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Abstract—Data clustering is an unsupervised learning task
that can be regarded as the combinatorial optimisation NP-
hard problem of assigning N objects to one (or more) among
k clusters. Most data clustering algorithms require the user
to set a number of pre-defined parameters that have decisive
impact in the formation of clusters, such as the number of
clusters (initial or final), cluster radius, minimum number of
objects, and similar parameters. In addition, several clustering
algorithms are limited with regard to the shape of clusters that
can be found, a limitation usually resulting from the optimisation
process performed over a given distance metric. In this work,
we propose a novel clustering algorithm that addresses the two
aforementioned problems regarding the amount of parameters
and cluster shape. Our approach makes use of the theory of
Estimation of Distribution Algorithms in order to probabilistic
sample a set of must-link/cannot link constraints in order to
generate a data partition with the proper number of clusters.
We name our method PASCAL, and we empirically show that
it is capable of not only detecting the right number of clusters
but also of properly assigning objects to the correct cluster in a
variety of artificial and real problems whose solutions are known
in advance.

Keywords—estimation of distribution algorithms, clustering,
machine learning

I. INTRODUCTION

Clustering is an important task within machine learning,
consisting of finding groups of similar objects within a batch
or stream of data. From an optimisation viewpoint, it consists
of assigning objects to a given number of clusters (k) in
order to maximise the intra-cluster similarity and minimise
the inter-cluster similarity. Note, however, that there are
1
k!

∑k
i=0(−1)i

(
k
i

)
(k − i)N possible assignments of N objects

to k clusters [1]. The notion of quality regarding clustering
solutions is somewhat subjective and often domain specific,
even though there are different criteria that can be used to
estimate the overall quality of a partition under some prior
assumption.

Each clustering algorithm adopts a particular strategy as
well as a set of assumptions for generating partitions or
hierarchies of partitions. Partitional clustering methods such
as the well-known k-means algorithm [2] usually optimise a
given cohesion criterion (e.g., the Sum of Squared Errors) via
an iterative optimisation procedure. Hierarchical agglomerative
clustering algorithms [3], [4], in turn, generate a hierarchy of
partitions ranging from the trivial solution of one cluster per
object to the total merge of the entire dataset into a single

cluster. A typical strategy for analysing these algorithms is
to build a dendrogram representing the step-by-step process
of merging clusters, and by making horizontal cuts in this
dendrogram one can extract up to N partitions (considering
N the number of objects in the dataset) with varying number
of objects per cluster.

Even though several well-known clustering algorithms im-
plement a particular greedy heuristic for choosing a near-
optimal solution, it is only natural that data clustering be ap-
proached by global-search meta-heuristics having in mind the
fact that it is a NP-hard task [3]. Hence, several evolutionary
algorithms for clustering have been proposed throughout the
years, and we refer the interested reader to the thorough survey
by Hruschka et al. on the matter [5]. More recently, with the
rise of the Estimation of Distribution Algorithms (EDAs) [6],
which achieved state-of-the-art performance in a variety of
distinct optimisation problems, we believe its application in
the domain of clustering offers exciting reseearch possibilities.

EDAs work based on three main aspects: encoding of
individual, probabilistic model (along with a sampling strat-
egy), and fitness function. An EDA holds a set of possible
solutions (individuals) which comprise a population. It starts
by sampling individuals from an uniform distribution encoded
within a probabilistic model, which maps the relationship
among variables. Once sampled, each individual has its fitness
asserted through a domain-specific criterion that assesses the
quality of the solution. From a limited set of best individuals
the distribution is updated in every generation and thus novel
individuals are sampled, with the process continuing until a
maximum number of generations (or convergence) is reached.

In this paper, we present an estimation of distribution
algorithm to perform clustering in arbitrarily-shaped datasets,
namely PASCAL (PArameterless Shape-independent Cluster-
ing ALgorithm). The individual encoding in PASCAL presents
two advantages: (1) it prevents the generation of a round search
space by making sure that different genotypes are mapped to
different phenotypes, which is a problem that related work
fail to prevent; and (2) since it is based on a minimum
spanning tree to encode its probabilistic graphical model, it
starts from a promising region in the solution space that is
much more likely to present better results than otherwise.
PASCAL addresses two major issues in data clustering, which
is the ability to handle clusters with different shapes (e.g.,
other than spherical), and the fact that it does not require the
setting of clustering-related parameters (e.g., number of clus-
ters, radius, minimum density, etc.). We empirically analyse
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PASCAL’s performance in 9 artificial datasets whose cluster
labels are known in advance, and in one real-world labeled
dataset in which we assume the mapping class-to-cluster holds.
We show in our experiments that PASCAL is capable of not
only correctly predicting the number of groups in the data,
but also of properly assigning objects to their corresponding
clusters.

