
Hierarchical Multi-Label Classification
with Chained Neural Networks

Jônatas Wehrmann, Rodrigo C. Barros,
Silvia N. das Dôres

Pontifícia Universidade Católica do RS
Av. Ipiranga, 6681, Porto Alegre-RS, Brazil

rodrigo.barros@pucrs.br

Ricardo Cerri
Universidade Federal de São Carlos
Rodovia Washington Luís, Km 235

São Carlos-SP, Brazil
cerri@dc.ufscar.br

ABSTRACT
In classification tasks, an object usually belongs to one class
within a set of disjoint classes. In more complex tasks, an
object can belong to more than one class, in what is conven-
tionally termed multi-label classification. Moreover, there
are cases in which the set of classes are organised in a hi-
erarchical fashion, and an object must be associated to a
single path in this hierarchy, defining the so-called hierarchi-
cal classification. Finally, in even more complex scenarios,
the classes are organised in a hierarchical structure and the
object can be associated to multiple paths of this hierarchy,
defining the problem investigated in this article: hierarchi-
cal multi-label classification (HMC). We address a typical
problem of HMC, which is protein function prediction, and
for that we propose an approach that chains multiple neural
networks, performing both local and global optimisation in
order to provide the final prediction: one or multiple paths
in the hierarchy of classes. We experiment with four varia-
tions of this chaining process, and we compare these strate-
gies with the state-of-the-art HMC algorithms for protein
function prediction, showing that our novel approach signif-
icantly outperforms these methods.

CCS Concepts
•Computing methodologies → Neural networks;

Keywords
hierarchical multi-label classification, neural networks, pro-
tein function prediction

1. INTRODUCTION
There is a niche of classification tasks in which classes are
not disjoint but organised in a hierarchical structure, namely
hierarchical classification (HC) problems. In these cases,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAC 2017,April 03-07, 2017, Marrakech, Morocco
Copyright 2017 ACM 978-1-4503-4486-9/17/04. . . $15.00
http://dx.doi.org/10.1145/3019612.3019664

objects are associated with a given superclass and its sub-
classes. The hierarchical structure that organises the set of
classes can assume the form of a tree or of a Directed Acyclic
Graph (DAG). There is a subset of complex HC problems
in which each object can be associated to several different
paths of the class hierarchy, namely hierarchical multi-label
classification (HMC). Typical HMC problems are text clas-
sification [12, 5, 10] and bioinformatics tasks such as protein
function prediction [13, 11, 16].

Algorithms that perform HMC must be capable of label-
ing objects according to one or multiple paths in the class
hierarchy by optimising a loss function either locally or glob-
ally [14]. Algorithms that perform local learning attempt to
discover the specificities that are present in regions of the
class hierarchy, later combining the predictions to provide
the final classification. Global approaches for HMC, on the
other hand, usually consist of a single classifier capable of
associating objects with their corresponding classes in the
hierarchy at once [17, 3, 4, 1].

There is a trade-off regarding the use of either global or
local approaches. Global approaches are usually cheaper
than local approaches, and they do not suffer from the
error-propagation problem. However, global approaches are
usually less likely to capture local information from the hi-
erarchy, eventually suffering from underfitting. Local ap-
proaches, in turn, are often more computationally expen-
sive since they rely on multiple classifiers, but they are of-
ten capable of extracting local information from regions of
the hierarchy. Nevertheless, the use of many classifiers per
level may result in the loss of label dependency during the
training process [14]. To combine the advantages of both
local and global approaches, we argue that it is possible to
use a hybrid strategy capable of optimising both local and
global loss functions. Our novel approach is based on a chain
of neural networks hereafter called Hierarchical Multi-label
Classification with Chained Neural Networks (HMC-CNN).

In HMC-CNN, a multi-layer perceptron (MLP) is trained
per hierarchical level, and each MLP is responsible for cap-
turing local information from the classes of its respective
level. The system is chained, and its goal is to propagate
local information by plugging the output of the MLP respon-
sible for level l in the input of the MLP responsible for level
l + 1. It could be considered a local HMC approach, since
each MLP is responsible for predicting the classes of a given
level. Nevertheless, the chain of neural networks are totally

790

connected both for the forward and backward phases, which
means the sub-networks benefit from both local information
(local gradients from the respective level) and global infor-
mation (global gradients from the last layer of the chained
system). We show that HMC-CNN comfortably establishes
the new state-of-the-art in protein function prediction.

