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Abstract—Data set preprocessing is a critical step for the suc-
cessful application of machine learning algorithms in classification
tasks. Even though we rely on learning algorithms to pinpoint
the optimal decision boundaries in the feature space by properly
detecting latent relationships among the input features, their
performance is often bounded by the discriminative power of the
available features. Therefore, much effort has been devoted to de-
veloping preprocessing methods that are capable of transforming
the input data with the final goal of aiding the machine learning
algorithm in building high-quality classification models. One such
a method is feature construction, which is a flexible preprocessing
procedure that exploits linear and nonlinear transformations
of the original feature space in an attempt to capture useful
information that is not explicit in the original data. Since the
task of feature construction can be modelled as a heuristic search
in the space of novel latent features, this paper investigates
an evolutionary approach for performing such a task, namely
grammatical evolution (GE). In our proposed approach, GE is
employed for building an extra novel feature from the available
input data in order to maximize the predictive performance
of the learning algorithm in training data. Results show that
many interesting implicit relationships are indeed found by the
evolutionary approach, improving the performance of two well-
known decision-tree induction algorithms.

I. INTRODUCTION

Machine Learning algorithms are said to learn from experi-
ence by building either predictive or descriptive models based
on the discovery of hidden relationships in the available data.
Most algorithms require the data to be structured in a feature-
value fashion, the so-called data sets. A data set consists of a
collection of objects, which are real-world entities described by
a set of features (characteristics, attributes) often accompanied
by a given label (class). Such a label is useful for organizing
the objects into meaningful categories, and defining which
object should be assigned to which label is a well-known
learning problem called classification.

Arguably the most studied task in machine learning, clas-
sification can be seen as the task of formally defining an
objective function capable of mapping the objects from the
application domain into their corresponding labels based on
previously-labeled data, commonly regarded as the training set.
The performance of a learning algorithm is heavily depended
on the training set that is used to build the predictive model.

For the cases in which the set of available features is not
enough for the learning algorithm to generate a model with
satisfactory accuracy, the specialized literature suggests the
class of constructive induction algorithms [1], whose goal is to
transform the original space into a novel space of features with
increased discriminatory power. Several systems have been
developed over the years to perform constructive induction
[1]–[9].

The method of constructing a feature is complex, often
involving the selection of existing features followed by multi-
ple transformations [5]. It is a costly, time-consuming, hand-
crafted work frequently unfeasible due to resource constraints.
With that being said, the paradigm of evolutionary algorithms
has been successfully employed for the automatic generation
of programs and functions [5], [10]–[16], mapping a given
problem into an automatic heuristic search that is guided by
the principles of evolution. Grammatical Evolution (GE), in
particular, arises as a well-suited approach for such tasks. It is
an evolutionary algorithm in which computer programs can be
generated in any programming language through genetic evolu-
tion aided by a context-free grammar [17], [18]. GE combines
the simplicity of representation from genetic algorithms and
the flexibility of grammar-based genetic programming in order
to perform a robust search in the space of candidate solutions.

In this paper, we propose handling the feature construction
task with GE. Our goal is to build a single novel feature to
a given data set using GE, based on a context-free grammar
that allows for the combination of previously-existent features.
Multiple distinct features could be easily created by executing
multiple runs of our proposed approach, but here we investigate
whether any substantial improvement can be obtained with a
single automatically-constructed feature. Our main motivation
is based on the success achieved by previous work on the
area [5], [6].

Our approach employs the wrapper strategy within its evo-
lutionary cycle, i.e., we evaluate the quality of each candidate
solution with respect to the execution of two well-known
decision-tree induction algorithms: C4.5 [19] (its Java-based
version, J48 [20]) and REPTree [20] (similar to C4.5 but with
reduced-error pruning). After the evolutionary process carried
out by GE, the classification accuracy of the data set with
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the new feature is evaluated and compared with the results
provided by the classification model built from the original
data set.

In order to assess the predictive performance of the pro-
posed approach, we test it on a variety of public data sets
from the UCI machine learning repository [21]. We perform
an extensive experimental analysis that clearly indicates the
benefits of including a single novel feature in the data set,
paving the way for the broad application of GE-based feature
construction in several application domains.

The remaining of this paper is organized as follows.
Section II describes work related to the construction of features
for classification tasks. Section III introduces basic concepts
of Grammatical Evolution. Section IV presents our novel
evolutionary approach to build novel features based on linear
and nonlinear combinations of the existent features. Section V
reports the experimental analysis that was performed to val-
idate the results along a discussion of our findings. Finally,
Section VI ends this paper with our conclusions and future
work directions.