The remaining of this work is organised as follows.
Section II introduces the reader to our novel method for
data clustering. Section III reports the methodology that was
followed in the empirical analysis for validating our approach,
allowing for reproducibility. Section IV describes the results
of the experiments and a discussion on our findings. Section V
presents a brief literature review on related work. Finally, we
draw our conclusions and point to future work in Section VI.

II. PASCAL

Consider a set of objects o1, o2, · · · , oN ∈ O in a �m di-
mensional feature space. For assigning N objects to k clusters,
there are a total of 1

k!

∑k
i=0(−1)i

(
k
i

)
(k− i)N possibilities [1].

Hence, the challenge in data clustering is not only to correctly
estimate the number of clusters k, but also to properly assign
each object to these clusters.

One strategy to reduce the combinatorial problem without
loss of quality is by taking into account geometrical aspects of
the data. Let us assume that all objects are connected to each
other by E edges. An edge weight is given by the distance
between a pair of objects (say the Euclidean distance, without
loss of generality). Hence, we have a dense graph G with
objects representing the vertices. If we now consider that each
edge links two objects that belong to the same cluster, the
task of finding clusters is reduced to the one of removing
unnecessary edges from the graph. This graph modelling maps
the set of assumptions in PASCAL: defining each edge of the
graph as either a must-link or a cannot link relationship. The
next section goes into further details of each step of PASCAL’s
evolutionary clustering.

A. Encoding Individuals as MSTs

It is fairly intuitive that one does not need to start from a
fully-connected graph in order to remove the edges that will
most probably maximise a given clustering quality criterion.
Instead, by realising that far-away objects are much less likely
to belong to the same cluster than closer objects, one could
start with a graph whose edges only connect an object to its
closest neighbour. Indeed, the strongest link of an object oi is
with its nearest neighbour, and if not even that neighbour is in
the same cluster than oi, then no other object will be (this is
only true of course under the assumption that minimising the
distance is the equivalent of maximising similarity).

Hence, instead of building a fully dense graph, PASCAL
builds a minimum spanning tree (MST), which connects the
set of N vertices with a subset Eπ of N−1 edges from E that
minimise the overall weight of the tree while preventing cycles.
The distance measure used for calculating the weight of edges
can be any one which satisfies the symmetry (D(xi, xj) =
D(xj , xi)), positivity (D(xi, xj) ≥ 0 ∀i, j ∈ [0, . . . , N ]), and
reflexivity (D(xi, xj) = 0 iff xi = xj) properties [3]. A well-
known distance measure that satisfies all these properties plus

the triangle inequality (D(xi, xj) ≤ D(xi, xk)+D(xk, xj) for
all xi, xj and xk) is the Euclidean distance, which is used as
the default distance measure in PASCAL.

PASCAL employs the Kruskal’s algorithm [7] for gen-
erating the MST based on a pre-computed distance matrix.
Kruskal’s algorithm starts by considering each vertex as a
candidate subtree, and also all possible edges in the graph. It
then iteratively removes an edge with minimum weight from
the set of edges, and if that edge connects different trees it
combines them into a single tree. At the end of the process,
since the graph is connected the single resulting tree is an MST
containing all N vertices (i.e., objects) and N − 1 edges.

PASCAL starts the search of clusters within the MST by
considering which edges should be disconnected and which
should not. Naturally, there are 2(N−1) − 2 valid clustering
partitions to be found in this search, which means the number
of solutions grows exponentially with the number of objects.
Using an MST presents an advantage over the label-based
approaches usually employed in evolutionary clustering algo-
rithms (e.g., [8]): it prevents the search space to be artificially
enlarged due to multiple genotypes that are actually mapped
to the same phenotype. Figure 1 exemplifies this situation:
three candidate solutions that can be found by a label-based
evolutionary algorithm have the same cluster assignment (phe-
notype), but three different labels for objects (genotypes).

