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ABSTRACT
Hierarchical Multi-Label Classification (HMC) is a complex
classification problem where instances can be classified into
many classes simultaneously, and these classes are organized
in a hierarchical structure, having subclasses and super-
classes. In this paper, we investigate the HMC problem of
assign functions to proteins, being each function represented
by a class (term) in the Gene Ontology (GO) taxonomy. It
is a very difficult task, since the GO taxonomy has thou-
sands of classes. We propose a Genetic Algorithm (GA)
to generate HMC rules able to classify a given protein in
a set of GO terms, respecting the hierarchical constraints
imposed by the GO taxonomy. The proposed GA evolves
rules with propositional and relational tests. Experiments
using ten protein function datasets showed the potential of
the method when compared to other literature methods.

Categories and Subject Descriptors
G.3 [Mathematics of Computing]: Probability and
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1. INTRODUCTION
In conventional classification, an instance xi ∈ X can be

classified in only one class cj ∈ C. However, there are more
complicated classification problems, where an instance can
be simultaneously classified into a set of classes Cj ∈ C. In
Hierarchical Multi-Label Classification (HMC), an instance
can be classified into a set of classes, and these classes are
organized in a hierarchical taxonomy, having subclasses and
superclasses. In this taxonomy, there is a partial order ≺h

representing the superclass relationships, i.e., for all c1, c2 ∈
C, c1 ≺h c2 if and only if c1 is a superclass of c2.

Among the different applications of HMC, protein func-
tion prediction deserves to be highlighted. Proteins perform
almost all functions in an organism. Their functions are
related to cell activity, such as biochemical reactions, cell
signaling, structural, and mechanical functions [6]. Protein
functions are also hierarchically structured, which makes
protein function prediction a typical HMC problem.

In this work, we investigate the protein function predic-
tion problem using the Gene Ontology (GO) hierarchy. In
the GO, the classes are organized in an hierarchy of terms,
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Figure 1: Part of the Gene Ontology Hierarchical Taxonomy. (Adapted from Ashburner et. al. [2])

where each term corresponds to a protein function. The GO
taxonomy is organized as a Directed Acyclic Graph (DAG).
It is formed by a set of three ontologies, each one covering
a different domain. The domais covered are cellular compo-
nents, biological processes, and molecular functions [2], each
having thousands of classes. Figure 1 illustrates a small part
of the GO taxonomy. By having thousands of classes, the
protein function prediction task using the GO taxonomy is
a very challenging problem. The prediction of the terms lo-
cated in the deepest levels of the hierarchy is very difficult,
since they have very few positive instances. In addition, an
instance can be classified simultaneously in many paths of
the hierarchy. When an instance is classified into a class
cj , it is classified into all superclasses of class cj . This is
the multiple inheritance interpretation, and is the correct
interpretation when working with the Gene Ontology [2].
Two approaches have been used to deal with HMC prob-

lems, called local and global approaches. The local approach
trains a set of classifiers, where each one is responsible for
the prediction of one class or a small set of classes which
are neighbors in the hierarchy. A classification for a new in-
stance is then obtained combining the predictions provided
by the individual classifiers. Any conventional classifier can
be used in the local approach. In the global approach, only
one classifier is trained to deal with all classes at the same
time, and then the classification of a new instance is per-
formed in just one step. Differently from the local approach,
a conventional classifier cannot be used, unless adaptations
are made to it in order to cope with the multi-label and
hierarchical constraints [9].
In this paper, we propose a Genetic Algorithm (GA)

to generate hierarchical multi-label classification rules.
The method is called Relational Hierarchical Multi-Label

Classification with a Genetic Algorithm (RHMC-GA). It
is a extended version of the method proposed in Cerri et.
al. [5]. We use a new fitness function and selection operator
to evolve antecedents of classification rules. The consequents
of the rules are obtained using a deterministic procedure.
They are represented as a class vector v, where each position
corresponds to a class, and receives a real value interpreted
as the probability of an instance being classified in the class.
In addition, we evolve rules with two different kinds of tests.
The first one traditionally evaluates if an attribute value Ak

satisfies a test condition, e.g. Ak ≤ xi,k. These tests are
known as propositional tests. Besides evolving rules with
only propositional tests, RHMC-GA evolves rules that also
compare the values of different attributes, e.g. A1 ≤ A2.
These tests are called relational tests [8].

