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ABSTRACT
Data clustering is the machine learning task that aims at
arranging data into groups (clusters) of objects according
to a similarity criterion. From an optimisation perspective,
it is a particular kind of NP-hard grouping problem,
thus attracting much attention from the evolutionary
computation community. In this paper, we propose a novel
data clustering algorithm based on a univariate estimation
of distribution algorithm, namely Clus-EDA. It employs a
medoid-based representation in which the cluster prototypes
necessarily coincide with objects from the dataset. We
compare Clus-EDA with both traditional non-evolutionary
clustering algorithms such as k-means and hierarchical
agglomerative clustering, and also with an evolutionary
algorithm for clustering, in artificial and synthetic datasets.
Our results show that Clus-EDA often outperforms the
baseline algorithms with regard to distinct cluster validity
criteria.

CCS Concepts
•Computing methodologies → Cluster analysis;
Bio-inspired approaches;
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1. INTRODUCTION
Data clustering is a task whose purpose is to determine a
finite set of categories (clusters) to describe a dataset only
taking into account the similarity among its objects, with
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no supervision whatsoever regarding the number or type
of categories [9]. Examples of real-world applications that
benefit from data clustering include image segmentation [2]
and bioinformatics [6, 1].

From an optimisation viewpoint, data clustering is
considered a particular kind of NP-hard grouping
problem, thus attracting a number of studies that
explore general-purpose meta-heuristics for providing an
approximate solution in feasible time. Given that
evolutionary algorithms (EAs) are a class of meta-heuristics
widely believed to be effective on NP-hard problems, many
researchers approached the data clustering problem by
designing specific EAs for evolving partitions of clusters in
a variety of application domains [7].

Typically, EAs for clustering employ the label-based
strategy, in which an integer encoding is usually used. Each
gene represents a dataset object with a value over the
alphabet {1, 2, ..., k} for a k-clustering problem, indicating
the cluster each object belongs to. Approaches that employ
this strategy can assume either a fixed or a variable number
of clusters. Medoid-based EAs are much less frequent. In
such an approach, there are strategies that encode each
individual as a binary string, indicating whether or not an
object is a prototype (medoid). Others encode individuals
as a k-sized integer vector, where each gene represents a
cluster and the integer value indicates which object is the
medoid of the corresponding cluster. Regardless of the
approach, medoid-based EAs have employed so far a fixed
number of clusters strategy. We argue that this is not a
good solution, because it assumes the user knows a priori
the correct number of clusters, which is not what happens
in real-world problems.

In this paper, we propose a novel EA for data clustering
following the medoid-based approach with a variable number
of clusters, namely Clus-EDA (Clustering with Estimation
of Distribution Algorithms). Our approach makes use of a
univariate estimation of distribution algorithm (EDA) for
evolving clustering partitions following the binary string
encoding. Our hypothesis is that a medoid-based EDA is
capable of achieving better results than traditional data
clustering algorithms such as k-means [10] and hierarchical
agglomerative clustering [9]. Furthermore, we believe our
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approach is capable of outperforming a label-based EA
called F-EAC [6], without requiring the number of clusters
prior to its execution.

This paper is organised as follows. Section 2 presents our
novel evolutionary approach for data clustering. Section 3
describes the methodology that we employed for the
experimental analysis, as well as a discussion on our findings.
We present our conclusions and future work direction in
Section 4.

2. CLUS-EDA
Clustering with Estimation of Distribution Algorithms
(Clus-EDA) is an EDA for medoid-based data clustering.
EDAs are a particular class of evolutionary algorithms
that explore the space of candidate solutions by building
and sampling explicit probabilistic models of promising
solutions [5]. The main characteristic of EDAs is the
absence of the nature-inspired operators during evolution.
Instead, the future populations are generated by learning
and simulating a probability distribution from fitness-based
selected individuals of the current population [13].

Clus-EDA samples solutions encoded by a univariate
probabilistic model, which is responsible for determining
whether each object in a dataset is a medoid or not.
A medoid is a cluster representative, and the number of
medoids indicate the number of clusters found by Clus-EDA.
Each individual in Clus-EDA is a binary vector of size n,
where n is the number of objects in the dataset.