Fig. 1: Three individuals (P1, P2 and P3) with different label
assignments for objects o1, o2, o3, but with the same genotype
(cluster assignment).

Once the MST is built, it is mapped into a probabilistic
graphical model (GM) [9]. A GM is a resource used by EDAs
to sample new individuals for comprising the population of
candidate solutions. The relationship among variables with
regard to their mutual interaction dictates the type of GM:
it may be either direct, in which a children variable does not
affect the outcome value of the parent variable; or indirect,
in which this interaction is possible. Even though MSTs are
intrinsically undirected, we make use of direct inference for
sampling values from probabilities, and hence we convert the
MST into a direct GM. Such a transformation is straightfor-
ward, with objects becoming variables and edges becoming
the probability of two objects being in the same cluster. The
initial probability of objects oi and oj to belong to the same
cluster Cl is given by Equation 1:

p(oi, oj ∈ Cl) = 1− d(oi, oj)∑
e∈Eπ

we

(1)

where d(oi, oj) is the distance between objects oi and oj and
we is the weight of edge e that belongs to the set of edges
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Eπ of the MST. Hence, closer objects have a higher initial
probability to be in the same cluster than farther ones.

Once we have the MST encoding every pair of nearest
objects with the corresponding probability of each pair to be
in the same cluster, we can sample from a univariate marginal
distribution in order to identify which pairs of objects in an
individual will hold a must-link constraint and which will hold
a cannot link constraint. Hence, each individual in PASCAL
is a list of boolean constraints indicating whether the objects
linked in the MST should or should not be in the same cluster.
Note that each pairwise constraint is considered independent
of one another, so the probability of a pair of objects being in
the same cluster will not affect the constraints of another pair,
giving PASCAL enhanced agility and speed when sampling
individuals and updating the distribution.

Note that PASCAL is completely parameterless regarding
the clustering process: one does not need to specify a value
of k clusters nor any initial probability of clustering a pair
of objects together, although that could be easily arranged
by modifying components such as the distance matrix, the
MST edges, or the GM probabilities. The only parameters
used by PASCAL are those that control the search in an EDA:
population size, maximum number of iterations (total budget
allowed), fraction of fittest individuals that update the GM
probabilities, and fraction of individuals to be replaced in the
following generation. We did not perform any attempt to tune
these search parameters during the experimental analysis that
will be presented in Section IV. In fact, we argue that PASCAL
is robust and insensitive to these parameter choices in terms of
cluster quality, and that well-established common-sense values
for these search parameters are rather sufficient for perform-
ing high-quality clustering with PASCAL. Its pseudocode is
presented in Figure 2.

1: function PASCAL(data, iter, frac_induce, frac_replace)
2: compute the distance matrix from data
3: build MST from data
4: initialise GM with objects as variables, edges from MST as relationships, and

edge weights as probabilities
5: sample an entire population with GM
6: evaluate population
7: while iter > 0 and GM has not converged do
8: update GM based on frac_induce individuals with best fitness
9: remove frac_replace of worst individuals from the population

10: sample frac_replace individuals from GM and add to the population
11: evaluate population
12: iter ← iter − 1

13: return best individual from the population

Fig. 2: Pseudo-code of PASCAL.

B. Fitness function

PASCAL makes use of the density-based clustering vali-
dation criterion, DBCV [10], as its fitness function. By using
a density-based criterion, PASCAL is capable of detecting
arbitrarily-shaped clusters, since its assumption regarding what
a cluster is will be based on the concept of finding dense areas
separated by sparse regions. As pointed out by Moulavi et
al. [10], previously developed density-based criterion fail in
several aspects such as correctly analysing arbitrarily-shaped
clusters due to the use of the Euclidean distance, which favours
the generation of spherical groups, or requiring a parameter
such as the number of nearest neighbours to calculate the

density of a region where an object lies. DBCV, on the other
hand, is a parameterless criterion which defines a new distance
to calculate such density.