II. RELATED WORK

Real-world data sets may have features that do not have
sufficient discriminatory power to generate reasonable decision
boundaries in classification problems [22]. Thus, the research
community has been focused on constructive induction algo-
rithms whose goal is to transform the original feature space
into a novel space that allows for more precise classifica-
tion [1]. Such a task is referred to as feature construction or
feature generation.

To construct features for classification tasks, evolutionary
algorithms such as Genetic Programming [23] have been
extensively explored [10]–[12]. These algorithms can build
programs and expressions dynamically, and are specially useful
in problems when the space of features has a high dimension.
Guo [10] proposed a genetic program approach to generate
features and used those as input to a neural classifier with the
goal of identifying six bearing conditions. Krawiec [11] also
proposed a genetic programming approach to build features in
order to improve machine learning classifiers. Neshatian [12]
employed genetic programming to construct novel features
from the original features and used decision-tree classifiers to
analyze their efficiency. More recently, Ahmed [24] proposed
a method to build multiple features based on feasible subtrees
in the best individual. The previously mentioned studies make
use of genetic programming to build novel feature(s) and
their results show that the data sets with the novel feature(s)
improves the classification accuracy of the tested classifiers.

Gavrilis [5] proposed a method for selecting and building
features using Grammatical Evolution and neural networks.
The selection process chooses features from the original set
to build novel features, and only those are then used by the
classifier. The context-free grammar used to build new features
employ algebraic expressions like: multiplication, subtraction,
division, sine, cosine, log, and exponential. Experiments were
performed with three different classifiers: RBF -NN and
MLP -NN (for regression problems) and K-NN (for clas-
sification problems). The proposed algorithm indeed improved
the performance of classifiers when new features were built.

III. GRAMMATICAL EVOLUTION

Grammatical Evolution (GE) algorithms are defined as effi-
cient methods for automatic building programs (and functions)
using context-free grammars. GE employs a robust mapping
process, where from simple binary sequences it is possible to
produce a code in any programming language.

As an Evolutionary Algorithm, GE is inspired by biological
phenomena and can be related to the generation process of a
protein of the genetic material of an organism [18].
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Fig. 1. Comparison between the process of mapping the Grammatical
Evolution and biological organisms [18].

Figure 1 shows the comparison between the process of
mapping in GE and in biological organisms. The analogy is
observed since the beginning of the process in which DNA
is equivalent to binary strings in GE. In the generation of
protein, we need to slightly change the format: DNA turns
into RNA and binary strings turn into strings of integers.
From this new sequence, the translation is performed, RNA
or string of integers, to amino acid sequence or production
rules, respectively. The results from the process are generated
and on biological systems we had the phenotype and in GE
we had the function.

GE needs a grammar to convert the string individual into a
code, evolutionary operators to select and modify the individu-
als, and a fitness function to evaluate such individuals. The next
section introduces these procedures applied for constructing
features.

IV. CONSTRUCTING FEATURES

The construction of the new feature can be summarized in
four steps:

1) The input data set is divided into two sets: training
and testing;

2) After the division, the evolutionary process starts.
Each individual of the population is a solution
mapped by the grammar (IV-A), to calculate the new
feature. For each individual in the population decoded
into a function, one builds a classifier on the training
set of examples;

3) The individual’s fitness is the mean of the cross-
validation (IV-C);

4) The best individual in the population is selected and
used for evaluating the test set. The process returns
the best function to construct a new feature and the
number of correct predictions associated with it.
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The following sections will present the main features of
Grammatical Evolution as: grammar (IV-A), genetic operators
(IV-B) and the fitness function (IV-C).

A. Grammar

A context-free grammar expresses a language made up
of production rules. Context-free grammars are composed of
terminal symbols: items that can appear in a language, and
non-terminal symbols: items that can be expanded into one
or more non-terminal or terminal symbols [17]. Grammars
are used according to their definition in the GE context; they
describe the output language to be produced by the system.
Therefore, it is mandatory to have an appropriate grammar
capable of generating useful solutions [18].

Figure 2 illustrates the grammar used in this work in order
to generate functions, which can be from a single original
attribute to many different attributes resulted by a set of very
simple operators and real values.

The symbols of this grammar are detailed as follows.

• att: randomly select an attribute from the data set,
returning a vector with the values.

• +: the sum of a real number to the elements of the
vector.

• ++: the sum of two vectors.

• *: the multiplication a real number to the elements of
the vectors.

