
Knowledge Creation and Loss within a Software Organization: An
Exploratory Case Study

Davi Viana, Tayana Conte
USES Research Group

ICOMP/UFAM
Amazonas - Brazil

{davi.viana,
tayana}@icomp.ufam.edu.br

Sabrina Marczak
Computer Science School

PUCRS
Rio Grande do Sul - Brazil
sabrina.marczak@pucrs.br

Raymundo Ferreira
INDT

Amazonas - Brazil
ext-

raymundo.junior@microsof
t.com

Cleidson de Souza
Instituto Tecnológico Vale

and UFPA
Pará - Brazil

cleidson.desouza@acm.org

Abstract
Software development activities are very critical,

since most of them heavily depend on individuals’
knowledge and their capabilities. This knowledge must
be retained and managed in order to avoid
productivity breakdowns. This paper empirically
explores how knowledge is created and lost in a
software organization, and discusses implications for
software development. This is done through a case
study in which we investigated a Brazilian R&D
Institute. We found that knowledge creation can be
achieved through: (1) knowledge sources; (2)
architectural frameworks that contain common
applications and architectures for a set of projects;
and (3) lessons learned that contains concerns
regarding previous projects. Additionally, we verified
that some teams’ actions might influence knowledge
loss. To identify and to understand which aspects are
related to managing knowledge is the first step towards
avoiding its loss and facilitating organizational
learning. Our work contributes to this end.

1. Introduction

Software development is a knowledge intensive
endeavor composed of several activities of socio-
technical nature [1]. In this sense, carrying out such
activities, which involve a high amount of knowledge,
is not trivial [2]. Knowledge used and produced during
these activities can be about technologies, software
engineering methods, and/or the organization’s internal
processes [3]. Creating and disseminating knowledge
within software organizations require commitment
from practitioners and an organizational culture that
favors such creation and dissemination activities [4].

Nonaka et al. [5] classify knowledge into two
types: tacit and explicit. Explicit knowledge, also
called codified knowledge, is considered to be
transferable using a formal and semantic language.
Moreover, this type of knowledge can be represented

in documents and databases. On the other hand, tacit
knowledge is based on the person’s experience and is
harder to formalize. Both types of knowledge are
considered to be the main competitive assets of a
software organization [1, 6]. This means that software
organizations need to carefully manage knowledge [7].

The lack of knowledge dissemination within an
organization can eventually cause the loss of important
information. Mendonça et al. [2] states that loss of
information can occur due to the following reasons: (1)
team members who quit their job; (2) solutions that are
forgotten; (3) lack of documentation of solutions, or
when documented, they are not distributed in the right
way; and (4) constant technological updates, causing
severe issues for the organizations. Additionally,
Mitchell and Seaman [8] corroborated that problems
with project information storage and retrieval can
cause obstacles in knowledge flow. These previous
works suggest that it is important to analyze the
organizational software development environment in
order to create strategies to avoid knowledge loss.

In this paper we sought to empirically investigate
how knowledge is created and lost within a software
organization. Such analysis is important because
software organizations want to retain knowledge
created in their projects as much as possible to avoid
rework and performance breakdowns. Our research
question is: “How is knowledge created and lost in a
software organization?” To answer our research
question, we conducted an exploratory case study in a
mid-sized software organization located in Brazil. Such
organization is a non-profit Research and Development
(R&D) Institute focused on the generation of new
concepts, products and solutions for areas related to
mobile technologies and the Internet. We conducted 28
on-site interviews and applied grounded theory
techniques [9] to draw conclusions about our data.

Our results show that the software organization has
a set of activities in place to support knowledge
creation. The organization possesses relevant technical
knowledge (software routines and components) that is

2015 48th Hawaii International Conference on System Sciences

1530-1605/15 $31.00 © 2015 IEEE

DOI 10.1109/HICSS.2015.477

3980

embedded into the source code of the developed
software. When such source code is common and
shared among different products, an architectural
framework is created/updated to maintain the most
updated knowledge about the developed products.
However, not all knowledge can be created and
maintained in that framework. In this sense, knowledge
regarding the development process, and the decision-
making regarding the adoption of technologies as well
as the technical knowledge about the software products
are lost due to the lack of adequate documentation of
that knowledge. We identified indicators of the loss of
some knowledge due to the poor management of
certain software development activities.

