A Grammatical Evolution based Hyper-Heuristic for the
Automatic Design of Split Criteria

Marcio P. Basgalupp
Instituto de Ciéncia e
Tecnologia
Universidade Federal de Sao

Rodrigo C. Barros
Faculdade de Informética
Pontificia Universidade
Catoélica do Rio Grande do Sul

Tiago Barabasz
Instituto de Ciéncia e
Tecnologia
Universidade Federal de Sao

Paulo Porto Alegre, RS, Brazil Paulo

S. J. dos Campos, SP, Brazil
basgalupp@unifesp.br

ABSTRACT

Top-down induction of decision trees (TDIDT) is a powerful
method for data classification. A major issue in TDIDT is
the decision on which attribute should be selected for di-
viding the nodes in subsets, creating the tree. For perform-
ing such a task, decision trees make use of a split criterion,
which is usually an information-theory based measure. Ap-
parently, there is no free-lunch regarding decision-tree split
criteria, as is the case of most things in machine learning.
Each application may benefit from a distinct split criterion,
and the problem we pose here is how to identify the suitable
split criterion for each possible application that may emerge.
We propose in this paper a grammatical evolution algorithm
for automatically generating split criteria through a context-
free grammar. We name our new approach ESC-GE (Evo-
lutionary Split Criteria with Grammatical Evolution). It
is empirically evaluated on public gene expression datasets,
and we compare its performance with state-of-the-art split
criteria, namely the information gain and gain ratio. Results
show that ESC-GE outperforms the baseline criteria in the
domain of gene expression data, indicating its effectiveness
for automatically designing tailor-made split criteria.

Categories and Subject Descriptors

1.2.6 [Induction and Knowledge Acquisition|: Learning

General Terms
Algorithms
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1. INTRODUCTION

Top-down induction of decision trees is a powerful method
for data classification. Given a training dataset, decision
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trees are created by recursively dividing the input space such
that the training data examples in each partition can be
classified with increasingly smaller uncertainty. The process
continues until a given stopping condition is satisfied — usu-
ally, the tree growth stops when all training data examples
in a given node belong to the same class [24].

A major issue in top-down induction of decision trees is
the decision on which attribute should be selected for di-
viding the node in subsets at each step of the recursive al-
gorithm. For the case of azis-parallel decision trees (also
known as univariate), the problem is to choose the attribute
that better discriminates the input data. A decision rule
based on such an attribute is thus generated, and the in-
put data is filtered according to the outcomes of this rule.
For performing such a task, decision trees make use of a
split criterion, which is usually an information-theory based
measure commonly regarded as an impurity function. Such
a function examines heuristically the possible tests over the
training dataset attributes, locally optimizing the best node
splits by analyzing the estimates of the class distributions.

The rationale behind well-known split criteria such as the
information gain [22] or the gain ratio [23] is that one should
seek to minimize the class entropy in a given node in order
to maximize the acquired gain in information. The value
of entropy decreases as the probability distribution of the
classes in a node become more heterogeneous. Therefore,
the selected attribute is the one that generates a partition
in which the examples are distributed less randomly over the
classes [9].

However, each split criterion in the literature has disad-
vantages. For instance, the information gain tends to favor
attributes with more values [15]. The x? criterion [18] gen-
erates very large trees, since it favors binary attributes that
lead to very narrow trees with great depth. The gain ratio
criterion [23], in turn, may be undefined for some cases, and
it favors attributes with highly skewed value-frequency [33].
The Gini index [5] also shares the disadvantage of being bias
towards multi-valued and highly-skewed attributes.

Apparently, there is no free-lunch regarding decision-tree
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chine learning literature, we can cite the work of Pappa and
Freitas [21], which proposed a genetic programming based
hyper-heuristic to automatically design full rule induction



algorithms. Similarly, the work of Barros et al. [2,3] pro-
posed a hyper-heuristic to automatically design full decision-
tree induction algorithms. Both studies aimed at avoiding
the no free-lunch theorem by customizing solutions to par-
ticular application domains.

Bearing in mind the strategies above-mentioned, and also
the fact that each application domain may benefit from a
distinct decision-tree split criterion, the problem we pose
here is how to identify the suitable criterion for each possi-
ble application that may emerge. Since the manual design
of tailored split criteria is unfeasible, given the huge amount
of different existing applications, we propose in this paper
a grammatical evolution (GE) based hyper-heuristic for au-
tomatically generating split criteria tailored to particular
application domains.