The induction of rules containing relational tests compar-
ing the values of two attributes is the main contribution of
this paper. There are many algorithms to discover HMC
rules, but none of them induce rules with relational tests.
The motivation for inducing relational tests is the increas-
ing of the expressiveness power of the rules. Also, these
tests cope better with attribute interactions. However, they
increase a lot the search space, which can make it more dif-
ficult to discover good rules.

The next sections are organized as follows. Section 2 re-
views some works that generate HMC rules for protein func-
tion prediction; Section 3 presents our method for generating
HMC rules; the experimental set up is presented in Section 4;
Section 5 presents the experiments performed; finally, con-
clusions and future directions are presented in Section 6.

2. RELATED WORK
Not so many works proposed methods to induce HMC
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rules for protein and gene function prediction in the Gene
Ontology taxonomy. This section discusses some of them.
In Vens et al. [12], three methods based on the concept of

Predictive Clustering Trees (PCT) were investigated. The
authors proposed a global Clus-HMC method that induces
a single decision tree to cope with the entire classification
problem. They compared its performance with two local
methods. The first method, Clus-SC, induces an indepen-
dent decision tree for each class of the hierarchy, ignoring the
relationships between classes. The second one, Clus-HSC,
explores the hierarchical relationships between the classes
to induce a decision tree for each class. Still based on PCT,
the study of Schietgat et al. [11] used an ensemble technique
to combine the decision trees induced by Clus-HMC.
Alves et al. [1] proposed a global method using Artificial

Immune Systems (AIS) for the generation of HMC rules.
The method is divided into two basic procedures: Sequential
Covering (SC) and Rule Evolution (RE). The SC procedure
iteratively calls the RE procedure until all (or almost all)
training instances (antigens) are covered by the discovered
rules. The RE procedure evolves classification rules (anti-
bodies) that are used to classify the instances. The best
antibody is added to the set of discovered rules.
In the work of Otero et al. [9], the authors proposed a

global method using Ant Colony Optimization (ACO). The
method discovers classification rules in the format “IF . . .
THEN . . . ”, where an ACO algorithm is employed to op-
timize the antecedents of the rules. Basically, a sequential
instance covering procedure is applied to create classifica-
tion rules that cover all (or almost all) training instances.
The method is initialized with an empty set of rules, and a
new rule is added to the set while the number of instances
not covered by any rule is higher than a given threshold.
A problem transformation method was proposed in the

work of Bi and Kwok [3]. Initially, the classes of the in-
stances are projected to a space of smaller dimension (Rm),
using kernel principal component analysis. After that, m
regressors are trained. To preserve the hierarchical rela-
tionships during the projection procedure, the hierarchical
constraints were incorporated to the kernel function.
A KNN-based method was proposed by Pugelj and

Džeroski [10]. The authors modified the original KNN algo-
rithm to calculate the prototype of the k-nearest neighbours
of an instance. This prototype is the final classification of
the instance, just like done in the PCT-based methods [12].
In the experiments performed in this work, we used the

global-based method Clus-HMC and its local variants Clus-
HMC and Clus-SC. These methods were proposed in [12].
We chose them because they were all applied to the datasets
used in our experiments. In addition, they produce the same
type of output provided by RHMC-GA and have their code
available for downloading. Therefore, we could compare the
prediction performances in detail. Recall that none of the
above methods learns rules with relational tests.

3. RHMC-GA
Relational Hierarchical Multi-Label Classification with a

Genetic Algorithm (RHMC-GA) is a global-based method
for the generation of HMC rules using a Genetic Algorithm
(GA). The main pseudocode of the method is presented in
Algorithm 1, where a sequential covering procedure is im-
plemented to evolve antecedents of rules. In this procedure,
instances covered by a rule are removed from the training

set, so that new rules can be generated with the remaining
instances. The consequent of a rule is generated using a de-
terministic procedure considering the classes of all instances
covered by the rule.

3.1 Individual Representation
Figure 2 illustrates the individual representation in

RHMC-GA. Each test of an individual is represented as a
4-tuple {FLAG, OP, ∆1, ∆2}, where each 4-tuple is associated
to a dataset attribute A. The gene FLAG indicates if the test
over an attribute is used in the rule. If the test is used, FLAG
receives the value 1, and 0 otherwise. Gene OP is the integer
index of the operator used in the test. Genes ∆1 and ∆2 will
receive values that will depend on the operators used and in
the type of test used (propositional or relational). Exactly
how all values are assigned will be detailed explained in the
next section.