2. RELATED WORK
This section discusses recent machine learning based HMC
algorithms for protein function prediction. In [17], the au-
thors proposed three algorithms based on the concept of Pre-
dictive Clustering Trees (PCT): Clus-HMC (global method),
Clus-SC (local method), and Clus-HSC (local method), and
Clus-HMC provided the best results.

In [11], the authors proposed a global method using Ant
Colony Optimization (ACO). The method discovers classifi-
cation rules in the format if-then, where an ACO algorithm
is employed to optimize the antecedents of the rules. Basi-
cally, a sequential object covering procedure is applied to
create classification rules that cover most training objects.
The method is initialized with an empty set of rules, and a
new rule is added to the set while the number of objects not
covered by any rule is higher than a given threshold.

Bi and Kwok [2] proposed a problem transformation ap-
proach for tree and DAG hierarchies that can be used with
any learner. It employs a kernel dependency estimation
(KDE) approach to reduce the number of labels to a man-
ageable number of single-label learning problems. To pre-
serve the hierarchy information among labels, they devel-
oped a generalized Condensing Sort and Select Algorithm
(CSSA), which finds an optimal approximation subtree in a
tree. They project the labels to a 50-dimensional space and
then use ridge regression in the learning step.

Protein function prediction problems with incomplete hier-
archical labels were investigated in [18]. Hierarchical and
flat (non-hierarchical) similarities between functions were
considered, and combined similarity between the labels was
defined. The known labels and this similarity are used to
estimate missing functions in the hierarchy. Information
regarding protein-protein interactions are also used. Situa-
tions in which labels are missing were simulated by randomly
masking leaf functions of a protein.

In the experiments we perform in this work, we compare
our methods with the 2 methods that show the best results
in the literature: Clus-HMC [17] and CSSA [2]. All meth-
ods have been applied to the same datasets (and exact same
training/validation/test partitions) that are used in our ex-
periments. In addition, these methods produce the same
type of output provided by HMC-CNN, and hence we use
the same evaluation methodology for analyzing the results.

3. HIERARCHICAL MULTI-LABEL
CLASSIFICATION WITH CHAINED
NEURAL NETWORKS

The rationale behind HMC-CNN is to perform both local
and global optimisation. It comprises a chain of neural net-
works where each sub-network is responsible for the pre-

dictions of a given hierarchical level. Therefore, each sub-
network locally optimises a loss function, and then it prop-
agates local information from one level to the next. Since
the sub-network responsible for a given level is connected
to the sub-network responsible for the subsequent level, the
chained system ends when it reaches the deepest level of the
class hierarchy. When that occurs, HMC-CNN backpropa-
gates the gradients to the entire chained system, reinforcing
the local gradients with global information.

We present next the details of three versions of HMC-CNN,
namely HMC-CNN-P (which only propagates predictions in
the forward pass), HMC-CNN-A (which augments the pre-
dictions with the training features), and HMC-CNN-U (an
unchained model that does not directly connect each per-
level network). Moreover, we perform a detailed complexity
analysis of HMC-CNN in the end of the section.

3.1 HMC-CNN-P
Figure 1 presents the architecture of HMC-CNN-P. In the
figure, x is a training object and h1l, h2l and Ol are, re-
spectively, the hidden and output layers of the sub-network
associated with level l. The matrices W1l, W2l, and W3l

represent, respectively, the weights connecting the input at-
tributes and the neurons in the first hidden layer; the activa-
tions of the first hidden layer with the neurons in the second
hidden layer; and the activations in the second hidden layer
with the neurons in the output layer of the sub-network as-
sociated with level l.

W
11

W
31

h
11

x

O
1

h
21

W
21 W

12
W

22 W
32

O
2

h
12

h
22

W
13

h
13

h
23

O
3

W
23 W

33

O
L

W
1L

h
1L

h
2L

O
final

W
2L

W
3L

Level 1 Level 2 Level 3 Level L

Figure 1: HMC-CNN-P architecture. Each sub-
network of the chained system predicts classes
from its corresponding hierarchical level. During
the backward phase, gradients flow from both the
merged output class layer and the end of the chained
system (deepest hierarchical level).