• **: the multiplication of two vectors.

• sqrt: the square root of the elements of the vector or
a real number. When applied over negative numbers,
the function returns 0.

• Number: the selection of a random number from 1 to
the number of features of the data set, except the last
feature, the classe attribute.

• RealNumber: the selection of a random real number.

〈newAtt〉 ::= 〈vector〉
〈vector〉 ::= (att 〈numAtt〉) | (+ 〈number〉 〈vector〉)

| (++ 〈vector〉 〈vector〉) | (* 〈number〉
〈vector〉) | (** 〈vector〉 〈vector〉) | (sqrt
〈vector〉)

〈numAtt〉 ::= (Number)

〈number〉 ::= (RealNumber) | (sqrt 〈number〉)

Fig. 2. Grammar for constructing a new feature.

It is important to mention that we have used the name
< vector > to represent an attribute or a function resulting
an attribute. For example, the operation ∗∗ is not a real
vector multiplication (which would result in a number), but a
multiplication of each element of two vectors. I.e., < v1∗∗v1 >
results a new vector vnew where vnew [i] = v1[i] ∗ v1[i], for all
instances i. In practice, it is an easier way to represent what a

new attribute really means, since we have to apply it over all
instances from the data set.

The grammar presented above generates expressions such
as (i) ++(att(2))(att(3)) and (ii) ∗ ∗ (att(0))(sqrt(att(3))).
In practice, these two examples of individuals would repre-
sent, respectively, the construction of the following two new
attributes: (i) attnew[i] = att2[i] ∗ att3[i] for all instances i;

and (ii) attnew[i] = att0[i] ∗
√
att3[i], for all instances i.

B. Genetic Operators

The evolutionary process starts with a random initial pop-
ulation. The individuals can have different lengths, with a
minimum size of ten codons. In order to evolve from this initial
population, the following independents evolutionary operators
can be applied: mutation, crossover, and duplication, each
having its probability of application, respectively 10%, 85%
and 5%. Operators should be applied until all individuals for
the new population are generated.

For crossover process two individuals are selected by
tournament; then, they pass through the crossover operation
of one point, where a position is selected at the individuals
and combining half of the first parent and half of the other,
generating two children.

The mutation process involves the selection of an individual
with the tournament. This individual will be traversed, gene-
by-gene, where each position has a probability of having its
value replaced by a random value.

The duplication process selects an individual by tourna-
ment. Two positions of its genotype are randomly selected
and all the elements between them are copied to the end of
the individual.

The new population is generated by selecting individu-
als from the original population and applying the genetic
operators. The new population is formed by children from
the crossover process and we maintained two of the best
individuals from the generation before (elitism).

C. Fitness Function

To measure the quality of individuals, the classifier built
on the training set is evaluated on the validation set. The
performance of the classifiers is measured by the amount of
correct predictions in the validation set. The method used to
evaluate the accuracy was the 5-fold cross-validation.

In Figure 3, we can observe how the fitness evaluation of
a new attribute occurs. First, a given individual is mapped into
its corresponding attribute, and then it is incorporated into the
original training set. Next, the training set is partitioned into
a training set and a validation set by using a 5-fold cross-
validation technique [25]. The term “validation set” is used
in here instead of “test set” to avoid confusion with the test
set (which is not used during the grammatical evolution), and
also due to the fact that we are using the performance measure
of a candidate attribute on those validation sets to guide the
evolutionary search for a better function. The same cannot be
done with test sets, which are exclusively used for assessing
the predictive performance of a decision tree generated from
the data set with the new attribute.
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Fig. 3. Fitness function evaluation process.

After dividing each training set into “sub-training” (4/5
pie) and “validation” (1/5 pie), we induce a decision tree for
each sub-training set available. For evaluating the predictive
performance of these decision trees, we use the corresponding
validation sets. Statistics regarding the predictive performance
and the size of each decision tree are recorded (e.g., accuracy,
F-Measure, precision, recall, total number of nodes/leaves,
etc.), and can be used individually or combined as the fitness
function. In this work, the fitness is the average Accuracy; the
decision tree induction algorithms are the J48 (version of C4.5
[19]) and REPTree, both well-know methods available in the
free machine learning tool Weka [20].

D. Addressing special issues

While evolving new attributes by combining other ones,
we have to deal with at least two special situations: nominal
attributes and missing values. In this work, we address these
issues according to the following strategies.

Nominal attributes are converted into numerical attributes
by using the index of each nominal value instead of its original
value. This is a simple conversion which is useful for our
investigation, but not necessarily the best one.