Clus-EDA is a univariate EDA, also regarded as a univariate
marginal distribution algorithm (UMDA) [11]. It employs
a probability vector p = (p1, p2, ..., pn) as its probabilistic
model, where pi denotes the probability of object xi to be a
medoid. To learn the probability vector, each pi is set to the
proportion of 1s in the population of selected individuals.

For initialising the probability vector with some prior
knowledge regarding the application domain, we execute
k-means [10] multiple times varying k from 2 to

√
n and

select the number of clusters k∗ from the partition that
optimises a given clustering validity index. This heuristic
is a thumb rule for defining the optimal value of k for
methods that require this definition a priori. Even though
Clus-EDA does not require setting a fixed number of clusters
prior to its execution, we set pi = k∗/n, ∀i ∈ {1, 2, ..., n}.
By doing so, we potentially reduce the search-space of
Clus-EDA, even though it will automatically adjust the
probability vector throughout evolution, being capable
of discovering partitions with any number of clusters.
The clustering validity criterion used to define k∗ is the
Silhouette Width Criterion [14], a widely-used index to
validate data clustering partitions.

In each generation of Clus-EDA, we employ the truncation
method for selection, which chooses t% of the fittest
individuals of that particular generation to update the
probabilistic univariate model. Once the model is updated,
Clus-EDA samples the probability vector p to generate an
entire novel population of individuals that fully replace
the previous generation. The iteration continues until a
maximum number of generations is achieved.

2.1 From Individuals to Clustering Partitions
For decoding the individuals into partitions, the first
step is to identify which objects are defined as medoids.
Note that the number of clusters is variable since it is
constantly updated according to the EDA’s probabilistic
model. For each non-medoid object xi, Clus-EDA computes
the Euclidean distance between xi and every single medoid,
and finally assigns xi to the cluster represented by its closest
medoid.

The binary encoding adopted by Clus-EDA has several
advantages over other typical encodings in evolutionary
clustering problems. For instance, let us consider the case
of the integer encoding in which each gene (object) has a
value over the alphabet {1, 2, ..., k}. Such an encoding is
naturally redundant (1-to-many), since there are k! different
genotypes that represent the same solution [7]. Furthermore,
it assumes the number of clusters k is previously known,
which is often not the case in real world applications.

2.2 Fitness Function
The fitness function in Clus-EDA should be capable of
evaluating the quality of the data clustering partition.
However, the validation of clustering structures is said to
be most difficult and frustrating part of cluster analysis, to
the point in which it is compared to a “black art” [8].

Several clustering validity criteria have been proposed in the
specialised literature throughout the years. We refer the
interested reader to a thorough survey on clustering validity
criteria by Vendramin et al. [15]. Most of these criteria,
however, are computationally costly.

Let n be the number of objects and a the number of
attributes in the dataset. The cost of most validity criteria is
quadratic in the number of objects – e.g., Dunn’s (O(an2)),
Silhouette Width Criterion (O(an2)), Gamma (O(an2 +
n4/k)), McClain-Rao (O(an2)), just to name a few.

Hence, we decided to choose as fitness function a validity
criterion whose complexity is linear in n, namely the
Simplified Silhouette Width Criterion (SSWC) [6]. It is an
efficient implementation of the traditional Silhouette Width
Criterion (SWC) [14] as follows:

SWC =
1

n

n∑
i=1

b(i)− a(i)

max{a(i), b(i)} (1)

where a(i) is the average dissimilarity between the ith

object and its cluster, and b(i) is the average dissimilarity
between the ith object and the nearest neighbor cluster.
For singletons, the ratio is not computed (it is replaced
by zero). The difference between the simplified and
traditional Silhouette Width Criterion is in how a(i)
and b(i) are computed. Whereas SWC computes the
average dissimilarity by employing all objects belonging to
the corresponding cluster (complexity of O(an2)), SSWC
computes the average dissimilarity by using the cluster
prototypes instead (complexity of O(ank)). Note that
SSWC can become costly for k ≈ n, though we know that
in practical terms k << n.
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Table 1: Results summary. Values for the true number of clusters (k), the estimated number of clusters (k∗), Simplified
Silhouette Width Criterion, Davies-Bouldin index, and Adjusted Rand Index for k-means, UPGMA, F-EAC, and Clus-EDA.
Values for Clus-EDA and F-EAC are averages of 30 executions.