This study goes beyond the work of Barros et al. [2, 3]
considering that it proposes the automatic construction of
a building block of decision-tree induction algorithms (the
split criterion) instead of selecting and combining existing
building blocks, enhancing the granularity level of the hyper-
heuristic. Since GE is a grammar-based evolutionary algo-
rithm, our novel method incorporates knowledge regarding
the problem of finding the best split criterion in a context-
free grammar. We name our approach ESC-GE (Evolution-
ary Split Criteria through Grammatical Evolution).

This paper is organized as follows. Section 2 describes
related work in split criteria for TDIDT. Section 3 presents
ESC-GE, our new approach for the automatic generation of
split criteria. Section 4 details the methodology employed
during the experiments, which are in turn presented in Sec-
tion 5. We end this paper with our conclusions and future
work suggestions in Section 6.

2. RELATED WORK

In this section, we make use of the following notation.
X is the set of N training instances, a; is the " predictive
attribute of X, and y is the class vector with k rows (classes).

The most well-known split criteria in the literature are
based on information-theory, following the concept of Shan-
non’s entropy [26]. Entropy is known to be a unique function
which satisfies the four axioms of uncertainty. It represents
the average amount of information when coding each class
into a codeword with ideal length according to its probabil-
ity. Some interesting facts regarding entropy are:

e For a fixed number of classes, entropy increases as the
probability distribution of classes becomes more uni-
form;

If the probability distribution of classes is uniform, en-
tropy increases logarithmically as the number of classes
in a sample increases;

If a partition induced on a set X by an attribute a;
is a refinement of a partition induced by a;, then the
entropy of the partition induced by a; is never higher
than the entropy of the partition induced by a; (and it
is only equal if the class distribution is kept identical
after partitioning). This means that progressively re-
fining a set in sub-partitions will continuously decrease
the entropy value, regardless of the class distribution
achieved after partitioning a set.

The first split criterion that arose based on entropy is
the global mutual information (GMI) [11, 25,28]. Ching
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et al. [8] propose the use of GMI as a tool for supervised
discretization. They name it class-attribute mutual infor-
mation, though the criterion is exactly the same. GMI is
bounded by zero (when a; and y are completely indepen-
dent) and its maximum value is maz(log, |a;|, log, k) (when
there is a maximum correlation between a; and y). The au-
thors reckon this measure is biased towards attributes with
many distinct values.

Information gain [7,12,22] is another example of measure
based on Shannon’s entropy, being employed in the well-
known decision-tree induction algorithm ID3 [22]. The goal
of information gain is to maximize the reduction in entropy
due to splitting each individual node. Wilks [31] has proved
that as N — 00, 2 x N x GMI (or similarly replacing GMI
by information gain) approximates the x? distribution. This
measure is often regarded as the G statistics [17,18]. Instead
of using the value of this measure as calculated, we can com-
pute the probability of such a value occurring from the 2
distribution on the assumption that there is no association
between the attribute and the classes. The higher the cal-
culated value, the less likely it is to have occurred given the
assumption. The advantage of using such a measure is mak-
ing use of the levels of significance it provides for deciding
whether to include an attribute at all.

Quinlan [22] acknowledges the fact that the information
gain is biased towards attributes with many values. This
is a consequence of the previously mentioned particularity
regarding entropy, in which further refinement leads to a
decrease in its value. Quinlan proposes a solution for this
matter called gain ratio [23]. It basically consists of normal-
izing the information gain by the entropy of the attribute
being tested. The gain ratio compensates the decrease in
entropy in multiple partitions by dividing the information
gain by the attribute self-entropy. Nevertheless, the gain
ratio has two deficiencies: (i) it may be undefined (i.e., the
value of self-entropy may be zero); and (ii) it may choose at-
tributes with very low self-entropy but not with high gain.
For solving these issues, Quinlan suggests first calculating
the information gain for all attributes, and then calculating
the gain ratio only for those cases in which the information
gain value is above the average value of all attributes.