The calculation of the DBCV index starts by taking as
input the cluster assignment for each object. It then computes
aptscoredist, which is the inverse of density of the object in
its cluster:

aptscoredist(oi) =

(∑ni

j=2

(
1

d(oi,oj)

)m

ni − 1

)− 1
m

(2)

where m is the dimensionality of the data, ni the number of
objects in the i-th cluster and d(oi, oj) the distance between
objects oi and oj . Once all objects have their aptscoredist
computed, it builds a mutual reachability matrix of the Ci

cluster objects using the definition of mutual reachability
distance:

dmreach(oi, oj) = max(aptscoredist(oi), aptscoredist(oj),

d(oi, oj))
(3)

From the mreach matrix of each cluster, a MSTMRD is built,
which captures the underlying structure of the data. Using each
MSTMRD it is possible to calculate the Density Sparseness of
a Cluster, DSC(Ci), which is the edge with maximum weight
in MSTMRD, and Density Separation of a Pair of Clusters,
DSPC(Ci, Cj), which is the minimum mutual reachability
distance that separates the inner nodes (e.g nodes with degree
2 or above) of two MSTMRD.

The validity of a cluster is calculated using both DSC and
DSPC values:

V C(Ci) =
min1≤j≤l,j �=i(DSPC(Ci, Cj))−DSC(Ci)

max
(
min1≤j≤l,j �=i(DSPC(Ci, Cj)), DSC(Ci)

)
(4)

Finally, the index can be calculated as the weighted average
of each V C(Ci):

DBCV (C) =
k∑

i=1

|Ci|
|O| V C(Ci) (5)

where k is the number of clusters, |O| is the total number of
data objects, and V C(Ci) the validity of cluster Ci. The index
ranges from −1 to +1, going from partitions with sparse and
overlapping clusters to partitions with dense and well-separated
groups, respectively.

C. Time complexity

PASCAL’s time complexity is computed as follows. The
calculation of the distance matrix between N objects takes
O(N2). Finding the MST through Kruskal’s algorithm takes
O(N logN). The main loop of the EDA runs in the worst
case for T times, where T is the number of max iterations.
The number of individuals to have its fitness calculated is
proportional to the fraction used as input for the EDA, I . Since
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the whole population must be sampled in the first iteration,
it has a complexity of O(I(1 + T )). The worst case for
calculating DBCV is when all objects belong to the same
cluster, since aptscoredist will be calculated using all N − 1
objects as neighbours and at most N − 2 objects will be an
inner node for finding the MST. Hence, it has a complexity of
O((N−2)2+(N−2) log (N − 2)+N+1), which corresponds
respectively for calculating aptscoredist, finding the MST of
the trivial cluster, finding DSC, and calculating the DBCV
index itself. Updating the GM based on fittest function takes
O(F ), where F is the number of fittest individuals. Hence,
our algorithm has a complexity of O(N(1 + logN) + I(1 +
T )((N − 2)2 + (N − 2)2 log (N − 2)2 +N + 1 + F ), which
is ≈ O(N2) for large values of N .

III. EXPERIMENTAL SETUP

We use the following search hyper-parameters for run-
ning PASCAL: 500 individuals, maximum of 100 iterations,
updating the GM based on 10% of the fittest individuals
and full replacement of the population. We did not attempt
to tune these parameters, and a more thorough analysis on
their impact in the results is left to future research. We run
PASCAL 10 times on each dataset, varying the random seed
that controls evolution. In the following sections, we comment
on the datasets, algorithms, and evaluation criteria that were
used during the empirical analysis.

A. Baseline Algorithms

For validating the performance of PASCAL, we compare
it with 4 well-known clustering algorithms: k-means [2],
DBSCAN [11], single and complete linkage [4], [12]. Single
linkage and complete linkage are hierarchical agglomerative
approaches for performing clustering. An agglomerative ap-
proach starts by generating N singletons (i.e, clusters with
only one object), then proceed to merge the closest clus-
ters according to a distance measure (such as the Euclidean
distance). In the process of merging clusters, a dendrogram
records all merging performed in every step of the iterative
process. The algorithm proceeds until all objects belong to
the same cluster. Hierarchical agglomerative algorithms update
the distances between clusters differently: single linkage, in
particular, adopts the minimum distance between clusters,
whilst complete linkage employs the maximum distance. At
the end of the process, the user must specify the height at
which the dendrogram will be cut, which ultimately generates
a partition whose number of clusters is equal to the number
of vertical edges that were cut horizontally.

k-means [2] is a well-known partitional algorithm that
iteratively optimises the sum of squared errors (SSE) in an
expectation-maximisation procedure. It starts by randomly
defining k prototypes, and each object is then assigned to
its closest prototype. Once all objects have been assigned
to a given cluster, it recomputes the prototypes based on
the centroid of the cluster, and thus reassigns the objects to
its updated closest centroid. This process is repeated until a
maximum number of iterations is reached or until there is no
variation in the cluster assignment for all objects. The value
of k must be specified beforehand by the user.