In summary, our findings can support the
understanding, in a deeper way, of the important issues
regarding knowledge creation and loss in a software
organization. This understanding can be used by
management to organize the knowledge management
(KM) practices in their teams and help them to identify
how the organization as a whole can benefit from the
knowledge generated at a project level. We also
anticipate that the findings reported in this paper will
support and guide future work conducted in this field.

The remainder of this paper is organized as follows.
Section 2 presents related work to this research.
Section 3 describes the research method and the study
settings. Section 4 presents our qualitative analysis and
Section 5 discusses our findings. Section 6 concludes
the paper with final considerations and future work.

2. Related Work

Software team members often hold knowledge
about the product being developed, the tools and
techniques to support their work and the organizational
processes [10]. However, there are situations in which
a software developer might not have enough
knowledge for performing his/her role, e.g., when the
person is a newcomer to the team and has not learned
about the product yet. Therefore, retaining and
managing knowledge as well as making this
knowledge available are an important aspect to support
development activities in any software organization.

Activities regarding the creation and the
dissemination of knowledge are part of the KM process
[11]. Bjørnson and Dingsøyr [12] conducted a
systematic literature review about the concepts that
have been studied, the results and research methods
that have been used regarding KM in software
engineering. Besides presenting an analysis of the KM
schools within the reviewed work, these authors
conclude that the type of activities of KM to be applied
in an organization will depend on how the software

development is done. This is explained by the different
implications of KM for agile and traditional
development. Nevertheless, such review does not detail
what activities help to create knowledge in software
organizations.

Many researchers aimed at analyzing software
process activities for creating knowledge and avoiding
the loss of such knowledge. For instance, Aurum et al.
[13] presented a case study on practices for KM in two
Australian software organizations. The authors
identified that the creation of knowledge was
performed both implicitly and explicitly within the
organizations. Their results showed that practitioners
recognized that the knowledge creation was being
performed in their software development projects.
Another conclusion from this study was that the team
meetings were acknowledged as crucial opportunities
for practitioners to present new ideas, to offer advice,
and to commit to processes and methodologies,
creating new knowledge [13].

One type of team meetings is the project post-
mortem meeting [14] (also namely
review/retrospective meeting in agile methodologies
context). During these meetings it is possible to gather
and create new knowledge for the organization [14].
The postmortem is a collective activity that can be
performed at the end of a project phase or at the end of
the project. The motivation for performing a
postmortem meeting is to know what happened in the
project in order to improve future practices. The goal
of the postmortem is to become a learning opportunity
and not to evaluate the project. Similarly, Dingsøyr et
al. [15] pointed out that the experiences created in this
type of meeting assist the organizational learning
because there is a discussion of past successes and past
failures. Despite the fact that post-mortem meetings are
important for knowledge creation [14, 15], it is
necessary to verify during the software development
process if there are other moments in which it is
possible to create knowledge.

Mitchell and Seaman [8] use the KM technique of
“knowledge mapping” as a research technique to
characterize types of obstacles on knowledge flow in
software projects. The characterization of such
obstacles can assist the improvement of the software
process. The researchers verified that software
engineers strongly depend on explicit project document
storage/retrieval and tacit internal team
communication. Thus, it is important to deal with the
obstacles regarding these dependencies, such as: the
lack of a versioning mechanism and different needs in
domain knowledge and technical knowledge.
Additionally, Kukko and Helander [16] identified a set
of barriers for K as a whole. Such barriers can
negatively influence knowledge creation, causing the

3981

loss of relevant information in the projects. Through a
theoretical study, the authors described several
barriers, including: lack of dissemination on the real
benefits of knowledge sharing, lack of trust among the
practitioners within an organization, low conscious of
the value of the possessed knowledge, and lack of an
adequate structure to handle and to maintain the
knowledge. The identification of obstacles and barriers
[8, 16] can support software organizations when
applying certain strategies to avoid knowledge loss.

In general, previous results suggest that
understanding certain activities for knowledge creation
are important to support software activities and avoid
possible knowledge loss. We will later come back to
this related work to compare our findings.