Several variations of the gain ratio have been proposed,
such as the normalized gain [14] and the average gain [30],
though the gain ratio is still considered the state-of-the-art
in the split criteria literature, being employed in the well-
known decision-tree induction algorithm C4.5 [23].

With respect to similar hyper-heuristic approaches, we
can cite the work of Barros et al. [1-4] called HEAD-DT,
which is a hyper-heuristic that automatically designs full
decision-tree induction algorithms. HEAD-DT, however,
does not generate novel split criteria. It simply selects from
a fixed list of 15 available criteria in the literature. In a
similar note, the work of Vella et al. [29] proposes a hyper-
heuristic that evolves rules to allow the choice of existing
split criteria. An example of rule is: “if % of the attributes
have an entropy value below a given threshold, then use the
existing split criterion Y to partition the nodes in subsets”.
Therefore, the work of Vella et al. [29] also does not gener-
ate novel split criteria through genetic programming. To the
best of our knowledge, this work is the first to propose the
automatic generation of split criteria through a grammatical
evolution based hyper-heuristic.



3. ESC-GE

Evolutionary Split Criteria through Grammatical Evolu-
tion (ESC-GE) is a hyper-heuristic that automatically de-
signs split criteria for top-down decision-tree induction algo-
rithms. Hyper-heuristics (HHs) operate on a different level
of generality from metaheuristics. Instead of guiding the
search towards near-optimal solutions for a given problem,
a HH approach operates on the heuristic level, guiding the
search towards the near-optimal heuristic that can be further
applied to different application domains. HHs are therefore
assumed to be problem-independent and can be easily uti-
lized by experts and non-experts as well [20]. It can be seen
as a high-level methodology which, when faced with a par-
ticular problem instance or class of instances, and a number
of low-level heuristics, automatically designs a suitable com-
bination of the provided components to effectively solve the
respective problem(s) [6].

In the particular case of ESC-GE, it is considered a HH ap-
proach since it automatically designs a split criterion (math-
ematical function) that is problem-independent, i.e., such
a function can be used by a top-down decision-tree induc-
tion algorithm to split data from any classification dataset.
Nevertheless, the underlying assumption of ESC-GE is that
tailor-made split criteria are capable of being more effective
than a single general-use split criterion. For instance, in-
stead of using the same split criterion for all classification
datasets, ESC-GE is trained with datasets that share a par-
ticular application domain, under the hypothesis that the
automatically-designed split criterion that was tailored to
such a domain will be more effective than traditional crite-
ria such as the information gain and gain ratio.

ESC-GE is guided by a grammatical evolution search
(GE) [19], which is considered the state-of-the-art among the
available grammar-based genetic programming techniques
[16]. GE tries to mimic the process of generating a pro-
tein from the genetic material of an organism. Individuals
are generated by binary strings (codons) equivalent to the
double helix of DNA; the integer string decoded from the
binary string is the equivalent of the transcription of DNA
to RNA; finally, the mapping of the integer string to the
grammar production rules and the subsequent generation of
a computer program (or function) is the equivalent of the
translation of RNA to the sequence of amino acids that are
contained within the protein molecule. Figure 1 depicts this
rationale.

The remainder of this section presents the main features
of ESC-GE: its grammar (Section 3.1), its genetic operators
(Section 3.2), and its fitness function (Section 3.3).

3.1 Grammar

Figure 2 presents the context-free grammar employed by
ESC-GE in order to generate split criteria for TDIDT. The
non-terminals and terminals are detailed as follows.

Non-terminals:
+: the sum of two scalars.

—: the subtraction of two scalars.

x: the multiplication of two scalars.

/: the protected division of two scalars. The denomi-

nator cannot be 0 (zero).

e Jog: the protected logip function over a non-zero
scalar.

e sin: the sin function over a scalar.

e cos: the cos function over a scalar.
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Figure 1: Comparison between the GE system and
a biological genetic system. Adapted from [19].