k-means UPGMA F-EAC Clus-EDA
Dataset k k∗ SWC DB ARI k∗ SWC DB ARI k∗ SWC DB ARI k∗ SWC DB ARI

s1 15 16.00 0.63 0.61 0.90 19.00 0.51 0.63 0.85 15.00 0.71 0.46 0.87 15.07 0.71 0.42 0.99
s2 15 14.00 0.61 0.48 0.89 15.00 0.52 0.68 0.91 15.00 0.63 0.57 0.87 15.07 0.62 0.53 0.93
s3 15 14.00 0.41 0.69 0.62 15.00 0.19 0.91 0.69 15.00 0.49 0.76 0.86 14.73 0.49 0.70 0.73
s4 15 17.00 0.47 0.68 0.64 18.00 0.10 0.98 0.61 15.00 0.48 0.77 0.85 15.20 0.47 0.73 0.65

sin1 6 5.00 0.63 0.53 0.67 6.00 0.65 0.71 0.84 6.00 0.65 0.60 0.67 6.00 0.65 0.52 0.84
sin2 6 6.00 0.54 1.11 0.43 5.00 0.69 0.62 0.67 5.00 0.69 0.48 0.55 5.00 0.69 0.43 0.67
sin3 6 4.00 0.45 0.89 0.44 5.00 0.73 0.47 0.54 4.00 0.72 0.44 0.44 4.00 0.72 0.43 0.54
sin4 6 6.00 0.51 1.06 0.64 8.00 0.70 0.91 0.83 6.93 0.69 0.62 0.67 6.00 0.69 0.43 0.84
sin5 6 6.00 0.55 0.78 0.65 5.00 0.64 0.70 0.67 8.00 0.64 0.57 0.67 6.00 0.63 0.56 0.83

3. EXPERIMENTAL ANALYSIS
In this section, we detail the datasets that are employed
in the experiments (Section 3.1), as well as the clustering
algorithms that participate in the analysis (Section 3.2), the
parameters used in Clus-EDA and in the baseline algorithms
(Section 3.3), and the evaluation measures to validate the
results (Section 3.4). At the end of the section, we discuss
the results of the empirical analysis (Section 3.5).

3.1 Datasets
For validating our results, we make use of a total of 9
datasets. The first 4 of them, namely s1, s2, s3, and s4,
are artificial datasets proposed by Fränti and Virmajoki
[4]. These datasets are 2-d data with n = 5000 and
k = 15 Gaussian clusters with different degrees of cluster
overlapping. The advantage of using artificial data is that
we possess the “golden truth”, i.e., the partition with the
correct cluster assignments, so we can evaluate the clustering
algorithms more objectively.

The second set of datasets we make use were created by
Yeung et al. [16], which simulate data from microarray.
The 5 synthetic microarray datasets, namely sin1, sin2,
sin3, sin4, and sin5, are formed by n = 400 genes and
a = 20 measurements (attributes). There are approximately
6 clusters with equal size in each of these dataset.

3.2 Baseline Algorithms
For comparison purposes in the empirical analysis, we make
use of well-known clustering algorithms, namely k-means
[10] and UPGMA [9], as well as F-EAC [12], which is a
mutation-based EA (no crossover is performed whatsoever),
with specialised mutation operators for the clustering task.

3.3 Parameters
Both k-means and UPGMA have a single parameter, which
is the final number of clusters k. For deciding which
value of k to use, we executed both algorithms for each
dataset varying the number of clusters within [2,

√
n], and

we selected the value of k from the partition that optimised
the SWC. This thumb rule is often used for defining the
number of clusters in algorithms such as k-means.