When faced with missing values in a particular instance,
our GE-based approach uses a very simple strategy: it repli-
cates the missing value for the new attribute (only for the
corresponding instance). Since the focus of our approach is
to generate a new feature and not an imputation method,
we decided to let the classifier deal with it, i.e., for the
evolutionary process decide when it is worth it or not to use
features with missing values in the new attribute.

Dealing with such issues was an essential step in the
construction of our GE-based approach as is not limited in
dealing only with both numeric complete (without missing
values) data sets. It is important to mention, however, that
despite dealing with both numerical and nominal attributes,
the new attribute – evolved by our GE-based approach – is
always numerical.

E. Contributions

As we have discussed in the related work section, there are
other evolutionary approaches – mostly GP ones – for selecting

and generating features in the context of machine learning.
However, this work consistently differs from the previous work
in several aspects, which are presented as follows.

• In [5] the authors tested a few data sets having two ar-
tificial neural networks and k-NN as classifiers. In this
work, we employ two popular decision tree induction
algorithms, many data sets, a simpler grammar, and a
single feature to investigate if an improvement could
yet be achieved;

• In this work, each individual represents only one
new attribute instead of a set of new attributes. It
means that, in practice, our individual can be smaller;
consequently, less time-consuming when applying the
genetic operators. It is also unnecessary any additional
chromosome representation, as in [5];

• Once we intend to create/evolve a single attribute, the
idea is to use it in conjunction with the original data
set instead of “replacing” it. This choice is based on a
very reasonable explanation. Our objective is neither
feature selection nor dimensionality reduction, but fea-
ture construction. And not any construction, but a new
and non-redundant attribute, and, mainly, an attribute
capable of adding a discriminatory information that
the classifier is unable to detect or treat when using
the original data set. A redundant attribute would not
add useful information to the data set, it would not
change the classifier’s performance, and consequently
the fitness value. We can use the same idea if we
think about a relationship/pattern between attributes
that would be easily extracted by a classifier from
the original data set (a simple sum of two attributes,
for example). Again, this single relationship would
not change the classifier’s performance either. Then,
we focus the search on a unique, non-redundant, and
representative attribute for the classification task;

• Among several classification methods available in the
literature, in this work we have chosen the well-known
and widely-used decision tree induction algorithms,
which represent one of the most popular techniques
for dealing with classification problems. This choice
was based on their main advantages, such as (i) the
induction of DTs does not require any domain knowl-
edge; (ii) DT induction algorithms can handle high-
dimensional data; (iii) the representation of discovered
knowledge in tree form is intuitive and easy to be
assimilated by humans; and (iv) the learning and
classification steps of DT induction are simple and
fast [26]. Given that our approach is an evolution-
ary algorithm, which we know could be very time-
consuming depending on the classifier, we decided to
use a powerful one (not as much as a neural network)
and fast (not as much as a k-NN). In addition, another
advantage of using decision trees is the ability of
the induction algorithms - in particular the top-down
and recursive partitioning ones - in “automatically”
dealing with redundant attributes. Then, this choice
strengthens the idea of generating a non-redundant
attribute;
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• In this work, the GE-based approach is not restricted
to data sets entirely composed of numerical attributes,
since there is a very simple way to dealing with nom-
inal attributes, as above-mentioned in Section IV-D.

Therefore, to the best of our knowledge, this is the first
work to propose a GE-based approach for automatically con-
structing single and non-redundant attributes to add completely
new information to classification data sets, with both numerical
and nominal attributes.

V. EXPERIMENTAL ANALYSIS

In this section, we present the methodology employed dur-
ing the empirical analysis. First, we present in Section V-A the
public classification data sets used to evaluate the effectiveness
of our approach in automatically generating new and non-
redundant attributes. In Section V-B we provide the parameters
used in the grammatical evolution algorithm, whereas the
statistical analysis process is described in Section V-C. Finally,
in Section V we present the results and discussion about the
comparative analysis among our approach and the baselines.

A. Data sets

We have applied the proposed GE-based approach for
feature construction to many classification data sets collected
from the UCI machine learning repository [21]: anneal, ar-
rhythmia, audiology, bridges version1, car, cylinder bands,
glass, iris, kdd synthetic control, segment, semeion, sick,
tep.fea, vowel, winequality red and winequality white. Ta-
ble I summarizes these data sets by presenting important
information such as number of instances (# instances), number
of numeric (# numeric) and nominal (# nominal) attributes,
percentage of missing values (% missing) and the number of
classes (# classes).