Finally, Density Based Spatial Clustering of Applications
with Noise (or DBSCAN for short) [3] is based on the density

of the neighbourhood of a given object. DBSCAN requires
the user to set two parameters: a radius, which determines the
maximum distance to search for neighbours, and a minimum
number of neighbours to constitute a group. If an object does
not have a sufficient number of neighbours in its neighbour-
hood, then it is considered noise.

For parametrising the baseline algorithms, we employed
two different strategies. For k-means, single linkage and com-
plete linkage, we executed them selecting k from 2 to

√
N .

The k used for generating the partition with the best DBCV
index is used as input for the algorithms. We decided to use
DBCV as the validity criterion for choosing the best partition
since it is the same criterion optimised by PASCAL during
its evolutionary search. k-means was executed 10 times by
varying the random seed for defining the initial prototypes for
each possible value of k in the interval [2,

√
N ].

For DBSCAN, we set a neighbourhood of 4 objects and
followed the strategy proposed by Tan et al. [1] for estimating
the radius parameter:

1) find the p-th closest neighbour (p = 4) for each object
in the dataset;

2) store the p-th closest neighbour distance in a unidi-
mensional array with length N ;

3) sort the array in crescent order;
4) take the y value from the spot where the function

takes the biggest leap to the next x value.
5) use y as radius.

The idea is that the value before the biggest leap is the
maximum value which can be used before having to increase
the radius too much in order to obtain different partitions.
Figure 3 illustrates the unidimensional array of distances, as
well as the distance before the biggest leap.

Fig. 3: Plotting of the sorted distances of the 4-th nearest
neighbour for every object in the blobs2 dataset.

B. Datasets

During the empirical analysis, we verify the performance
of the algorithms in 10 datasets: 9 of them were artificially
generated and one is a real-world labeled dataset. For the
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real dataset, we make the further (probably naïve) assumption
that the classes are equivalent to clusters. The real dataset in
question is the well-known Fischer’s Iris data, which contains
information about petal length and width, and sepal length and
width of three specimens of flowers [13]. The artificial datasets
blobs2, circles0 and moons0 were generated using the Scikit
Learn toolkit for the Python programming language [14]. The
rest of the datasets were generated in Octave [15] using the
code made available by Kools [16]. All artificial datasets are
two-dimensional for the sake of visualisation. Table I presents
the characteristics of all datasets, and the 9 artificial datasets
can be seen in the first column of Figure 4.

TABLE I: Artificial and real datasets used in the empirical
analysis.

dataset # features # objects # clusters

Real Iris 4 150 3

blobs2 2 1,000 2
circles0 2 1,000 2
moons0 2 1,000 2
outlier 2 1,000 4

Artificial clusterincluster (cinc) 2 1,012 2
corners 2 1,000 4
crescentfullmoon (cfm) 2 1,000 2
halfkernel 2 1,000 2
twospirals 2 1,000 2

C. Validity Criteria

Unlike classification, clustering is a subjective task and
the quality of the result may vary according to the prior
assumptions of the validity criterion that is used for evaluating
the partitions. For analysing the clustering results, we decided
to employ 2 clustering validity criteria: DBCV, which is the
criterion optimised by PASCAL during evolution, and the
Adjusted Rand Index. Note that DBCV is an internal validity
index, which means it takes into account only the data itself
to compute the partition’s quality. The Adjusted Rand Index,
on the other hand, is an external validity criterion, which
compares the resulting partition with the ground truth, i.e., an
external partition that is allegedly the expected result. Since
we are using 9 artificial datasets and one labeled real-world
dataset, we do have the external partitions to properly evaluate
the clustering quality, and thus the internal validity index is
just presented for the sake of completeness.