3. Research Design

To understand the complex phenomenon of
knowledge creation and loss in software organizations,
we chose to conduct an exploratory case study [17].
This type of case study is carried out to verify what is
going on in the real world and to generate insights and
ideas [18]. The case must be an event from real life
[17]. We chose an organization that is pioneer in the
development of mobile software and that possesses
other offices in Brazil. Additionally, this organization
has an initiative to implement KM processes to support
and to improve its software development process.

In our study, we used semi-structured interviews to
collect data. We conducted 28 interviews with software
practitioners who play different roles in the
organization. Initially, we prepared a questionnaire
with open questions about knowledge management,
organizational learning, and the organizational
environment. Table 1 presents a summary of a plan for
our case study.

Table 1. Plan for case study based on [18].
Elements Description
Objective Exploratory
The case The entire organization (four projects)
Theory There is no specified theory [18]

Research
questions

How is knowledge created and list in a
software organization?

Methods Direct (interviews)
Selection
strategy

The software organization needs to retain
knowledge within the organization itself

Then, we applied such questionnaire with software
practitioners. After that, we transcribed and analyzed
all interviews using grounded theory techniques [9].
We chose a qualitative method because such type of
method supports a better comprehension of the issues
that need a more specific and detailed analysis. Seaman
[19] states that the use of qualitative methods allows

the researcher to consider human behavior and
thoroughly understand the object of study. By applying
a qualitative method, we intended to obtain a more
adequate understanding of the creation and loss of
knowledge in software organizations. More details
about the organization, data collection and analysis
methods are presented below.

3.1. Study Context

The study took place in a software organization that
is a research and development (R&D) institute that
focuses on products and solutions for areas related to
mobile technologies and the internet. Such
organization is committed with the creation of
technological solutions that generate value. Its focus on
productization complements the R&D cycle, and
accelerates technological development in Brazil. The
organization has about 255 employees, distributed in
different software projects. Such projects are related to
mobile applications (apps), cloud services and
operational system for mobile phones. The
organization adopts several technologies, including C#,
C++, J2ME, J2EE, Lua, and Hadoop. With the goal of
maintaining knowledge always available for its
practitioners to improve their productivity, the
organization needs to better understand how
knowledge is created within its context. The
organization has recently defined a knowledge
management initiative to better organize knowledge
considered relevant to support the software
development work performed by the software teams.
This initiative aims to allow the practitioners to create
and to improve their knowledge practices.

The organization has a well-defined hierarchical
structure. The practitioners report to two types of
managers: the project manager, who is responsible for
supervising the projects; and the line manager, who is
responsible for allocating people in projects and
dealing with organizational and professional career
matters. There is also a project leader role. This role is
assigned according to the needs of the project manager.
Normally, such need arises when a manager has to
supervise too many projects and needs help with it.
Developers are commonly allocated to only one project
at a time. Designers and testers are shared resources
across projects, i.e. they are assigned to more than a
project at a time.

The software process is defined according to the
project specifications and project manager needs. Such
process is controlled by the team itself and is normally
managed by the project manager when there is not a
leader available. The teams aim at carrying out as
many Scrum practices [20] as possible. Some team
members hold the Scrum Master role. However, these

3982

members cannot supervise all projects at a time given
the high workload. Therefore, when the team does not
officially allocates a Scrum Master, someone inside the
team carries out the Scrum Master’s activities.

3.2. Data Collection

We interviewed 28 software practitioners,
distributed as follows: 19 developers, 4 designers, 3
testers, 1 project leader, and 1 manager. The population
of our study was defined according to the four projects
that were under development at the time of execution
of the study. Furthermore, these practitioners were
selected as interviewees because they faced daily
activities that allowed knowledge creation.

Before starting to collect data, a researcher defined
an initial questionnaire with open questions to guide
the interviews. Then, a senior researcher analyzed the
questions. Finally, the questionnaire was applied in a
pilot interview. Table 2 shows some of the questions
applied in our case study.