1) <start>::= <esc>
2) <esc>::= (+ <esc> <esc>) | (- <esc> <esc>)
<esc>) | (x <esc> <esc> ) | (log <esc>) |

| (/ <esc>
(sum <vector>)

| (numClass) | (numEx) | (sin <esc>) | (cos <esc>) |
(perBagPerClass)

3) <vector> ::= (perClass) | (perBag) | (**x <esc> <vec-
tor>) | (// <vector> <esc>)

Figure 2: Context-free grammar for generating split
criteria.

e sum: the summation over a vector. The result is a
scalar resulting from the sum of all the elements of the
vector.

e x: the multiplication of a scalar and a vector. Each
element of the vector is multiplied by the scalar, re-
sulting in a new vector.

e //: similar to the (**) operator, but now resulting in
a new vector in which each element is divided by the
scalar. Scalars are not allowed to be 0 (zero).

Terminals:

e numEx: scalar representing the number of instances in
the current node.

e perBag: vector representing the number of instances
in each partition (bag) of the current node.

e perClass: vector representing the number of instances
from each class of the current node.

e perBagPerClass: matrix representing the number of
instances in each partition grouped by their corre-
sponding class.

Given the grammar in Figure 2, ESC-GE evolves a func-
tion S within the following equation:

np k
criterion = (1 — unknownRate) x Z Z S

p=1c=1

(1)

where unknownRate is the percentage of missing values,
np is the number of partitions (bags), and k is the number



of classes. Note that ESC-GE only evolves function S in
Eq. 1, whereas the other terms are fixed and criterion should
be maximized. The first term (1 — unknownRate) simply
weights the criterion proportionally to its amount of missing
values. ESC-GE avoids the further complexity of evolving
the > operators by fixing both sums over partitions and
classes. The evolution of a more detailed split criterion with
non-fixed > operators is left for future work.

3.2 Genetic Operators

In the beginning of the evolutionary process, the indi-
viduals of the initial population in ESC-GE are randomly
initialized. They have variable length, with a minimum size
of five codons each, and a chance of 85% that new codons
will be incrementally added to the individual. Each codon is
comprised of 1 byte (8 bits), which is randomly generated.

To evolve the current generation of individuals, the fol-
lowing mutually-exclusive genetic operations can be per-
formed: crossover, mutation, and duplication. Crossover
has a chance of 90% of being performed, and both dupli-
cation and mutation have a chance of 5% of being applied.
These operations are executed until all individuals of the
new population are generated.

For crossover to be performed, two individuals are chosen
via tournament selection. After the individuals are selected,
they take part in a standard one-point crossover operation,
generating two children. In the duplication process, one indi-
vidual is also selected using tournament selection, and then
two codons of the individual are randomly selected, copying
all codons located between these two selected codons to the
end of the individual. Finally, mutation requires one indi-
vidual to be selected via tournament selection. This indi-
vidual is traversed codon by codon, where each codon has a
10% probability of having its value replaced by a randomly-
generated 8-bit value. The three operators are illustrated in
Figure 3.

AN AN AT
&l 1) (TS
i) Y &)
N N
Tournament  Tournament Tournament
Selection Selection Selection

200743709 [36T101[ 4]

Truncate unused codons

[2207240 53 55 130]

1 point
crossover Y

06510936 [101
20074309 ]55] o

Truncate unused codons

[200[43]09]36

Figure 3: ESC-GE genetic operators.

3.3 Fitness Function

In ESC-GE, each individual represents a possible split cri-
terion to be used in TDIDT. After each individual is de-
coded into a function, we fit such a function into the body
of J48 (the Java version of C4.5) [32]. In order to computer
the fitness of each individual, we evaluate the corresponding
modified version of J48 in a meta-training set. In contrast,
a meta-test set is used to assess the quality of the evolved
split measure function, which is the best individual produced
by ESC-GE. Note that there is no overlapping of instances
between the meta-training and meta-test sets, which allows
us to measure the generalization ability of the evolved split
criterion.

The fitness evaluation process is based on [1-3], where we
have multiple datasets comprising the meta-training set, and
multiple (but different) datasets comprising the meta-test
set. In this approach, each dataset is described by a different
set of predictive attributes, so each dataset corresponds to
a different classification problem.

META-TRAINING SET

=
VALIDATION 1

VALIDATION n

A
TRAINING 1
TRAINING 2

TRAINING n

DECISION-TREE
ALGORITHM
SPLIT CRITERION

INDIVIDUAL

FITNESS EVALUATION

Figure 4: ESC-GE fitness evaluation.