In HMC-CNN, each hierarchical level is associated with a
sub-network with two hidden layers, which means the num-
ber of neurons of its output layer corresponds to the num-
ber of classes of the corresponding hierarchical level. The
mean squared error loss function is used so the gradients are
backpropagated through each sub-network. Note that the
output layer of a given sub-network is used as input layer to
the subsequent sub-network, and hence the chained system
ends when the final hierarchical level is reached. The output
layer of the chained system is the result of merging the out-
put layers of each sub-network, thus generating two sources
of gradient flow in the network: locally per-sub-network and

791

globally from the output of the last sub-network.

For performing parameter updating, HMC-CNN makes use
of AdaGrad [8] instead of stochastic gradient descent (SGD).
In order to show the gains that are obtained by using Ada-
Grad instead of SGD, we show in Figure 2 both the area
under the precision-recall curve and the training loss per
epoch of HMC-CNN-P when using SGD and when using
AdaGrad for the parameter updating step. Note that Ada-
Grad converges faster than SGD, which is what is argued by
the authors in [8].

0 10 20 30 40 50 60 70
Epoch

0.14

0.16

0.18

0.20

0.22

A
U

(P
R
C

)

(a)

Adagrad
SGD

0 10 20 30 40 50 60 70
Epoch

3.2

3.4

3.6

3.8

4.0

4.2

4.4
L
os
s

(b)

Adagrad
SGD

Figure 2: Comparison of SGD and AdaGrad optimi-
sation within HMC-CNN-P in the cellcycle dataset.
(a) Values of AU(PRC) per epoch. (b) Values of
training loss per epoch. Triangle (4) depicts the
best model whereas the square (2) indicates the end
of the training phase.

Finally, HMC-CNN follows the recent trend in neural net-
works (more specifically, deep learning) in which one should
substantially increase the number of neurons in the hid-
den layers in order to enlarge the network capacity. Since
a high-capacity network is extremely prone to overfitting,
we perform dropout regularisation [15], which stochastically
disables a percentage of neurons in each hidden layer. Be-
sides the natural regularisation effect, dropping out neurons
during training has the extra special property of emulating
an ensemble of sub-networks within each network, naturally
improving the predictive performance of the entire system.

3.2 HMC-CNN-A
The training process of HMC-CNN-A follows a different pro-
cedure than in HMC-CNN-P. The objects (feature vectors)
are now used as input to all sub-networks, and not just to
the first one as it was in HMC-CNN-P. Therefore, instead of
simply propagating the predictions from one sub-network to
the next, we augment the vector of predictions with the in-
put feature vectors of the training objects. In Figure 3, note
that the output of each sub-network is now concatenated
with the training input feature vectors in order to form the
input of the sub-networks.

As in HMC-CNN-P, HMC-CNN-A is also trained with Ada-
Grad, a large number of neurons in the hidden layers and
dropout regularisation.

3.3 HMC-CNN-U
In HMC-CNN-U (unchained), an individual sub-network is
independently trained for each hierarchical level, and the
sub-networks are not chained as in HMC-CNN-P and HMC-
CNN-A. The only connection of the sub-networks is regard-
ing the final merged output class layer. In Figure 4 we can

W
11 W

31

h
11

x

O
1

h
21

W
21 W

12

x

h
22

W
22

O
2

W
32

h
13

x

h
23

W
23

O
3

W
33

W
13

h
1L

h
2L

W
2L

O
L

W
3L

W
1L

h
12

O
final

Level 1 Level 2 Level 3 Level L

x

+ + +

Figure 3: HMC-CNN-A architecture. Each sub-
network predicts classes from its corresponding hi-
erarchical level, but the predictions are augmented
with the training objects in order to be used as input
to the subsequent sub-network. Once again gradi-
ents flow from both the merged output layer and
the end of the chained system during the backward
phase.

see that now the gradients flow from a single source (final
output layer) to each independent sub-network, in an end-
to-end fashion.

Figure 4: HMC-CNN-U architecture. Networks are
not chained but regarding the final merged output
class layer. Gradients now flow from a single source
(output layer), with only local information being
used to train each sub-network.