FLAG OP 1 2 FLAG OP 1 2

Figure 2: Representation of an Individual.

With the representation depicted in Figure 2, RHMC-GA
is able to evolve rules of the form IF Antecedent THEN Con-
sequent. The antecedent of a rule is thus formed by a con-
junction of tests, and the consequent of a rule is formed by
a set of GO classes, respecting the constraints of the hier-
archical taxonomy. An example of rule is given below. In
this example, only active tests of the rule are shown. As
can be seen, a rule can be formed by both propositional and
relational tests.

IF (A1 OP ∆) AND (A3 OP A5) AND (A5 OP ∆)

THEN
{GO1, GO2, GO4, . . . , GO|C|}

3.2 Population Initialization
The population in RHMC-GA is initialized using a seed-

ing procedure, where an instance is randomly selected and
transformed into a rule. Each test has a probability pt of be-
ing used. The operator used is randomly selected depending
if the attribute is numeric or categoric.

After choosing the operator, the values to be put in the
genes ∆1 and ∆2 depend on the operator chosen. For cate-
gorical attributes, the operators can be =, ̸=, and in. The
in operator verifies if a given attribute value is among a
given set of values. If the operator chosen is = or ̸=, gene
∆1 receives the index corresponding to the categoric value
of the attribute in the instance being used as seed, and gene
∆2 receives 0 (∆2 is not going to be used in the test). If the
operator is in, gene ∆1 receives the index corresponding to
one of the sets of values which contain the value of attribute
in the instance, and gene ∆2 receives 0. As an example
of this last procedure, if the attribute in the instance has
the value A, and the possible values for this attribute in the
dataset are A, B, and C, position ∆1 receives the value cor-
responding to one of the sets of values which contain value
A: {A, B}, {A, C}, and {A, B, C}. The set of values used
is randomly chosen.

If the operator chosen corresponds to an operation over a
numeric attribute, the assignment of values to genes ∆1 and
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Algorithm 1: A Genetic Algorithm to generate HMC rules.

procedure RHMC-GA(D,G,p,minCov,maxCov,maxNotCov,cr,mr,t,e,pt)
Input: training set D

number of generations G
size of population p
minimum number of instances covered by a rule minCov
maximum number of instances covered by a rule maxCov
maximum number of not-covered instances maxNotCov
crossover rate cr
mutation rate mr
tournament size t
number of individuals selected by elitism e
probability of using a test in a rule pt

Output: set of rules InducedRules
inducedRules← ∅
while |D| > maxNotCov do

initialPopulation← generatePopulation(D, p, pt)
calculateF itness(initialPopulation,D)
currentPopulation← initialPopulation
bestRule← best rule of currentPopulation according to fitness
j ← G
repeat

newPopulation← ∅
newPopulation← newPopulation ∪ elitism(currentPopulation, e)
parental← tournamentSelection(initialPopulation, t, e, p)
offspring ← uniformCrossoverDistance(parental, cr)
newPopulation← newPopulation ∪ offspring
newPopulation← mutation(newPopulation,mr, pt)
newPopulation← localOperator(newPopulation,minCov,maxCov)
currentPopulation← newPopulation
calculateF itness(currentPopulation,D)
bestRule← getBestRule(initialPopulation, bestRule)
j ← j − 1

until j > 0 OR ruleConvergence();
inducedrules← inducedRules ∪ bestRule
remove from D all instances covered by bestRule

return inducedRules

∆2 is simpler, because numeric attribute values do not need
to be indexed. In the case of operator ≥, gene ∆1 receives
the attribute value in the instance, and gene ∆2 receives 0.
If the operator is ≤, gene ∆2 receives the attribute value
in the instance, and gene ∆1 receives 0. We use ∆1 and
∆2 differently depending on the operator used because we
consider ∆1 and ∆2, respectively, as the lower and upper
bounds of the attribute value. This facilitates the use of an
operation testing if an attribute value is between two given
values (∆1 ≤ Ai ≤ ∆2). In this case, the values for genes ∆1

and ∆2 are randomly chosen in order to make the attribute
value Ai satisfy the test condition.
Up to now, we have explained how the propositional rules

are encoded. To encode relational rules, a modification in
the above indexation scheme must be done. When compar-
ing two attributes A1 and A2, we always use the operator
≤. However, we index it with another value, to differentiate
it from the ≤ operator used in propositional rules. Also, the
genes ∆1 and ∆2 receive the indexes of the attributes in the
instance. Thus, if attributes A1 and A2 are being compared,
∆1 and ∆2 receive, respectively, the values 1 and 2. Recall
that only numeric attributes can be compared.
The indexation of categorical values and operators is done

according to Figure 3. In the Figure, a dataset with four
attributes is considered. When verifying if a rule covers an
instance, appropriate operations are executed according to
the type of attribute (numeric and categoric), and also the
index of the operation.

