
dataset’s objects, and is automatically assigned by the GPU.

V. EXPERIMENTAL ANALYSIS

A. Methodology

To assess the performance of the proposed approach over
different scenarios, we make use of artificial datasets generated
by RDG, a Weka data generator [10], as well as real-world data
from the UCI Machine Learning Repository2 [16]. All datasets
used in this analysis represent binary classification problems.
The artificial and real-world datasets are presented in Table I.

We executed three versions of the LIBSVM source code:
i) the original sequential version; ii) the official LIBSVM’s
CUDA version, which was detailed in [8] and is available
for downloading at the LIBSVM’s website3; and iii) our
proposed approach version4. Since OpenCL is a cross-platform
framework and we are using an NVIDIA GPU, it is possible to
run both CUDA and OpenCL versions in our computer. Each
dataset is executed ten times, and the final results are averages
computed from these different runs. The results of the tests
are presented in the next section.

2Available at http://archive.ics.uci.edu/ml/ and http://www.csie.ntu.edu.tw/
∼cjlin/libsvmtools/datasets/.

3http://www.csie.ntu.edu.tw/∼cjlin/libsvm/
4Omitted due to blind review.

201

B. Results

Our proposed approach achieves, as one should expect,
the same accuracy (predictive performance) than both the
CUDA-based strategy and the original sequential version,
considering that we are not modifying the optimization
algorithm that is performed by the SVMs.

In terms of computational performance, our approach
outperforms the original sequential version and the
CUDA-based method in 11 out of the 12 datasets considered
in this work. The single case in which our version was
outperformed by CUDA has a straightforward explanation:
OpenCL presents an overhead not verified in CUDA, which
is the fact that the GPU kernel must be compiled in every
execution of the program, whereas CUDA compiles it only
once. Thus, OpenCL spends some time compiling the kernel
on-the-fly, which ends up being the total execution time of
the CUDA and sequential versions for the letter dataset.
Regardless of this overhead, the OpenCL is capable of
compensating for larger datasets, eventually performing better
than the sequential and CUDA-based implementations. The
average of ten runs for each dataset, as well as the standard
deviations and relative speedups with regards to the sequential
code are presented in Table II.

Although OpenCL requires the kernel to be compiled
on-the-fly, it is clear by analyzing the data in Table II, specially
for the real-world datasets, that GPU implementations may be
outperformed by the sequential version if the dataset is not
sufficiently large in bytes. This is due to the cost of transferring
the dataset to GPU memory (to compute the dot products) and
from it (to get the computed results).

In order to explain why our version also outperforms the
Athanasopoulos’ CUDA-based version [8], it is necessary to
carefully examine the latter’s source code. We noticed that
the differences are mainly due to the way some optimization
strategies were implemented. The key differences are:

1) We calculate the sum of squares of each object (the
dot product of an object with itself) also in GPU,
instead of CPU;

2) The dataset is loaded to GPU only once, during the
reading process. Athanasopoulos’s version [8] loads
it whenever it is necessary.

We also noticed that, for the largest datasets that were used
in this work, the speedup of the CUDA-based version reaches
a plateau when it is about 4 times faster than the sequential
version, whilst OpenCL reaches a similar plateau only when
it is about 36 times faster. We believe this difference is due to
the aforementioned differences between versions.

In order to provide more insights on the data presented
in Table II, we illustrate the execution time of the artificial
datasets when varying the number of objects in Figure 6, whilst
in Figure 7 we show the same for the case of varying the
number of attributes. Finally, Figure 8 depicts the speedup
achieved by both OpenCL and CUDA versions in relation to
the sequential original version.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we proposed to improve the efficiency of
binary classification tasks through the parallelization of the

Fig. 6. Execution time for the artificial datasets, when increasing the number
of objects. The datasets were ordered in ascending order regarding the number
of objects.

Fig. 7. Execution time for the artificial datasets, when increasing the number
of attributes. The datasets were ordered in ascending order regarding the
number of attributes.

Fig. 8. Speedup of both CUDA and OpenCL versions in relation to the
sequential original version.

202

TABLE II. MEAN EXECUTION TIME μe (H:M:S,MS), STANDARD DEVIATION σ (M:S,MS), AND SPEEDUP μs OF 10 EXECUTIONS OF OPENCL AND

CUDA-BASED APPROACHES IN RELATION TO THE SEQUENTIAL VERSION.

Dataset Sequential OpenCL CUDA

μe Sequential σ Sequential μe OpenCL σ OpenCL μs OpenCL μe CUDA σ CUDA μs CUDA

adult 00:00:37.34 00:00.25 00:00:25.09 00:00.30 1.49× 00:01:01.93 00:00.34 0.60×
UCI letter 00:00:12.49 00:00.06 00:02:17.92 00:00.82 0.09× 00:00:11.58 00:00.01 1.08×

census-income-full 08:37:39.43 05:15.59 03:38:51.90 00:43.65 2.37× 06:48:15.29 02:42.85 1.27×
rdg6k10k 00:25:25.60 00:01.41 00:01:00.18 00:00.55 25.35× 00:05:38.80 00:00.26 4.50×
rdg7k10k 00:30:33.92 00:00.52 00:01:03.68 00:00.15 28.80× 00:06:45.79 00:00.11 4.52×