In Figure 4, we can observe how the fitness evaluation of
a split criterion occurs. First, a given individual is mapped
into its corresponding split criterion, and then it is incorpo-
rated into a decision-tree induction algorithm. Next, each
dataset from the meta-training set is partitioned into a train-
ing set and a validation set — typical values are 70% for
training and 30% for validation [32]. The term “validation
set” is used in here instead of “test set” to avoid confusion
with the meta-test set, and also due to the fact that we are
using the performance measure of a candidate split criterion
on those validation sets to guide the evolutionary search
for a better function. The same cannot be done with test
sets, which are exclusively used for assessing the predictive
performance of a decision-tree algorithm using the evolved
function as split criterion.

After dividing each dataset from the meta-training set
into “training” and “validation”, we induce a decision tree
for each training set available. For evaluating the predic-
tive performance of these decision trees, we use the corre-
sponding validation sets. Statistics regarding the predictive
performance and the size of each decision tree are recorded
(e.g., accuracy, F-Measure, precision, recall, total number
of nodes/leaves, etc.), and can be used individually or com-
bined as the fitness function of ESC-GE. In this work, we
use as fitness function the average F-Measure of the decision
trees generated by a given individual for each dataset in the
meta-training set. The well-known F-Measure (also known
as F-score or F1 score) is the harmonic mean of precision
and recall, as shown in the equations below:



.. tp
precision = ————— 2
tp+ fp @
tp
recall = ——— 3
tp+ fn (3)

precision X recall
precision + recall

fmeasure =2 x

n

. 1
Fitness = " Z fmeasure;

i=1

()

where tp (tn) is the numbers of true positives (negatives)
in the validation set, fp (fn) is the numbers of false pos-
itives (negatives) in the validation set, fmeasure; is the
F-Measure obtained in dataset ¢ and n is the total number
of datasets in the meta-training set.

These equations are directly applicable in the case of bi-
nary classification problems, i.e., the case where a dataset
has only two classes: positive and negative. Nevertheless,
they can be trivially extended to multi-class problems. For
instance, we can compute the value of a measure for each
class — assuming each class to be the “positive” class in turn,
and considering all the other classes as the “negative class”
— and then compute a (weighted) average of the per-class
measure.

Although accuracy is still a very popular measure of pre-
dictive performance, it is important to notice that it tends to
be a misleading measure in datasets with a very unbalanced
class distribution. For instance, suppose we are classifying
a dataset whose class distribution is very skewed: 10% of
the instances belong to the positive class and 90% to the
negative class. An algorithm that always classifies instances
as belonging to the negative class would achieve 90% of ac-
curacy, even though it never predicts the positive class. In
this case, assuming that the positive class is equally impor-
tant to (or even more so than) the negative class, we would
prefer an algorithm with a somewhat lower accuracy value,
but which correctly predicts some instances as belonging to
the rare positive class.

Having in mind that most datasets used in our experi-
ments have very unbalanced class distributions, the average
F-Measure is a more suitable fitness function than, say, the
average accuracy, since it is well-known that the F-measure
copes much better with unbalanced class-distribution prob-
lems than the accuracy measure.

4. METHODOLOGY

In this section, we present the methodology employed dur-
ing the empirical analysis. We present the baseline split cri-
teria and ESC-GE parameters in Section 4.1, whereas the
public gene expression datasets are described in Section 4.2
and the statistical analysis process in Section 4.3.

4.1 BasdineCriteriaand Parameters

We compare the split criterion generated by ESC-GE
to well-known and widely-used entropy-based decision-tree
split criteria: information gain [22], and gain ratio [23].
All the criteria employed were plugged into the J48 algo-
rithm [32], in order to allow a fair comparison among them.

Table 1 shows the user-defined parameter values used in
ESC-GE. No attempt to tune these parameter values was
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made. Parameter optimization is a topic left for future re-
search.

Table 1: Configurable ESC-GE parameters.