With the indexation scheme presented in Figure 3, a rule
can be formed by any kind of test, propositional or rela-
tional, and there is no specific amount of each one of them
in the rule, since the operators are randomly chosen. Still, in
relational tests, all possible pairs of attributes can be com-
pared. The indexation scheme also allows different kinds of
rules to be generated by a very simple modification in the
scheme. If one wishes to generate only propositional rules,
he only needs to remove the operator indexed as 3 (rela-
tional operator) in the numeric indexation scheme, so that
index 3 will never be chosen. On contrary, if only relational
rules are desired, one needs to remove operators 0, 1 and 2
from the numeric indexation scheme, so that only index 3
will be chosen.

3.3 Evolution
The evolutionary process starts by saving the best e rules

of the current population (elitism). Then, p − e rules are
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Figure 3: Indexation of operators and categorical values.

selected to be submitted to a uniform crossover operation,
in order to generate an offspring. The crossover operation
exchanges entires 4-tuples between the individuals. This
means that crossover points are allowed to fall only in the
boundaries between two 4-tuples. In order to specialize the
rules in the classification of a set of instances, the crossover
operation considers the distances between the consequents
of the rules. The consequent of a rule represents a vector
of class probabilities, and each vector position value is given
by Equation 1.

vr,j =
|Sr,j |
|Sr|

(1)

In Equation 1, Sr,j is the set of all training instances cov-
ered by rule r, which are classified in class cj . The set Sr

contains all training instances covered by rule r. Thus, each
position vr,j contains the proportion of instances covered by
rule r, which are classified in class cj . This can be inter-
preted as the probability of an instance covered by r to be
classified in class cj . Since GO terms located at levels closer
to the root have more positive instances than GO terms lo-
cated in deeper levels, positions in v associated to terms
closer to the root receive higher probability values than po-
sitions associated to deeper terms. Thus, the hierarchical
constraint is guaranteed not to be violated.
Our crossover operator receives as input a list of p−e rules.

A rule is then removed from the list, and the weighted Eu-
clidean distances between the consequent of this rule, and
the consequents of all the other rules in the list, are calcu-
lated. The lower the Euclidean distance value between the
consequents of two rules, the nearer the rules are considered
to be in the search space. The two nearest rules are then
removed from the list, and their antecedents are submit-
ted to a uniform crossover to generate two child rules. The
objective is to apply the crossover operator in rules that
cover instances that are near in the search space, i.e., in-
stances that are classified in a similar or equal set of classes.
Equation 2 gives the calculation of the weighted Euclidean
distance (WED) between the consequents of two rules.

WED(v1,v2) =

√√√√ |C|∑
j=1

wi × (v1,j − v2,j)2 (2)

In Equation 2, wj corresponds to the weight associated
to the jth class in the hierarchy. Weights were associated
to each class because, in the context of hierarchical classi-
fication, similarities between classes located in levels closer
to the root are more important than similarities between
classes located in deeper levels [12].

The weighting scheme used in RHMC-GA is the same
used in the PCT-based methods [12]. After trying different
schemes, the authors found out that the best one is given
by Equation 3. The weight w0 associated to a class in the
first level is defined as 0.75, and the weight of a class cj is
recursively defined as the multiplication of w0 by the mean
weight of all its ancestor classes Pj .

wj = w0 ×
Pj∑
k=1

w(pk)/Pj (3)

After the generation of new rules, a mutation operator is
applied to a percentage mr of them, randomly chosen. Each
of the rules have a chance of 50% to suffer a FLAG mutation
and a chance of 50% to suffer a restriction or generalization.