3.4 HMC-CNN-µ: An Ensemble of HMC-
CNN Models

Our last proposed version of HMC-CNN is an ensemble of
the three previous versions: HMC-CNN-P, HMC-CNN-A,
and HMC-CNN-U. In this approach, namely HMC-CNN-µ,
we simply average the real-valued class vector that holds
the prediction for each version, generating a final combined
prediction.

3.5 Generating global predictions
To generate the final global prediction for a test object,
thresholds are applied to the output prediction values from
each of the sub-networks to define the predictions for each
level. If the output of a given class neuron j is equal to or

792

larger than a given threshold, the object is assigned to class
cj . The final classification for HMC-CNN is given by a bi-
nary vector v of size |C|, where C is the set of all classes
in the hierarchy. If the output value of neuron j is equal to
or larger than a given threshold, the value 1 is assigned to
position vj . Otherwise, the position is set to 0.

Different threshold values result in different predicted
classes, and since the activation function used in all neu-
rons is the logistic sigmoid function (values ranging from 0
to 1), the threshold values range within [0,1]. The larger the
threshold value, the lower the number of predicted classes.
Conversely, the lower the threshold value, the larger the
number of predicted classes. Nevertheless, note that during
the classification process, the output values that are passed
from sub-network to sub-network are not the values obtained
after the application of a threshold, but the regular activa-
tion values within [0,1]. The application of the threshold is
only performed to generate the final global predictions.

After HMC-CNN has generated the final predictions, a post-
processing phase is necessary to eventually correct inconsis-
tencies. For instance, it is possible that a subclass is pre-
dicted by HMC-CNN but its superclass is not. The post-
processing phase guarantees that only consistent predictions
are made. For such, this phase removes those predicted
classes whose superclasses were not predicted.

3.6 Computational complexity
Considering the computational cost, each sub-network used
in HMC-CNN-A has a complexity of O(Wl), with Wl being
the number of weights and biases of the sub-network associ-
ated with level l. Assume that A is the number of attributes
in the dataset, H1l and H2l are the number of neurons in the
first and second hidden layers of the sub-network associated
with level l, and Ol is the number of output neurons of the
sub-network associated with level l. We can then define W1

as (A+1)×H11+(H11+1)×H21+(H21+1)×O1. From the
second level onwards, Wl is defined as (Ol−1+A+1)×H1l+
(H1l + 1)×H2l + (H2l + 1)× Ol. The overall training cost
of each sub-network associated with level l in HMC-CNN is
then O(Wl ×m× n), with m being the number of training
objects and n the number of training epochs.

In HMC-CNN-U, the computational cost is lower, since the
predictions are not passed along the chained system. For
HMC-CNN-P, the computational cost in the first level con-
siders the number of features of the objects. From the second
level onwards, only the number of classes is considered, since
the classes are the unique input of the sub-networks.

4. EXPERIMENTAL METHODOLOGY
In this section, we present the full experimental methodology
that is employed during experimentation in order to allow
for reproducibility. We first present the HMC algorithms
that are the current state-of-the-art in protein function pre-
diction. We also describe the datasets that are used and the
evaluation criteria for assessing the predictive performance
of each algorithm. Additionally, we present the parame-
ter setting employed by HMC-CNN. The source code of all

HMC-CNN versions are available for download1.

We compare HMC-CNN with two HMC algorithms, which
are considered the state-of-the-art for protein function pre-
diction: PCT-based method Clus-HMC [17], and CSSA [2].
Clus-HMC is a global-based method that builds a single de-
cision tree to cope with all classes simultaneously. CSSA is
a kernel dependency estimation approach that reduces the
number of labels by projecting them into a lower dimen-
sional space and then allowing the application of any given
classifier (here, we use its original version that employs ridge
regression for learning).

We experiment over 10 freely available2 datasets related to
protein function prediction. These datasets are related to is-
sues like phenotype data and gene expression levels, and are
structured as trees. Table 1 presents the main characteris-
tics of the training, validation, and test partitions from each
dataset. The reader is referred to [17] for the full description
of each dataset. As in [17], 2/3 of each dataset were used
for inducing the classification models and 1/3 for test.