Parameter Value
Initialization Probability 85%
Number of Individuals 100

Minimum Individual Size 5

Number of Generations 20
Crossover Probability 90%
Duplication Probability 5%
Mutation Probability 5%
Mutation per Codon Probability 10%
Tournament Size 3
Elite 2

4.2 Datasets

The empirical analysis presented in this paper is based
on 20 public datasets from the gene expression appli-
cation domain [27]: alizadeh-v1, alizadeh-v2, alizadeh-
v3, armstrong-vl, armstrong-v2, bittner, chen, chowdary,
golub-v1l, gordon, khan, lapointe-vl, lapointe-v2, liang,
nutt-v3, pomeroy-vl, pomeroy-v2, ramaswamy, shipp-vl,
and tomlins. In brief, microarray technology enables ex-
pression level measurement for thousands of genes in par-
allel, given a biological tissue of interest. Once combined,
results from a set of microarray experiments produce a gene
expression dataset. The datasets employed here are related
to different types or subtypes of cancer, e.g., patients with
prostate, lung, skin, and other types of cancer. The classifi-
cation task refers to labeling different examples (instances)
according to their gene (attribute) expression levels.

Table 2 provides details about these datasets. They were
randomly divided into two groups: A and B. Datasets be-
longing to A were used as the meta-training set, whereas
datasets belonging to B were used as the meta-test set.

Table 2: Summary of the 20 Gene Expression
datasets. For each dataset, we present the total
number of instances, total number of attributes,
imbalanced ratio (rate between over- and under-
represented class), and total number of classes.

Data # # IR
Set Instances Attributes Classes

alizadeh-v3 62 2093 0.43 4
armstrong-v1 72 1081 0.5 2

A lapointe-v2 110 2496 0.27 4
nutt-v3 22 1152 0.47 2
tomlins 104 2315 0.38 5
alizadeh-v1 42 1095 1 2
alizadeh-v2 62 2093 0.21 3
armstrong-v2 72 2194 0.71 3
bittner 38 2201 1 2
chen 179 85 0.72 2
chowdary 104 182 0.68 2
golub-v1 72 1868 0.53 2

B gordon 181 1626 0.21 2
khan 83 1069 0.38 4
lapointe-v1 69 1625 0.28 3
liang 37 1411 0.11 3
pomeroy-v1 34 857 0.36 2
pomeroy-v?2 42 1379 0.4 5
ramaswamy 190 1363 0.33 14
shipp-v1 7 798 0.33 2

4.3 Statistical Analysis

To evaluate the statistical significance of the experimental
results, we present the results of statistical tests by follow-
ing the approach proposed by Demsar [10]. In brief, this



approach seeks to compare multiple algorithms on multiple
datasets, and it is based on the use of the Friedman test
with a corresponding post-hoc test. The Friedman test is
a non-parametric counterpart of ANOVA, as follows. Let
R? be the rank of the 4" of k algorithms on the i** of N
datasets. The Friedman test compares the average ranks of
algorithms, R; = % >, R!. The Friedman statistic, given
by:

12N

k(k+ 1)

k(k +1)*

- (©)

2
XF =

-
J

is distributed according to x% with k— 1 degrees of freedom,
when N and k are large enough.

Iman and Davenport [13] showed that Friedman’s x% is
undesirably conservative and derived an adjusted statistic:

N x(k—1) - x%
which is distributed according to the F-distribution with
k—1and (k—1)(N — 1) degrees of freedom.

If the null hypothesis of similar performances is rejected,
we proceed with the Nemenyi post-hoc test for pairwise com-
parisons. The performance of two classifiers is significantly
different if their corresponding average ranks differ by at
least the critical difference

Fy

k(k+1)
_ 8

oN (8)
where critical values ¢, are based on the Studentized range
statistic divided by /2.

CD = qao

5. RESULTSAND DISCUSSION

Table 3 shows the predictive accuracy values for ESC-GE,
information gain, and gain ratio. It presents the average
accuracy over a 5-fold cross-validation procedure. Observe
that the decision-tree induction algorithm that employs the
split criterion automatically designed by ESC-GE generates
trees with the best accuracy values in 10 out of 15 datasets.

Table 3: Average accuracy of J48 with its corre-
sponding split criterion.