TABLE I. SUMMARY OF THE 16 DATA SETS USED IN THE

EXPERIMENTS.

data set # instances # numeric # nominal % missing # classes

anneal 898 6 32 0.00 6

arrhythmia 452 206 73 0.32 16

audiology 226 0 69 2.03 24

bridges version1 107 3 9 5.53 6

car 1728 0 6 0.00 4

cylinder bands 540 18 21 4.74 2

glass 214 9 0 0.00 7

iris 150 4 0 0.00 3

kdd synthetic 600 60 1 0.00 6

segment 2310 19 0 0.00 7

semeion 1593 265 0 0.00 2

sick 3772 6 22 5.54 2

tep.fea 3572 7 0 0.00 3

vowel 990 10 3 0.00 11

winequality red 1599 11 0 0.00 10

winequality white 4898 11 0 0.00 10

B. Parameters

Table II shows the user-defined parameter values used in
our GE algorithm, which is available in the ECJ framework, a
Java-based Evolutionary Computation Research System [27].
The parameter values were based on our previous experience
in using evolutionary algorithms, and we have made no attempt
to optimize them; this is a topic left for future research. Max
number of generations is the algorithm’s stopping criteria. Due
to the fact that GE is a non-deterministic technique, we have

run it 5 times for each one of the 10 training/test set folds gen-
erated by the 10-fold cross-validation procedure. After running
GE over the data sets presented in Table I, we have calculated
the average and standard deviation of the 5 executions for each
fold and measure, and then the average of the ten folds. This
procedure was applied for both versions: GE-J48, which uses
J48 as a classifier during the evaluation, and GE-REPTree,
which uses REPTree as DT-induction algorithm to compute the
fitness function. Considering J48 and REPTree applied to the
original data set, we have calculated the averages and standard
deviations for a single run with ten folds as these algorithms
are deterministic.

TABLE II. CONFIGURABLE GE PARAMETERS.

Parameter Value

Initialization Probability 85%

Number of Individuals 200

Minimum Individual Size 10

Maximum Individual Size 50

Number of Generations 50

Crossover Probability 90%

Duplication Probability 5%

Mutation Probability 5%

Tournament Size 7

Elite 2

C. Statistical Analysis

In order to evaluate the statistical significance of the exper-
imental results, we present the results of hypothesis tests by
following the well-known approach proposed by Demšar [28].
In brief, this approach seeks to compare multiple algorithms
on multiple data sets based on the use of the Friedman test
followed by a corresponding post-hoc test, Nemenyi. The
Friedman test is a non-parametric counterpart of ANOVA, and

works as follows. Let R
j
i be the rank of the jth of k algorithms

on the ith of N data sets, the Friedman test compares the

average ranks of these k algorithms, i.e., Rj = 1

N

∑
i R

j
i .

Then, the Friedman statistic, given by:

χ2

F =
12N

k(k + 1)

⎡
⎣∑

j

R2

j −
k(k + 1)2

4

⎤
⎦ (1)

is distributed according to χ2

F with k− 1 degrees of freedom,
when N and k are large enough.

Since Iman and Davenport [29] showed that Friedman’s χ2

F

is undesirably conservative, they derived an adjusted statistic:

Ff =
(N − 1)× χ2

F

N × (k − 1)− χ2

F

, (2)

which is distributed according to the F -distribution with k−1
and (k − 1)(N − 1) degrees of freedom.

If the null hypothesis of similar performances is rejected,
we proceed with the Nemenyi post-hoc test for pairwise com-
parisons. We can say that the performance of two classifiers
is significantly different if their corresponding average ranks
differ by at least the critical difference

CD = qα

√
k(k + 1)

6N
, (3)
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where critical values qα are based on the Studentized range
statistic divided by

√
2.

D. Results

Table III shows the predictive accuracy values for GE-
J48, J48, GE-REPTree and REPTree. It presents the average
accuracy over a 10-fold cross-validation procedure. Observe
that the decision-trees induced over the new data sets – with
the additional attributes added by our GE-based approach –
generates trees with the best accuracy values in 12 out of
16 data sets. In three cases – anneal, semeion, and tep.fea
– more than one method presented the best accuracy, then
we highlighted in bold the one with the smallest standard
deviation.