Regarding F-EAC and Clus-EDA, we executed both within
a cycle of 500 individuals and 500 generations. We kept the
remaining default parameters of EAC [12]. For Clus-EDA,
the only parameters are the value of the truncation selection,

which we set to t = 50%, and the value of the initial
probability for each gene in the probabilistic vector (for
generating a uniform distribution). As detailed in Section 2,
we defined the initial probability as k∗/n, where k∗ is
the same value of k found by k-means in the thumb rule.
Hence, the values of initial probability for Clus-EDA in the
9 datasets are as follows: s1 = 0.0032, s2 = 0.0028, s3 =
0.0028, s4 = 0.0034, sin1 = 0.0125, sin2 = 0.015, sin3 =
0.01, sin4 = 0.015, and sin5 = 0.015.

3.4 Evaluation Measures
Considering that all datasets that are used during the
empirical analysis are synthetic, one of the evaluation
measures we compute is the Adjusted Rand Index (ARI).
ARI verifies the compatibility between the generated
partition (henceforth called “clusters”) and the reference
partition (henceforth called “classes”). It is a measure
adjusted for chance, i.e., when comparing two random
partitions it yields a value close to zero. We also evaluate
the results according to other two criteria, namely SWC and
DB. SWC is the original Silhouette Width Criterion [14]
without the prototype simplification for speeding it up, the
latter being used in Clus-EDA’s fitness function. Criterion
DB is the Davies-Bouldin index [3], which is also an internal
validity criterion that analyses the data alone.

3.5 Results
We executed Clus-EDA and F-EAC 30 times by varying
the seed of each execution, since they are evolutionary
non-deterministic approaches. UPGMA and k-means were
executed once per number of clusters, which was varied
within [2,

√
n]. Then, we selected the partition that

optimised the SWC validity index [14] for each one of them.
Table 1 presents a summary with the experimental results.

Our first analysis in this round of experiments was regarding
the number of clusters found by each method. Note that
Clus-EDA presents the lowest average absolute error (0.40)
regarding the estimated number of clusters, followed by
F-EAC and k-means, and then by UPGMA. In other words,
Clus-EDA is the algorithm that best estimates the number
of clusters, though we are aware that simply estimating the
proper number of clusters is not enough for a clustering
algorithm to be deemed effective.

Therefore, our second analysis was regarding the Adjusted
Rand Index (ARI). Note once again that Clus-EDA seems to
be the best option among the algorithms that were executed.

114



It provides the largest ARI value in 7 of the 9 datasets,
even though it ties with UPGMA in three of them. By
presenting the best ARI values, Clus-EDA demonstrates it
has the greatest potential to approximate the golden truth
provided by each of these datasets.

Our next analysis was regarding the internal validity criteria
SWC and DB. Regarding SWC, Clus-EDA together with
F-EAC and UPGMA shared wins, with a small advantage
to F-EAC overall. In terms of the DB index, Clus-EDA
once again has shown to be the best option, winning in 6
out of 9 datasets (with k-means winning in the remaining
three datasets). Hence, we have showed that Clus-EDA is
not only the best clustering algorithm in estimating the
correct number of clusters, but that it also is the best
algorithm regarding both external and internal clustering
validity criteria.

4. CONCLUSIONS
This work proposed a novel estimation of distribution
algorithm for medoid-based clustering, namely Clus-EDA.
The proposed approach employs a simple but efficient and
effective evolutionary framework that estimates a univariate
marginal distribution model to define cluster prototypes. To
guide the iterative refinement of the probabilistic model,
Clus-EDA employs a clustering internal validity criterion
that has complexity O(an), i.e., linear in the number of
objects and attributes.

We compared Clus-EDA with k-means [10] and hierarchical
agglomerative clustering [9], and also with an evolutionary
algorithm F-EAC [12]. For comparison purposes, we
employed 9 clustering datasets: 4 of them were artificially
generated based on Gaussian clusters [4], and 5 of them
simulate microarray gene expression data [16]. Results show
that Clus-EDA can generate data partitions that provide
a greater agreement regarding the reference partitions,
outperforming the baseline clustering algorithms in both
external and internal clustering validity criteria. As future
work, we intend to verify whether more sophisticated
probabilistic models would wield improved results for
medoid-based clustering.
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