As discussed in Section 3, the outputs of HMC-CNN for
each class are probability values, and the same is true for
the baseline algorithms. Hence, the final predictions (binary
vector indicating the presence or absence of each class) are
generated after thresholding these probability values. The
choice of optimal threshold is difficult and often subjective.
Therefore, we follow the trend of HMC research in which
we avoid choosing thresholds by employing precision-recall
curves (PR-curves) as the evaluation criterion for compar-
ing the different approaches. For generating a PR-curve for
a given classification method, one must select a predefined
number of different thresholds within [0,1] to be applied over
the outputs of each method, finally generating several pre-
cision and recall points in the PR plane. The interpolation
of these points [6] constitute a PR-curve, and the quanti-
tative criterion one analyses is the area under such a curve
(AU(PRC)).

For defining the hyper parameters of HMC-CNN, we per-
formed non-exhaustive tests that optimized the validation
accuracy regarding the cellcycle dataset. We use learning
rate of 0.05, ε = 10−6, dropout of 50%, logistic sigmoid
neurons, and weight initialization as described in [9].

The number of neurons in each layer is defined by log10Ol×
128. E.g., a sub-network with 18 classes in its correspond-
ing hierarchical level will have a total of (log10 18 × 128) =
(1.26×128) ≈ 160 neurons in each hidden layer. Our chained
neural networks are trained by optimizing the mean-squared
error.

In order to provide some reassurance about the validity and
non-randomness of the obtained results, we present the re-
sults of statistical tests by following the approach proposed
by 7]. This approach seeks to compare multiple algorithms
on multiple data sets, and it is based on the use of the Fried-
man test with a corresponding post-hoc test. If the null hy-
pothesis of similar performances is rejected, then we proceed
with the Nemenyi post-hoc test for pairwise comparisons.

1https://goo.gl/AalVHL
2http://www.cs.kuleuven.be/˜dtai/clus/hmcdatasets.html

793

Table 1: Summary of datasets: number of attributes (|A|), number of classes (|C|), number of classes per
level, total number of instances (Total), and number of multi-label instances (Multi).

Dataset |A| |C| Classes per level
Training Valid Test

Total Multi Total Multi Total Multi

Cellcycle 77 499 18/80/178/142/77/4 1628 1323 848 673 1281 1059
Church 27 499 18/80/178/142/77/4 1630 1322 844 670 1281 1057
Derisi 63 499 18/80/178/142/77/4 1608 1309 842 671 1275 1055
Eisen 79 461 18/76/165/131/67/4 1058 900 529 441 837 719
Expr 551 499 18/80/178/142/77/4 1639 1328 849 674 1291 1064
Gasch1 173 499 18/80/178/142/77/4 1634 1325 846 672 1284 1059
Gasch2 52 499 18/80/178/142/77/4 1639 1328 849 674 1291 1064
Pheno 69 455 18/74/165/129/65/4 656 537 353 283 582 480
Seq 478 499 18/80/178/142/77/4 1701 1344 879 679 1339 1079
Spo 80 499 18/80/178/142/77/4 1600 1301 837 666 1266 1047

5. EXPERIMENTS AND DISCUSSION
In this section, we present the experiments that were carried
out to compare the predictive performance of the four HMC-
CNN versions with the state-of-the-art HMC algorithms.
Table 2 presents the AU(PRC) values for tested algo-
rithms, namely HMC-CNN-P, HMC-CNN-A, HMC-CNNP-
U, HMC-CNN-µ, Clus-HMC, and CSSA. We highlight in
bold the best absolute values that were obtained per dataset.

For the HMC-CNN versions, we calculated its AU(PRC) for
the validation dataset at each epoch. When the AU(PRC)
value reaches a plateau and does not increase for 10 epochs,
we stop the training process and select the best neural net-
work from the validation set to execute over the test objects.

The first analysis we perform by examining Table 2 is regard-
ing HMC-CNN-µ (our most competitive version of HMC-
CNN) and its performance when compared with the current
state-of-the-art approaches. Observe that HMC-CNN-µ is
the algorithm with the greatest number of wins and best
average ranking of the experiment, comfortably surpassing
the state-of-the-art approaches. We did expect HMC-CNN-
µ to be the best HMC-CNN method since it averages the
results of the three stand-alone versions, acting like an en-
semble of HMC strategies.