TABLE III. ACCURACY OF THE DECISION TREES GENERATED BY THE

DT-INDUCTION ALGORITHMS FROM DATA SETS WITH (GE-J48 AND

GE-REPTREE) OR WITHOUT (J48 AND REPTREE) THE NEW ATTRIBUTES.
STANDARD DEVIATIONS ARE SHOWN BELOW THE ACCURACY VALUES,

BETWEEN BRACKETS.

data set GE-J48 J48 GE-REPTree REPTree

anneal
0.986 0.986 0.980 0.979

(0.010) (0.012) (0.016) (0.017)

arrhythmia
0.655 0.651 0.670 0.670

(0.043) (0.045) (0.054) (0.057)

audiology
0.787 0.775 0.747 0.740

(0.059) (0.071) (0.071) (0.077)

bridges version1
0.603 0.582 0.404 0.404

(0.066) (0.111) (0.140) (0.146)

car
0.982 0.931 0.955 0.894

(0.014) (0.023) (0.030) (0.023)

cylinder-bands
0.686 0.578 0.589 0.589

(0.042) (0.008) (0.046) (0.048)

glass
0.704 0.692 0.666 0.640

(0.082) (0.043) (0.084) (0.088)

iris
0.941 0.940 0.957 0.940

(0.061) (0.066) (0.042) (0.049)

kdd synthetic control
0.922 0.910 0.889 0.877

(0.037) (0.043) (0.033) (0.034)

segment
0.966 0.970 0.958 0.956

(0.010) (0.010) (0.013) (0.013)

semeion
0.953 0.953 0.935 0.933

(0.021) (0.020) (0.018) (0.018)

sick
0.987 0.987 0.987 0.988

(0.003) (0.003) (0.006) (0.006)

tep.fea
0.650 0.650 0.650 0.649

(0.020) (0.021) (0.020) (0.020)

vowel
0.821 0.829 0.821 0.698

(0.040) (0.031) (0.040) (0.041)

winequality-red
0.619 0.612 0.594 0.598

(0.031) (0.032) (0.031) (0.028)

winequality-white
0.605 0.606 0.562 0.562

(0.025) (0.027) (0.017) (0.021)

To evaluate the statistical significance of the accuracy
results, we calculated the average Friedman rank for GE-
J48, J48, GE-REPTree and REPTree: 1.66, 2.22, 2.72 and
3.41, respectively. The average rank suggests that GE-J48
outperforms the other methods regarding predictive accuracy.
The calculation of Iman’s F statistic resulted in Ff = 7.46.
Critical value of F (k − 1, (k − 1)(n − 1)) = F (3, 45) for
α = 0.05 is 2.81. Since Ff > F0.05(3, 45) (7.46 > 2.1),
the null-hypothesis is rejected. We proceed with a post-hoc
Nemenyi test to find which method provides better results
in a pairwise fashion. The critical difference is CD = 1.17.
The differences between the average rank of GE-J48 and the
others are 0.56, 1.06 and 1.75, respectively. Then, we can
confidently argue that the performance of using GE with J48
is significantly better than using the algorithm REPTree.

Figure 4 shows the Nemenyi’s critical diagram, as sug-
gested by Demsǎr [28]. In this diagram, a horizontal line
represents the axis on which we plot the average rank values
of the methods. The axis is turned so that the lowest (best)
ranks are to the left since we perceive the methods on the
left side as better. When comparing all the criteria against
each other, we connect the groups of criteria that are not
significantly different through a bold horizontal line. We also
show the critical difference given by the Nemenyi’s test above
the graph. We can see that GE-J48 is connected to J48 and GE-
REPTree (no significant difference). GE-J48 is significantly
better than REPTree (no line connecting them), whereas J48
and GE-REPTree are not.

CD

1 2 3 4

GE-J48

J48

REPTree

GE-REPTree

Fig. 4. Critical diagrams showing average ranks and Nemenyi’s critical
difference for Accuracy.

TABLE IV. F-MEASURE OF THE DECISION TREES GENERATED BY THE

DT-INDUCTION ALGORITHMS FROM DATA SETS WITH (GE-J48 AND

GE-REPTREE) OR WITHOUT (J48 AND REPTREE) THE NEW ATTRIBUTES.
STANDARD DEVIATIONS ARE SHOWN BELOW THE F-MEASURE VALUES,

BETWEEN BRACKETS.