In the FLAG mutation, each test in the antecedent of the
rule has a probability pt of being not used (gene FLAG ex-
changed from 1 to 0), or used (gene FLAG exchanged from 0
to 1). In the restriction/generalization operation, each used
test in the rule is randomly restricted or generalized, having
their values modified by using a randomly generated factor
in [0, 1]. The restriction/generalization procedure is applied
in order to make the tests cover a smaller/larger number
of instances.

After the mutation operation, a local operator is applied
in order to try to guarantee that the rules cover a minimum
and maximum number of instances. This is performed to
make the rules not too specific neither too general.

After the generation of a new offspring, the fitness of all
rules is calculated, and the best rule is saved. This proce-
dure is executed until the maximum number of generations
is reached, or until rule convergence, i.e. the best rule re-
mains the same after 10 generations. After this complete
evolutionary cycle is performed, the best rule found so far is
saved, and its covered instances are removed from the train-
ing data. A new population is then generated, and a new
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3.4 Fitness Calculation
RHMC-GA uses the variance gain [9, 12] of a rule as its

fitness. The variance gain value is higher for rules which
cover a more homogeneous set of instances, i.e., rules that
partition the training set in more homogeneous sets. In ad-
dition, the variance gain can directly cope with hierarchical
multi-label data, considering the relationships between the
classes [9]. The variance gain (VG) calculation is presented
in Equation 4.

V G(r, S) = var(S)− |Sr|
|S| ×var(Sr)−

|S¬r|
|S| ×var(S¬r) (4)

As observed in Equation 4, the set S of all training in-
stances is divided into two subsets: the set of instances cov-
ered by rule r, denoted Sr, and the set of instances not
covered by rule r, denoted S¬r. The variance gain of a rule
is obtained considering the set S, and also involves the vari-
ance (var) of the sets Sr and S¬r. The variance of a set of
instances is defined by the sum of the mean quadratic dis-
tances between the class vector of each instance (vi), and
the mean class label vector of all instances in the set (v).
The variance of a set of instances S is presented in Equa-
tion 5. The distance used is the weighed Euclidean distance
presented in Equation 2.

var(S) =

∑|S|
i=1 WED(vi,v)

2

|S| (5)

4. EXPERIMENTAL SET UP
In this section we present the datasets, evaluation mea-

sures, and RHMC-GA parameters used in the experiments.

4.1 Datasets
We used ten datasets where protein functions are struc-

tured according to the Gene Ontology. Details about the
datasets can be found in Vens et. al. [12]. Table 1 presents
the characteristics of the datasets. As can be seen, we are
dealing with thousands of classes in each dataset, and all in-
stances are assigned to more than one class simultaneously.
This is, therefore, a very difficult classification task.
The datasets are available at http://www.cs.kuleuven.

be/~dtai/clus/hmcdatasets.html, and are related to is-
sues like phenotype data and gene expression levels.

4.2 Evaluation Measure
As explained in Section 3, the final classification of an

instance is given by a vector v, where each position vj cor-
responds to the probability of the instance being classified
in class cj . This is also true for the PCT-based methods.
Thus, a threshold value must be employed in order to ob-
tain the final prediction for an instance. If the corresponding
output value vj for a class cj is equal to or larger than the
threshold, the instance is classified into cj . Otherwise, it is
not classified into cj . The final prediction for an instance
is then given by a vector v, where vj = 1 is the instance is
classified into cj , and 0 otherwise.
The question that arises now is how to choose the opti-

mal threshold value in order to obtain the best classifica-
tion. This is a difficult task, since low threshold values lead
to many classes being assigned to each instance, resulting

in high recall and low precision. On the other hand, large
threshold values lead to very few instances being classified,
resulting in high precision and low recall.

In order to avoid the choice of a threshold, we used
precision-recall curves (PR-curves) to compare the differ-
ent methods. To obtain a PR-curve, different thresholds
between [0,1] are applied, and thus different values of preci-
sion and recall are obtained. Each threshold then represents
a point within the PR-space. We connect these points to
form a PR-curve, and the area under the curve is calcu-
lated. Different methods can be compared based on their
areas under the PR-curves.

In this work, we used the area under the average PR-
curve (AU(PRC)). Given a threshold value, a precision-
recall point (Prec,Rec) in the PR-space can be obtained
through Equations (6) and (7). In these equations, i iterates
over all classes of the hierarchy.