We can also notice that HMC-CNN-P, HMC-CNN-A, and
HMC-CNN-U outperform Clus-HMC in all 10 datasets.
Moreover, the three versions of HMC-CNN outperform
CSSA in 6 out of 10 datasets. Only HMC-CNN-P was
not capable of reaching a lower average ranking than CSSA.
Therefore, it is reasonable to argue that HMC-CNN outper-
forms the current state-of-the-art in protein function predic-
tion both regarding its stand-alone versions and its ensemble
form HMC-CNN-µ.

We move to the statistical significance analysis. The first
test to be executed was the Friedman test, which indicated
the existence of significant differences with a p = 1.06×10−8.
Hence, we moved to the post-hoc Nemenyi test, which is pre-
sented in Figure 5. For this particular analysis, we employ
the graphical representation suggested by 7], the so-called
critical diagrams. In such a diagram, a horizontal line rep-
resents the axis on which we plot the average rank values
of the methods. When comparing all the algorithms against
each other, we connect the groups of algorithms that are
not significantly different through a horizontal line. We also
show the critical difference given by the Nemenyi test above

the graph, which was CD = 2.38. By analysing the Nemenyi
statistical test, we can observe that HMC-CNN-µ is the only
method that outperforms Clus-HMC and HMC-CNN-P with
statistical significance. Whereas the test does not show a
significant difference between HMC-CNN-µ, HMC-CNN-U,
HMC-CNN-A, and CSSA, it is easy to see that HMC-CNN-
µ is the preferred method, presenting the lowest average
ranking. Indeed, note that CSSA is in the limit of the crit-
ical difference regarding HMC-CNN-µ, which means HMC-
CNN-µ probably outperforms CSSA for looser α values (the
test shows values for α = 0.05 but the difference is proba-
bly significant for α = 0.1). Clus-HMC is still considered
one of the best approaches for HMC since it generates in-
terpretable trees while CSSA and HMC-CNN are black-box
approaches. Notwithstanding, HMC-CNN arguably estab-
lishes itself as the novel state-of-the-art approach for HMC
of protein functions.

CD

1 2 3 4 5 6

HCM-CNN-µ

HCM-CNN-U
HMC-CNN-A

Clus-HMC
HCM-CNN-P

CSSA

Figure 5: Critical diagram for the Nemenyi post-hoc
statistical test.

6. CONCLUSIONS AND FUTURE WORK
In this study we propose a novel neural network based
method for hierarchical multi-label classification in tree-
structured hierarchies, namely HMC-CNN. It comprises a
chain of neural networks in which sub-networks are asso-
ciated with specific hierarchical class levels, and each sub-
network is responsible for the predictions in its correspond-
ing level. To the best of our knowledge, HMC-CNN is the
first method in the HMC literature that benefits from both
local and global information at the same time. We per-
formed several experiments using 10 protein function pre-
diction datasets whose classes were structured as trees. Ac-
cording to the empirical analysis, three different versions of
HMC-CNN were capable of outperforming the state-of-the-
art methods in several datasets. Moreover, an ensemble of
these three versions established itself as the novel state-of-
the-art in protein function prediction, comfortably outper-

794

Table 2: Comparison of the proposed HMC-CNN versions and the baseline methods. Values are of AU(PRC).

Dataset HMC-CNN-P HMC-CNN-A HMC-CNN-U HMC-CNN-µ Clus-HMC CSSA

Cellcycle 0.225 0.233 0.227 0.238 0.172 0.196
Church 0.174 0.174 0.175 0.177 0.170 0.179
Derisi 0.188 0.187 0.187 0.190 0.175 0.194
Eisen 0.246 0.274 0.273 0.279 0.204 0.220
Gasch1 0.248 0.260 0.262 0.269 0.205 0.216
Gasch2 0.229 0.236 0.234 0.243 0.195 0.218
Pheno 0.165 0.162 0.164 0.165 0.160 0.167
Spo 0.187 0.193 0.194 0.197 0.186 0.216
Expr 0.238 0.261 0.263 0.270 0.210 0.228
Seq 0.237 0.247 0.255 0.261 0.211 0.226

Average Ranking 3.90 3.30 2.95 1.45 6.00 3.40

forming the best methods in the literature. As future work,
we intend to use protein hierarchies structured as DAGs,
which are not defined in a per-level basis. Meanwhile, we
are interested in applying the proposed method to other do-
mains such as text and scene classification. Finally, it is our
intention to investigate different strategies for dealing with
error inconsistency.