data set GE-J48 J48 GE-REPTree REPTree

anneal
0.983 0.983 0.979 0.978

(0.012) (0.014) (0.015) (0.015)

arrhythmia
0.644 0.641 0.630 0.631

(0.049) (0.052) (0.067) (0.070)

audiology
0.766 0.754 0.713 0.704

(0.069) (0.082) (0.077) (0.085)

bridges version1
0.524 0.523 0.290 0.290

(0.070) (0.109) (0.102) (0.106)

car
0.982 0.931 0.955 0.894

(0.014) (0.022) (0.031) (0.022)

cylinder-bands
0.627 0.423 0.494 0.494

(0.075) (0.009) (0.083) (0.087)

glass
0.693 0.677 0.635 0.615

(0.083) (0.051) (0.090) (0.097)

iris
0.940 0.939 (0.957) 0.939

(0.063) (0.068) (0.043) (0.050)

kdd synthetic control
0.921 0.909 0.888 0.875

(0.038) (0.044) (0.033) (0.035)

segment
0.966 0.970 0.958 0.956

(0.010) (0.010) (0.013) (0.013)

semeion
0.952 0.951 0.931 0.928

(0.022) (0.023) (0.021) (0.022)

sick
0.987 0.987 0.987 0.987

(0.003) (0.003) (0.006) (0.007)

tep.fea
0.610 0.610 0.610 0.610

(0.022) (0.023) (0.022) (0.022)

vowel
0.819 0.827 0.819 0.697

(0.040) (0.030) (0.040) (0.041)

winequality-red
(0.614) 0.605 0.576 0.580

(0.029) (0.032) (0.035) (0.030)

winequality-white
0.603 0.605 0.547 0.547

(0.024) (0.025) (0.016) (0.018)

Table IV shows the F-measure values for GE-J48, J48,
GE-REPTree and REPTree. Again, one may observe that the
best results are obtained by using the data set with the new
attribute evolved by GE, either by using J48 or REPTree. If
we consider the entire table, we can notice that GE-J48 or
GE-REPTree present the best results in 11 out of 16 data
sets. In two cases (sick and tep.fea), there was no difference
among them, and in two cases (vowel and winequality-white)
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the additional attribute decreased the classifier’s performance.
However, it is important to observe the results for the data
sets iris, segment, and, mainly, vowel. Even though the best
performances were obtained without adding the new attribute
by REPTree, J48 and J48, respectively, the use of GE increased
the classifier’s performance when adding the new attribute
before applying another classifier, i.e., J48, REPTree and
REPTree, respectively. In the case of vowel, the additional
attribute increased the F-Measure in more than 10% (from
69.7% to 81.9%).

For the statistical analysis, the computed value of is
Ff = 12.59. Since Ff > F0.05(3, 45) (12.59 > 2.81), the
null-hypothesis is rejected, and thus we can argue that there
are significant differences among the four methods regarding
F-measure. If we proceed with a post-hoc Nemenyi test, the
critical difference is once again CD = 1.17, and we can
observe that the differences between GE-J48 and REPTree
(2.0) and between GE-J48 and GE-REPTree (1.38) are greater
than CD (Figure 5). It is important to notice that GE-J48 once
again achieves the lowest average rank, indicating it is the most
suitable option in terms of F-Measure.

CD

1 2 3 4

GE-J48

J48

REPTree

GE-REPTree

Fig. 5. Critical diagrams showing average ranks and Nemenyi’s critical
difference for F-Measure.

Table V shows the tree size values for GE-J48, J48,
GE-REPTree and REPTree. Results show that GE-REPTree
gerenrate smaller trees in most data sets, followed by REPTree
without the previous use of the GE-based approach. J48
generates the smallest tree in only one case (cylinder bands),
when clearly generates only one leaf node representing the
most frequent class, and that is why the results are not good in
terms of accuracy and f-measure. GE-J48 generate the smallest
trees in three cases: bridges version1, tep.fea and vowel. Once
again, it is possible to observe that the use of the GE-based
approach also implies in smaller trees when compared to
the same classifier but without the new attribute. This issue,
however, was expected as the new attributes are composition
of the original ones; once the attribute is used in a tree node
(and it probably is, otherwise the results would be the same)
it would be considered more representative and the tree would
need less nodes (original attributes).

Regarding the statistical analysis, the computed value was
Ff = 6.58. Since Ff > F0.05(3, 45) (6.58 > 2.81), the null-
hypothesis is rejected. Once again, we proceed with a post-hoc
Nemenyi test, with CD = 1.17. According to Figure 6, we can
easily observe that GE-REPTree and REPTree generate trees
significantly smaller than the ones generated by both GE-J48
and J48. However, we can argue that this behaviour is because
of the characteristic of REPTree algorithm, which usually
generates smaller trees than J48 does. The most important here
is to analyze if it is worth using GE to automatically generate
a new attribute before inducing the final decision tree.