ESC-GE Info Gain  Gain Ratio

alizadeh-v1 0.76 0.69 0.69
alizadeh-v2 0.95 0.90 0.90
armstrong-v2 0.75 0.78 0.74
bittner 0.76 0.53 0.55
chen 0.91 0.83 0.86
chowdary 0.91 0.89 0.89
golub-v1 0.93 0.76 0.83
gordon 0.96 0.93 0.94
khan 0.83 0.82 0.88
lapointe-v1 0.70 0.77 0.67
liang 0.78 0.70 0.70
pomeroy-v1 0.79 0.88 0.88
pomeroy-v2 0.60 0.52 0.57
ramaswamy 0.54 0.56 0.62
shipp-v1 0.79 0.74 0.77
Number of victories 10 2 3

Average Rank 1.47 2.43 2.1

To evaluate the statistical significance of the accuracy re-
sults, we calculated the average Friedman rank for ESC-GE,
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information gain, and gain ratio: 1.47, 2.43, and 2.1, respec-
tively. The average rank suggests that ESC-GE outperforms
the baseline split criteria regarding predictive accuracy. The
calculation of Iman’s F statistic resulted in Fy = 4.45. Crit-
ical value of F(k—1,(k—1)(n—1)) = F(2,28) for o = 0.05
is 3.34. Since Fy > Fu.05(2,28) (4.45 > 3.34), the null-
hypothesis is rejected. We proceed with a post-hoc Nemenyi
test to find which method provides better results in a pair-
wise fashion. The critical difference CD = 0.86. The differ-
ences between the average rank of ESC-GE and the rank of
the baseline split measures are 0.96 and 0.63, respectively.
Given that the difference between ESC-GE and informa-
tion gain is greater than the C'D value, we can confidently
argue that the performance of the split criterion evolved
by ESC-GE is significantly better than the performance of
information gain. Even though there is no significant dif-
ference between ESC-GE and the remaining criterion (gain
ratio), we can observe that only the split criterion evolved
by ESC-GE outperforms another measure with statistical
significance regarding accuracy.

Table 4 shows the F-measures values for ESC-GE, in-
formation gain, and gain ratio. ESC-GE generates the
best trees regarding F-Measure once again in 10 out of 15
datasets, whereas both information gain and gain ratio do
it in 3 datasets. In the pomeroy-vl dataset, the best F-
Measure values are provided by both information gain and
gain ratio. In terms of statistical analysis, the computed
value of Fy = 4.45. Since Fy > Fp.05(2,28) (4.45 > 3.34),
the null-hypothesis is rejected, and thus we can argue that
there is significant differences among the criteria regarding
F-measure. If we proceed with a post-hoc Nemenyi test, the
critical difference is once again C'D = 0.86, and we can ob-
serve that the difference between ESC-GE and information
gain (0.96) is greater than C'D (0.96 > 0.86). It is impor-
tant to notice that ESC-GE once again achieves the lowest
average rank, indicating it is the most suitable option for
the domain of gene expression data.

Table 4: Average F-Measure of J48 with its corre-
sponding split criterion.

ESC-GE Info Gain Gain Ratio

alizadeh-v1 0.76 0.69 0.69
alizadeh-v2 0.95 0.90 0.90
armstrong-v2 0.75 0.78 0.74
bittner 0.76 0.52 0.55
chen 0.91 0.83 0.86
chowdary 0.91 0.89 0.89
golub-v1 0.93 0.76 0.83
gordon 0.96 0.93 0.94
khan 0.83 0.82 0.88
lapointe-v1 0.70 0.77 0.67
liang 0.76 0.69 0.69
pomeroy-vl 0.79 0.88 0.88
pomeroy-v2 0.57 0.49 0.54
ramaswamy 0.54 0.57 0.61
shipp-v1 0.80 0.75 0.77
Number of victories 10 3 3

Average Rank 1.47 2.43 2.1

Figure 5 shows the Nemenyi’s critical diagram, as sug-
gested by Demsar [10]. In this diagram, a horizontal line
represents the axis on which we plot the average rank val-
ues of the methods. The axis is turned so that the lowest
(best) ranks are to the right since we perceive the methods
on the right side as better. When comparing all the criteria
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Figure 5: Critical diagram: Accuracy and F-

measure.

against each other, we connect the groups of criteria that
are not significantly different through a bold horizontal line.
We also show the critical difference given by the Nemenyi’s
test above the graph. Figure 5 shows both the results of
accuracy and F-Measure (since the ranking values are the
same). We can see that ESC-GE is connected only to gain
ratio (no significant difference), though their difference is
almost at the limit of the critical difference. ESC-GE is sig-
nificantly better than information gain (no line connecting
them), whereas gain ratio is not.