7. ACKNOWLEDGMENTS
The authors would like to acknowledge the following
Brazilian research agencies for funding this research:
FAPESP (2015/14300-1), CAPES (23038.006924/2014-00),
and CNPq (442231/2014-8).

8. REFERENCES
[1] R. C. Barros, R. Cerri, A. A. Freitas, and A. C. P.

L. F. Carvalho. Probabilistic clustering for hierarchical
multi-label classification of protein functions. In
European Conference on Machine Learning
(ECML/PKDD 2013), pages 385–400, Berlin,
Heidelberg, 2013. Springer Berlin Heidelberg.

[2] W. Bi and J. T. Kwok. Multi-label classification on
tree- and dag-structured hierarchies. In L. Getoor and
T. Scheffer, editors, Proceedings of the 28th
International Conference on Machine Learning
(ICML-11), pages 17–24, New York, NY, USA, 2011.

[3] R. Cerri, R. C. Barros, and A. C. P. L. F. Carvalho. A
genetic algorithm for hierarchical multi-label
classification. In Proceedings of the 27th Annual ACM
Symposium on Applied Computing, SAC ’12, pages
250–255, New York, NY, USA, 2012. ACM.

[4] R. Cerri, R. C. Barros, A. C. P. L. F. de Carvalho,
and A. A. Freitas. A grammatical evolution algorithm
for generation of hierarchical multi-label classification
rules. In 2013 IEEE Congress on Evolutionary
Computation, pages 454–461, June 2013.

[5] N. Cesa-Bianchi, C. Gentile, and L. Zaniboni.
Incremental algorithms for hierarchical classification.
Machine Learning, 7:31–54, 2006.

[6] J. Davis and M. Goadrich. The relationship between
precision-recall and roc curves. In International
Conference on Machine Learning, pages 233–240,
2006.

[7] J. Demšar. Statistical comparisons of classifiers over
multiple data sets. Journal of Machine Learning

Research, 7:1–30, 2006.

[8] J. Duchi, E. Hazan, and Y. Singer. Adaptive
subgradient methods for online learning and stochastic
optimization. The Journal of Machine Learning
Research, 12:2121–2159, 2011.

[9] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep
into rectifiers: Surpassing human-level performance on
imagenet classification. In Proceedings of the IEEE
International Conference on Computer Vision, pages
1026–1034, 2015.

[10] A. Mayne and R. Perry. Hierarchically classifying
documents with multiple labels. In IEEE Symposium
on Computational Intelligence and Data Mining, pages
133–139, 2009.

[11] F. Otero, A. Freitas, and C. Johnson. A hierarchical
multi-label classification ant colony algorithm for
protein function prediction. Memetic Computing,
2:165–181, 2010.

[12] J. Rousu, C. Saunders, S. Szedmak, and
J. Shawe-Taylor. Kernel-based learning of hierarchical
multilabel classification models. Journal of Machine
Learning Research, 7:1601–1626, 2006.

[13] L. Schietgat, C. Vens, J. Struyf, H. Blockeel,
D. Kocev, and S. Dzeroski. Predicting gene function
using hierarchical multi-label decision tree ensembles.
BMC Bioinformatics, 11:2, 2010.

[14] C. Silla and A. Freitas. A survey of hierarchical
classification across different application domains.
Data Mining and Knowledge Discovery, 22:31–72,
2010.

[15] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever,
and R. Salakhutdinov. Dropout: A simple way to
prevent neural networks from overfitting. Journal of
Machine Learning Research, 15:1929–1958, 2014.

[16] G. Valentini. True path rule hierarchical ensembles for
genome-wide gene function prediction. IEEE/ACM
Transactions on Computational Biology and
Bioinformatics, 8(3):832–847, May 2011.

[17] C. Vens, J. Struyf, L. Schietgat, S. Džeroski, and
H. Blockeel. Decision trees for hierarchical multi-label
classification. Machine Learning, 73:185–214, 2008.

[18] G. Yu, H. Zhu, and C. Domeniconi. Predicting protein
functions using incomplete hierarchical labels. BMC
Bioinformatics, 16(1), 2015.

795

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 18.00 points
 Normalise (advanced option): 'original'

 32

 D:20170118110126
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 18.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Down
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryList_V1
 qi2base