Prec =

∑
i TPi∑

i TPi +
∑

i FPi

(6)

Rec =

∑
i TPi∑

i TPi +
∑

i FNi

(7)

To verify the significance of the results, we employed
the non-parametrical tests Friedman and Nemenyi [7]. We
adopted a confidence level of 95% in the statistical tests. We
used the same data partitions suggested in [12]: 2/3 of each
dataset were used for inducing the rules and 1/3 for test.

4.3 RHMC-GA Parameters
The parameter values used in RHMC-GA are listed in

Table 2. These parameters were obtained based on the work
of Carvalho et. al. [4], and no attempts to optimize them
were made. The work developed in [4] is a local-based GA to
evolve rules for hierarchical, but not multi-label, problems.

The parameter pt (probability of using an attribute in
initialization) has a different value according to the number
of attributes in the dataset. It is given by |A|×pt = 5, where
|A| is the number of attributes. Thus, the parameter value
is set in order to activate on average 5 tests in the rule. We
chose to start with small rules in order not to have an initial
population with too many restricted rules, covering none or
very few instances. This same logic is used when applying
the mutation operator, with probability pt.

5. RESULTS AND DISCUSSION
In Table 3, we present the experiments performed using

the two different types of rules induced by RHMC-GA: rules
using only propositional tests and rules using propositional
and relational tests.

To generate rules with relational tests, we used only the
datasets whose attributes are microarray data, because it
only makes sense to compare attributes of the same do-
main. We standardized the attributes in these datasets
(mean equals 0 and standard deviation equals 1). We also
executed the other methods in the standardized datasets.

The values showed in Table 3 for RHMC-GA are the mean
and standard deviations after ten executions. As Clus-HMC,
Clus-HSC and Clus-SC are deterministic methods, only one
execution is needed. As can be seen, the AU(PRC) values
obtained by all methods are very low. This is considered a
normal result in HMC domains, specially in the GO, where
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Table 1: Summary of datasets: number of attributes (|A|), number of classes (|C|), total number of instances
(Total) and number of multi-label instances (Multi).

Dataset |A| |C| Training Valid Test
Total Multi Total Multi Total Multi

Cellcycle 77 4122 1625 1625 848 848 1278 1278
Church 27 4122 1627 1627 844 844 1278 1278
Derisi 63 4116 1605 1605 842 842 1272 1272
Eisen 79 3570 1055 1055 528 528 835 835
Expr 551 4128 1636 1636 849 849 1288 1288
Gasch1 173 4122 1631 1631 846 846 1281 1281
Gasch2 52 4128 1636 1636 849 849 1288 1288
Pheno 69 3124 653 653 352 352 581 581
Seq 478 4130 1692 1692 876 876 1332 1332
Spo 80 4116 1597 1597 837 837 1263 1263

Table 2: Parameters used in RHMC-GA
Parameters Values

Size of population (p) 100
Elitism rate (e) 1%
Mutation rate (mr) 40%
Crossover rate (cr) 90%
Probability of using an attribute in initialization (pt) |A| × pt = 5
Number of Generations (G) 100
Tournament size (t) 2
Maximum number of not-covered instances (maxNotCov) 10
Minimum number of instances covered by a rule (minCov) 10
Maximum number of instances covered by a rule (maxCov) 300

thousands of classes are involved, making the classification
problem much more challenging.
According to Table 3, when evolving classification rules

with only propositional tests, RHMC-GA obtained better
results than Clus-SC in all datasets, and also outperformed
Clus-HSC in some datasets. In comparison with Clus-HMC,
RHMC-GA obtained competitive results in some datasets,
but was, in general, outperformed.
When comparing the results using the classification rules

with both propositional and relational tests, RHMC-GA still
obtained better performances than Clus-SC. However, it was
outperformed by Clus-HMC and Clus-SC. We can also see
that the standardization of data seemed to harm the per-
formances of the PCT-based methods, specially the local
versions Clus-HSC and Clus-SC.
We can observe that the AU(PRC) values obtained by

RHMC-GA, when evolving these new kind of rules, were in-
ferior to the values obtained when evolving rules with only
propositional tests. This can be explained by the fact that,
when comparing different attributes among themselves, the
search space is largely increased. This potentially augments
the possibility of finding good solutions, but also can make
the classification problem more difficult, since it is more dif-
ficult to find good solutions in larger search spaces.
The fitness function employed also has a characteristic

that may have harmed the RHMC-GA performance in some
situations. According to Equation 4, the variance gain of a
rule is maximized when the difference between the variance
of Sr and S¬r is minimized. However, if a very homogeneous
set of training instances (instances classified in the same, or
in a very similar, set or classes) is left to be covered, the
fitness value can be reduced to 0. This happens when a rule
which covers all instances is induced. In this case, it is a very
good rule, since it covers all remaining instances belonging
to a same/similar set of classes. However, its fitness value

will be 0, since |S¬r|
|S| × var(S¬r) will be 0, and the values of

var(S) and |Sr|
|S| × var(Sr) will be the same.