Artificial #obj rdg8k10k 00:50:54.06 01:04.07 00:01:45.77 00:01.80 28.87× 00:11:03.04 00:10.39 4.61×
rdg9k10k 01:18:11.68 00:01.07 00:02:19.99 00:00.19 33.52× 00:16:56.16 00:00.46 4.62×
rdg10k10k 01:45:24.80 00:05.21 00:02:55.67 00:00.80 36.00× 00:22:46.30 00:00.39 4.63×
rdg10k6k 00:47:04.46 00:02.03 00:01:31.35 00:00.72 30.92× 00:10:18.87 00:00.12 4.56×
rdg10k7k 00:44:22.87 00:01.43 00:01:34.24 00:00.40 28.26× 00:09:46.30 00:00.33 4.54×

Artificial #att rdg10k8k 01:14:51.43 00:03.46 00:02:15.88 00:00.80 33.06× 00:16:14.75 00:00.55 4.61×
rdg10k9k 01:32:42.77 00:03.78 00:02:37.67 00:00.92 35.28× 00:20:07.65 00:00.80 4.61×
rdg10k10k 01:45:24.80 00:05.21 00:02:55.67 00:00.80 36.00× 00:22:46.30 00:00.39 4.63×

SVMs algorithm [7] within a GPU, achieving a considerable
speedup when compared to its sequential version, and also
to a CUDA-based approach [8]. For such, we employed the
OpenCL framework [3], which allows the proposed approach
to be portable to heterogeneous environments – our approach is
capable of running in CPUs, GPUs, APUs, and even in mobile
architectures.

The proposed approach is successful in significantly
increasing LIBSVM’s computational performance up to 36×,
while keeping the same predictive performance measured in
terms of classification accuracy. The most time-consuming
classification problem, which was represented by the artificial
dataset rdg10k10k, was reduced from approximately 1 hour
and 45 minutes of computation to only 3 minutes. While
we are confident that this is quite an advance for solving
large problems with SVMs within a wide range of GPUs, we
believe there is room for improvement and exciting future work
opportunities, such as performing the parallelization of SVMs
for other tasks like multi-class and multi-label classification,
and also for regression problems.

ACKNOWLEDGMENTS

The authors would like to thank CAPES – Coordenação
de Aperfeiçoamento de Pessoal de Nı́vel Superior – and
CNPq – Conselho Nacional de Desenvolvimento Cientı́fico e
Tecnológico – for funding this work.

REFERENCES

[1] V. Vapnik, “An overview of statistical learning theory,”
IEEE Transactions on Neural Networks, vol. 10,
pp. 988–999, 5 1999.

[2] NVIDIA, CUDA Toolkit Documentation, http : / /docs .
nvidia.com/cuda/, 2014.

[3] Khronos, The OpenCL 1.2 Specification, http: / /www.
khronos.org/registry/cl/specs/opencl-1.2.pdf, 2012.

[4] K. Karimi, N. G. Dickson, and F. Hamze, “A
performance comparison of cuda and opencl,” ArXiv
preprint arXiv:1005.2581, 2010.

[5] Forbes, Pc gpu market bounces back, with nvidia up and
amd down, http://www.forbes.com/sites/jasonevangelho/
2014/02/19/pc-gpu-market-bounces-back-with-nvidia-
up-and-amd-down/, 2014.

[6] Valve, Hardware and software survey, http : / / store .
steampowered.com/hwsurvey/videocard/, 2014.

[7] C.-C. Chang and C.-J. Lin, “Libsvm: A library
for Support Vector Machines,” ACM Transactions on
Intelligent Systems and Technology, vol. 2, 27:1–27:27,
3 2011.

[8] A. Athanasopoulos, A. Dimou, V. Mezaris, and I.
Kompatsiaris, “Gpu acceleration for support vector
machines,” in Proceedings of 12th International
Workshop on Image Analysis for Multimidia Interactive
Services, Delft, Netherlands, 2011.

[9] V. Vapnik and C. Cortes, “Support vector networks,”
Machine Learning, vol. 20, p. 273, 3 1995.

[10] I. Witten, E. Frank, and M. Hall, Data Mining -
Practical Machine Learning Tools and Techniques,
3rd ed. Morgan Kaufmann, 2011, p. 629.

[11] A. C. Lorena, “Investigação de estratégias para
a geração de máquinas de vetores de suporte
multiclasses,” http://www.teses.usp.br/teses/disponiveis/
55 / 55134 / tde - 26052006 - 111406/, PhD thesis,
Instituto de Ciências Matemáticas e de Computação,
Universidade de São Paulo, São Carlos, São Paulo,
Brazil, 2006.

[12] B. Catanzaro, N. Sundaram, and K. Keutzer, “Support
vector machine training and classification on graphics
processors,” in Proceedings of the International
Conference on Machine Learning, Helsink, Finland,
2008, pp. 104–111.

[13] Y. Lu, V. Roychowdhury, and L. Vandenberghe,
“Distributed parallel support vector machines in strongly
connected networks,” IEEE Transactions on Neural
Networks, pp. 1167–1178, 2008.

[14] T. Joachims, “Making large-scale svm learning
practical,” in Advances in Kernel Methods - Support
Vector Learning, B. Schölkopf, C. Burges, and
A. Smola, Eds., Cambridge, MA: MIT Press, 1999,
ch. 11, pp. 169–184.

[15] Microsoft, Visual studio documentation, http : / / www.
visualstudio .com/pt - br /get - started /overview- of- get -
started-tasks-vs, 2014.

[16] K. Bache and M. Lichman, UCI Machine Learning
Repository, http://archive.ics.uci.edu/ml, 2013.

203