The Adjusted Rand Index (ARI) [17] analyses the con-
formation of a partition Q to the original data distribution R
(ground truth). It takes into account the probability that the
partition has been generated from a random distribution of
objects into clusters rather than by any intelligent mechanism.
The unadjusted index ranges from 0 to 1, with larger values
meaning better conformations, but ARI may yield negative
values if the found partition is less attractive than the random
expected partition:

ARI =
a− (a+c)(a+b)

M
(a+c)+(a+b)

2 − (a+c)(a+b)
M

(6)

where:

• a: number of pairs of data objects from the same class
in R and same cluster in Q;

• a: number of pairs of data objects from the same class
in R and different clusters in Q;

• a: number of pairs of data objects from different
classes in R and to the same cluster in Q;

• a: number of pairs of data objects from different
classes in R and to different clusters in Q;

• M = a+ b+ c+ d

IV. EXPERIMENTAL RESULTS

We present all results of this experimental analysis in
Table II, and in Figure 4 we show the comparison between the
ground truth and the partitions provided by each algorithm.

Note that PASCAL and all baseline algorithms are capable
of correctly choosing the number of clusters in 8 out of the
10 datasets. Recall that we had to execute a multiple-runs
procedure followed by the evaluation of an internal validity
criterion to define the number of clusters for k-means and
complete/single linkage, since they require the user to set the
value of k. We can infer that using DBCV as an internal
validity criterion for estimating the number of clusters for
algorithms that need to set that parameter is indeed a good al-
ternative. Yet, we should give emphasis to the fact that neither
DBSCAN nor PASCAL require any sophisticated procedure to
properly estimate the number of clusters. Moreover, note that
PASCAL is, in fact, the only algorithm that does not require
any procedure at all to define a set of parameters so it can be
successfully executed.

The main evaluation criterion in this experimental analysis
is ARI, which indicates the level of conformity between the
provided partitions and the real distribution of the data. Note
that both PASCAL and DBSCAN can perfectly reproduce the
ground truth in 8 out of the 9 artificial datasets, substantially
outperforming both hierarchical agglomerative methods and k-
means. Given the variety of shapes present in the artificial
datasets, it was expected that k-means would fail in reproduc-
ing the ground truth, since it is only capable of generating
hyper-spherical clusters. In terms of functioning, the most
similar algorithm to PASCAL is Single Linkage, but note that
it fails in providing the ground truth for the outlier dataset,
whereas PASCAL could reproduce it correctly.

It was also expected that PASCAL would outperform all
baseline algorithms in terms of DBCV, since it is the very
own criterion optimised during its evolution. Indeed, the values
of DBCV for the partitions provided by PASCAL were the
best for all 10 datasets. Both DBSCAN and Single Linkage
had the best DBCV values in 7 datasets, substantially better
than k-means (one dataset) and Complete Linkage (0 datasets).
It seems safe to affirm that the choice of a density-based
validity criterion such as DBCV proved to be a good option for
looking for partitions in arbitrarily-shaped datasets, specially
considering the correlation between ARI and DBCV values.

Another point worth mentioning in the experimental analy-
sis is regarding the halfkernel dataset, which is formed by two
semi-circle structures. Even though it can be hard to visualise
on image, there are changes in density across the structure of
each semi-circle. That is probably the reason for DBSCAN
failing to detect these two semi-circles, considering that it
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Ground Truth PASCAL DBSCAN k-means Single Linkage Complete Linkage

Fig. 4: Ground truth and partitions found by each algorithm. Each cluster is identified by a given colour.

3438 2016 IEEE Congress on Evolutionary Computation (CEC)



TABLE II: Results for all baseline algorithms and PASCAL. Bold numbers indicate the best results for the given dataset.

Dataset
Complete Linkage Single Linkage k-means DBSCAN PASCAL

ARI DBCV k ARI DBCV k ARI DBCV k ARI DBCV k ARI DBCV k

blobs2 1.00 -0.23 2 1.00 -0.23 2 1.00±0.00 -0.23±0.00 2±0 1.00 -0.09 2 1.00±0.00 -0.09±0.00 2±0
moons0 0.59 -0.81 2 1.00 0.74 2 0.53±0.00 -0.82±0.00 2±0 1.00 0.74 2 1.00±0.00 0.74±0.00 2±0
circles0 0.00 -0.39 2 1.00 0.30 2 0.00±0.00 -0.40±0.00 2±0 1.00 0.30 2 1.00±0.00 0.30±0.00 2±0
outlier 1.00 0.09 2 0.00 -0.33 2 0.99±0.00 -0.37±0.00 2±0 1.00 0.54 2 1.00±0.00 0.54±0.00 2±0
cinc 0.53 -0.25 2 1.00 0.38 2 0.00±0.00 -0.93±0.02 2±0 1.00 0.38 2 1.00±0.00 0.38±0.00 2±0