The individual representation is another characteristic
that may have harmed the RHMC-GA performance when
using relational tests. Because each 4-tuple test is associ-
ated to an attribute, when an attribute Ai associated to a
given 4-tuple position i is used in a relational test, it cannot
be used anymore in a propositional test.

In Table 4, we show the results of the statistical tests
applied. We mark with an ∗ the comparisons where the
classifier in the column obtained statistically better results
than the classifier in the row.

6. CONCLUSIONS AND FUTURE WORKS
In this paper, we proposed RHMC-GA, a Genetic Algo-

rithm to generate propositional and relational Hierarchical
Multi-Label Classification Rules. We used datasets struc-
tured according to the Gene Ontology taxonomy, a directed
acyclic graph (DAG) hierarchy having thousands of classes.

RHMC-GA uses a sequential covering procedure to evolve
the antecedents of the rules. The consequents are determin-
istically obtained using the classes of the instances covered
by the rules. It also tries to evolve rules specialized in the
classification of a group of classes, by applying the crossover
operation in rules considered near in the search space.

We showed how the RHMC-GA fitness function could
have harmed the algorithm’s performance in some situa-
tions. Also, we argued that the new kind of generated rules
may have largely increased the search space, which can make
more difficult to find good solutions.

According to the experiments, RHMC-GA obtained com-
petitive results if compared with other methods in the liter-
ature. Although RHMC-GA was outperformed by the state-
of-the-art Clus-HMC, the difference in their predictive per-
formance was not statistically significant.

As future work, we plan to develop a better fitness func-
tion, which tries to verify if the classes of the instances were
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Table 3: AU(PRC) values obtained

Dataset
Only propositional tests

Dataset
Propositional and relational tests

RHMC-GA Clus-HMC Clus-HSC Clus-SC RHMC-GA Clus-HMC Clus-HSC Clus-SC

Cellcycle 0.341 ± 0.009 0.357 0.371 0.252 Cellcycle 0.319 ± 0.016 0.358 0.344 0.243
Church 0.341 ± 0.005 0.348 0.397 0.289 Church 0.329 ± 0.008 0.340 0.374 0.267
Derisi 0.344 ± 0.003 0.355 0.349 0.218 Derisi 0.298 ± 0.015 0.353 0.346 0.208
Eisen 0.380 ± 0.004 0.380 0.365 0.270 Eisen 0.351 ± 0.017 0.389 0.338 0.271
Gasch1 0.361 ± 0.003 0.371 0.351 0.239 Gasch1 0.335 ± 0.017 0.370 0.325 0.236
Gasch2 0.351 ± 0.007 0.365 0.378 0.267 Gasch2 0.322 ± 0.022 0.369 0.352 0.266
Pheno 0.331 ± 0.002 0.337 0.416 0.316 - - - - -
Spo 0.345 ± 0.008 0.352 0.371 0.213 Spo 0.295 ± 0.028 0.351 0.315 0.214
Expr 0.361 ± 0.007 0.368 0.351 0.249 Expr 0.327 ± 0.016 0.370 0.334 0.251
Seq 0.359 ± 0.007 0.386 0.282 0.197 - - - - -

Table 4: Statistical Significance Analysis

Only propositional tests Propositional and relational tests

RHMC-GA Clus-HMC Clus-HSC Clus-SC RHMC-GA Clus-HMC Clus-HSC Clus-SC
RHMC-GA RHMC-GA
Clus-HMC Clus-HMC
Clus-HSC Clus-HSC
Clus-SC * * Clus-SC * *

correctly predicted. The current fitness function only con-
siders the variance of the sets of instances covered and not
covered by the rules, but does not verify if the instances are
being correctly classified. We also intent to investigate a
way of evolving the consequents of the rules, and not only
the antecedents. In this way, we will not only try find good
antecedents, but antecedents with good consequents.
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