Finally, Table 5 shows the size of trees generated by J48
with the criterion evolved by ESC-GE, and also with the
baseline criteria information gain and gain ratio. Results
show that both information gain and gain ratio generate
smaller trees in most datasets, whereas ESC-GE generates
the smaller tree in only 3 datasets.

Table 5: Average tree size of J48 with its corre-
sponding split criterion.

ESC-GE Info Gain  Gain Ratio

alizadeh-2000-v1 22.8 6.20 5.80
alizadeh-2000-v2 8.20 5.00 5.00
armstrong-2002-v2 10.2 8.20 9.00
bittner-2000 15.6 6.20 6.20
chen-2002 11.2 17.0 18.4
chowdary-2006 9.40 10.2 9.80
golub-1999-v1 9.80 6.00 6.20
gordon-2002 15.6 8.20 7.20
khan-2001 26.2 10.6 9.80
lapointe-2004-v1 14.0 10.4 10.2
liang-2005 5.60 5.00 5.00
pomeroy-2002-v1 12.2 6.40 6.40
pomeroy-2002-v2 70.8 11.4 11.6
ramaswamy-2001 11.0 57.2 55.4
shipp-2002-v1 17.4 8.80 9.40
Number of victories 3 8 8

Average Rank 2.6 1.73 1.67

Regarding the statistical analysis, the computed value of
Fy = 5.21. Since Fy > Fu.05(2,28) (5.21 > 3.34), the null-
hypothesis is rejected. Once again, we proceed with a post-
hoc Nemenyi test, and the critical difference C'D = 0.86.
The differences between the average rank of ESC-GE and
the baseline split measures — information gain and gain ra-
tio — are 0.87 and 0.93, respectively. Thus, we can assert
that both gain ratio and information gain generate decision
trees significantly smaller than the ones generated by ESC-
GE. It is also important to note that there is no significant
differences between the baseline split criteria in terms of tree
size (see the critical diagram in Figure 6).

The fact that two baseline split criteria generate smaller
trees than ESC-GE should not be a concern, since smaller
trees are only preferable in scenarios where the predictive
performance of the models is similar. The analysis pre-
viously presented clearly indicates that ESC-GE generates
trees that outperform the baselines regarding predictive per-
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formance in terms of both accuracy and F-Measure. The Oc-
cam’s razor assumption that among competitive hypotheses,
the simpler is preferred, does not apply in this case.

The split criterion evolved by ESC-GE is presented in
Eq. 9:

k

—inz

p=1c=1

1 1
X

f

(N —ip,c)

(9)

inC

where i, . is the number of instances in partition p that
belong to class c. We plan on further studying this criterion
to verify its boundary values and real applicability in other
domains.

6. CONCLUSION AND FUTURE WORK

In this work, we presented ESC-GE, a hyper-heuristic
grammatical evolution algorithm that automatically gener-
ates split criteria for a particular application of top-down in-
duction of decision trees. Since the human manual approach
for designing tailor-made split criteria for every emerging ap-
plication domain of decision trees would be unfeasible, we
believe that the evolutionary search of ESC-GE constitutes
a robust and efficient solution for the problem.

We performed a thorough experimental analysis in which
the split criterion designed by ESC-GE was compared to
state-of-the-art split criteria information gain [22] and gain
ratio [23] in 20 public gene expression datasets. We assessed
the performance of ESC-GE’s evolved criterion through 2
different performance measures, accuracy and F-Measure,
and also a complexity measure, tree size. The experimen-
tal analysis suggested that ESC-GE can generate a criterion
which outperforms both information gain and gain ratio in
terms of predictive performance, though generating signifi-
cantly larger trees. Bearing in mind that an accurate pre-
diction system is widely preferred over a less-accurate (but
simpler) system, we believe that ESC-GE arises as an effec-
tive alternative for generating tailor-made split criteria for
future applications of decision trees.

As future work, we intend to enhance ESC-GE’s gram-
mar so it can generate more complex criteria. Also, we in-
tend to develop a multi-objective fitness function, allowing
the trade-off between predictive performance and parsimony.
Optimizing the evolutionary parameters of ESC-GE is also
a topic left for future research.
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