corners 0.37 -0.73 4 1.00 0.28 4 0.70±0.30 -0.23±0.55 4±0 1.00 0.28 4 1.00±0.00 0.28±0.00 4±0
cfm 0.65 -0.75 2 1.00 0.03 2 0.21±0.01 -0.67±0.04 2±0 1.00 0.03 2 1.00±0.00 0.03±0.00 2±0

halfkernel 0.02 -0.97 2 1.00 0.35 2 0.09±0.13 -0.88±0.00 2±0 0.68 0.13 5 1.00±0.00 0.35±0.00 2±0
twospirals 0.03 -0.58 24 0.31 -0.33 24 0.05±0.00 -0.47±0.04 24±0 1.00 -0.57 2 0.46±0.06 -0.25±0.04 5±1

iris 0.22 -0.65 2 0.57 0.22 2 0.57±0.00 0.22±0.00 2±0 0.57 -0.05 2 0.57±0.00 0.22±0.00 2±0

Victories 2 0 8 8 7 8 2 1 8 9 7 8 9 10 8

detects the lower-density regions as inter-cluster areas, and thus
ends up generating more clusters than necessary. PASCAL,
on the other hand, is perfectly capable of detecting the two
clusters thus yielding the best ARI value.

Notwithstanding, PASCAL did fail to properly detect the
two spirals in the twospirals dataset, whereas DBSCAN was
the only algorithm to correctly detect the groups. More in-
terestingly, the twospirals dataset was the only one in which
PASCAL had a variety of behaviour in its 10 runs, finding
partitions ranging from 4 to 6 clusters, instead of the real
value of 2. We believe that happened because of a particularity
with the DBCV criterion, as follows. The centre of the dataset
is a low-density area with objects from the two spirals. By
following the course of the spirals, the objects condense into
a high-density distribution, misleading DBCV to understand
that clustering the whole centre is a good idea. Indeed,
PASCAL achieves the largest DBCV value for this dataset,
clearly indicating that DBCV is not particularly suited for this
problem. We are already studying new strategies for modifying
DBCV so it can cope with this scenario while keeping the good
results achieved so far.

Finally, it is worth mentioning that PASCAL is quite stable
across multiple runs. Only for the twospirals dataset, which
seems to deceive the behaviour of DBCV, PASCAL ended up
generating different results. Perhaps this is a particular case
in which tuning the search parameters of the EDA would
yield more interesting results. For instance, we assume that
perhaps with a larger number of individuals (and perhaps
a larger budget) PASCAL would be capable of identifying
more interesting conformations that could lead to larger DBCV
values. Nevertheless, since the whole point of PASCAL is to be
parameterless, suggesting to tune the search parameters may
not be the right solution for the problem, so we prefer to
investigate modifications of DBCV or perhaps the inclusion
of multiple validity criterion within the fitness function so the
final user does not need to worry with setting parameters for
PASCAL at all.

V. RELATED WORK

Using minimum spanning trees for clustering is not a novel
approach. For instance, the dendrogram produced by single
linkage (introduced in Section III-A) is in fact a MST. The
difference between our approach to single linkage is two-
fold. First, PASCAL does not require setting the value of k
(or, in other words, a horizontal cut in the dendrogram) in

order to assign objects to clusters. Second, PASCAL allows the
“regretting" from a cluster assignment for a given object. In the
dendrogram, there is only one partition which yields k clusters.
In order to obtain different partitions for the same number
of groups, the user must run other hierarchical agglomerative
clustering algorithms such as complete linkage. PASCAL, on
the other hand, has n!/(n − k)! possible partitions for each
value of k ranging in [2, N − 1].