Since we have executed 5 independent runs over 10-

TABLE V. SIZE OF THE DECISION TREES GENERATED BY THE

DT-INDUCTION ALGORITHMS FROM DATA SETS WITH (GE-J48 AND

GE-REPTREE) OR WITHOUT (J48 AND REPTREE) THE NEW ATTRIBUTES.
STANDARD DEVIATIONS ARE SHOWN BELOW THE TREE SIZE VALUES,

BETWEEN BRACKETS.

data set GE-J48 J48 GE-REPTree REPTree

anneal
45.2 48.3 39.3 40.4

(8.1) (6.5) (4.5) (3.9)

arrhythmia
82.8 82.6 20.9 20.0

(5.5) (5.8) (6.3) (6.0)

audiology
48.1 50.4 32.9 33.1

(3.2) (4.0) (3.9) 4.0

bridges version1
20.5 24.9 28.0 28.0

(18.2) (20.7) (27.3) (28.5)

car
108.9 173.1 107.4 137.3

(21.5) (6.5) (23.9) (9.9)

cylinder-bands
4.2 1.0 258.4 258.4

(3.2) (0.0) (212.3) (221.5)

glass
43.2 44.8 20.2 (18.8)

(6.5) (5.2) (6.1) (6.3)

iris
7.5 8.0 5.4 6.2

(1.8) (1.4) (0.9) (1.7)

kdd synthetic control
34.0 37.8 25.4 24.8

(4.0) (4.3) (2.2) (3.0)

segment
79.3 80.6 52.6 52.4

(5.9) (5.0) (5.9) (4.0)

semeion
54.2 55.0 26.4 26.0

9.2 8.3 6.2 6.1

sick
46.8 46.9 36.7 37.4

(7.5) (9.4) (6.3) (6.9)

tep.fea
6.7 8.2 7.6 9.2

(1.0) (1.7) (1.8) (2.0)

vowel
211.0 220.7 211.0 258.7

(18.5) (20.7) (18.5) (9.2)

winequality-red
391.2 387.0 120.9 117.8

(22.8) (26.5) (19.7) (18.6)

winequality-white
1356.1 1367.2 426.0 412.8

(48.4) (58.4) (36.8) (51.0)

CD

1 2 3 4

GE-REPTree

REPTree

J48

GE-J48

Fig. 6. Critical diagrams showing average ranks and Nemenyi’s critical
difference for Tree Size.

fold cross-validation, we evolved 50 new attributes for each
approach, GE-J48 and GE-REPTree, for each data set. As
examples, we present two of the new attributes. The first one
(Equation 4) was evolved by GE-J48 over the data set “cylin-
der bands”. The second one (Equation 5) was generated by
GE-REPTree over the data set “vowel”. We have chosen these
two data sets as examples because of the high contribution
they provided to the classifiers’s performance.

One may notice that the new attributes are small and that
constant values are present, either for scaling or for shifting
the values. As GE uses random sampling to generate these
constants, it could be useful to employ a better method of
optimizing them.

(4)newAttcylinder bands = (

√√
4.68 ∗ √att9) ∗ att0

(5)newAttvowel = 0.57 ∗ (
√
4.44 +

√
4.67

∗ (4.33 + (
√
att1 ∗ (

√
3.49 + att3))))
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VI. CONCLUSIONS AND FUTURE WORK

In this work we investigated Grammatical Evolution (GE)
for feature construction. GE is a flexible evolutionary algorithm
that uses a context-free grammar and a string mapping to
evolve computer programs; the resulting solution can then be
mapped to the desired programming language. GE has been
successfully applied in solving many problems and showed
to be an adequate candidate method for the task. Here, the
objective was to analyze whether useful features could be
constructed using a small and simple grammar while related
work employ bigger ones.

Our feature construction method was used for evolving
a single feature to improve the predictive performance of
two specific decision-tree induction algorithms on a wrapper
approach. We tested the method on many well-known data sets
and compared the performance using only the original features
with that including the constructed feature.

As shown in the discussion, GE seems a good feature
construction method. Both J48 and REPTree produced better
classifiers (higher accuracy and F-measure values) and smaller
trees for most data sets when using the evolved features. We
believe that the results can be even better and thus many
investigations can be done.

The main future work is to modify the grammar to generate
more complex features to detect other kinds of relationships
among the variables, for instance, other arithmetic and geomet-
ric functions. Also, we intend to test other classification algo-
rithms and investigate a distinct feature construction method,
such as the Genetic Programming, for comparison purposes.
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