The work of Zhou et al. [18] propose two procedural
algorithms for performing clustering with minimum spanning
trees, one k-constrained and the other unconstrained. Since
PASCAL automatically detects the number of clusters, we
describe here the unconstrained algorithm. It starts by building
a MST from the dataset, and then it iteratively removes edges
from the MST. By removing an edge, it produces two clusters
of data objects. The approach used for removing edges is
to remove those that contribute the most for increasing the
weighted standard deviation of all edges in the set of subtrees.
It then performs a 6-th order regression analysis with the
information of how much is reduced in terms of standard
deviation with the number of removed edges. When removing
an edge ceases to decrease the standard deviation of the
partition, the corresponding value of k is chosen and the
subtrees generated from that configuration is returned.

Regarding evolutionary algorithms for clustering, Alves
et al. [8], [19] propose a Fast Evolutionary Algorithm for
Clustering (F-EAC), a mutation-based algorithm which further
improves the EAC [20]. F-EAC encodes all N objects of the
dataset in one array of N positions. For each position, it
randomly assigns a value in the range [1, k] during the first
generation, where k is the number of partitions. The initial
value of k is a starting point, since it is constantly changed by
the algorithm within its procedure. F-EAC proceeds to mutate
individuals in order to update cluster assignments for each
object, either by splitting or merging clusters. Two functions
are used for fitness evaluation across the several variations
of F-EAC presented in the work: Simplified Silhouette Width
Criterion (SSWC), which is a simplification over the original
silhouette; and Rand Index, the original unadjusted version.
The authors develop a set of F-EAC variants, which can
accurately predict the correct number of clusters and are
faster than the original EAC implementation. As mentioned
before, F-EAC requires an initial value of k to initiate the
clustering process. Furthermore, since it uses the SSWC as
fitness function, it tends to favour spherical clusters. The
variation in which it uses the Rand Index is not realistic since
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in most domains there is no known ground truth.

We perform clustering with an Estimation of Distribution
Algorithms in our previous work [21], in which we present
Clus-EDA. Similarly to the work of Alves et al. [19], it also
encodes all N objects of the dataset in an unidimensional array.
However, since it is an EDA, it samples novel individuals from
an univariate marginal distribution. The GM is implemented
as an unidimensional array, with each position representing an
object and each value a probability of that object to become
a medoid. Non-medoid objects are assigned to their closest
medoid. All values in the GM are initialised in k∗

N , with k∗
being an estimate of the value of k provided by a heuristic
that involves k-means and an internal validity criterion. Novel
individuals are sampled from the GM, which is in turn updated
using the fittest individuals, evaluated by the Simplified Silhou-
ette Width Criterion. Clus-EDA is compared with F-EAC, k-
means and UPGMA, an hierarchical agglomerative algorithm
with regard to the following criteria: Davies-Bouldin, Adjusted
Rand Index, and the Silhouette Width Criterion. Clus-EDA
is capable of properly adjusting the initial value of k into
the correct number of clusters, whilst also providing the best
Davies-Bouldin and SWC index for 7 out of 9 datasets that
were analysed. Nevertheless, similarly to F-EAC, Clus-EDA
also uses SSWC as its fitness function, thus favouring spherical
groups and being unable to have a good performance in
arbitrarily shaped datasets, besides needing an initial value of
k to work from.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented PASCAL, a novel and ef-
fective EDA for performing data clustering that is capable
of addressing arbitrarily-shaped clusters without the need of
setting specific and decisive parameters such as the number
of clusters, minimum density, radius, etc. PASCAL makes use
of a MST to identify possible constraints of must-link/cannot
link between pairs of objects, and it optimises a density-based
validity criterion during its search for the best partition.

PASCAL is compared to well-known clustering algorithms
that employ different strategies to perform clustering, such
as k-means [2], Single Linkage [12], Complete Linkage [12],
and DBSCAN [11]. By performing an empirical analysis with
10 datasets whose ground truth partitions were previously
known, we show that PASCAL is capable of not only correctly
identifying the number of clusters but also of presenting the
largest possible conformation between the predicted partitions
and the real ones in 8 out of the 10 datasets. Indeed, PASCAL
seems to perform as strongly as DBSCAN, though with
the further advantage of not requiring any critical clustering
parameters, whereas DBSCAN requires two of them. As future
work, we aim to investigate which modifications are required in
PASCAL’s density-based fitness function so it can successfully
deal with scenarios that PASCAL failed to identify the ground
truth. Moreover, we intend to verify whether a multi-objective
fitness function would be well-suited for addressing this issue.
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