Using the results from the pilot interview, we were
able to verify and to adequate the questions for the case
study. Interviews took place in January, 2014 and were
conducted in the participants’ offices. All interviewees
were informed of their volunteer participation and
signed a consent form stating that they could withdraw
from the research at any given time. The total time
spent conducting the interviews was 8 hours and 25
minutes. Next, the interviews were transcribed and
prepared for analysis in the Atlas.TI software
(http://www.atlasti.com).

3.3. Data Analysis

To analyze the data collected, we used Grounded
Theory (GT) techniques [9]. GT is a qualitative
research method that uses a set of systematic data
collection and analysis procedures to generate, prepare,
and validate substantive theories on essentially social
phenomena, or on wide social processes. The essence
of the GT method is that a substantive theory emerges
from the data. Thus, GT allows for producing a theory
derived from systematically collected and analyzed
data. Although the purpose of the GT method is the
construction of substantive theories, its use does not

necessarily needs to remain restricted to researchers
who only have such research goal. Strauss and Corbin
[9] explain that a researcher may use only some of its
procedures to meet her research goal, e. g., when
researchers need to understand some phenomenon.

The proposed GT coding process is split into three
stages: open, axial, and selective [9]. Open coding
involves the breakdown, analysis, comparison,
conceptualization, and categorization of the data. In the
early stages of the open coding, the researcher explores
the data with a detailed examination of what is deemed
as relevant through the intensive reading of the texts.
Later, in the open coding stage the incidents or events
are grouped in codes via incident-incident comparison.
We used the Atlas.TI software to perform the open
coding of the interviews. We randomly chose one of
interviews as a starting point. While we analyzed the
data contained within the interviews, we created codes
associated with parts of the text.

In the axial coding, the purpose is to group the
codes according to their properties-forming concepts
that represent categories. Also, it is possible to identify
categories’ variations [21]. These categories are
analyzed and subcategories are identified aiming to
provide more clarification and specification. These
subcategories can be dimensions of this category. The
dimensions represent the attributes of a category along
a continuum [9]. Finally, the categories and
subcategories are related to each other, and the causal
relationships between the categories are determined.
We created categories according to the performed
analysis of the data and we followed the purpose of
axial coding step.
During the selective coding step, the goal is to perform
a process refinement, identifying the core category,
which will be related to all others. The core category
should be able to integrate all other categories and to
express the social process essence [9]. We decided not
to elect a core category just yet. GT suggests that there
should be interaction between the collection and
analysis stages until the theoretical saturation is
reached [9]. Consequently, we decided to postpone the
selective coding phase. This is the main reason why we
claim that we did not apply entirely the GT method,
but only some of its specific procedures.

Table 2. Questionnaire sample
Question Type Questions

Organizational
Environment

How is your daily work here at the organization?
If you have an activity that you don’t know how to carry out, where do you find knowledge for performing
it? How is this done? Does this happen frequently?

Knowledge
Management

How do you identify important knowledge/lessons learned to be shared in the organization?
When do you identify knowledge/lessons learned that would be relevant for your co-workers? How do you
identify that? Alone, in a meeting, something else?

Organizational
Learning

How did you learn how to carry out the activities of the organization?
Which mechanisms are applied to stimulate the learning of the development process?

3983

4. Study Results

We present our results organized by the three
main categories identified during our data analysis
process, namely: general knowledge sources,
architectural framework, and lessons learned. Table 3
summarizes these categories. The types of knowledge
are: (i) technical – knowledge regarding software
routines and components; and (ii) software
development specific – knowledge regarding
software process and activities. More details about
categories are described below.

Table 3. Categories of our qualitative analysis
Main

Category Description Knowledge
Type

General
Knowledge

Sources

Knowledge basis for
supporting software

development activities

Technical
and Software
Development

Architectural
Framework

Source code repository
for specific software

products
Technical

Lessons
Learned

Team and
organizational aspects
that can be knowledge

for future projects

Technical
and Software
Development

4.1. General Knowledge Sources in the
Organization

A general knowledge source is any location
where the practitioners can obtain information from
that helps them carry out their activities. Such
sources also aid in the storage of the knowledge that
was created during the execution of the project. We
list some of the knowledge sources we identified
below.

4.1.1. Written Material and Trainings. In our
study, we considered books as written material.
Written material and trainings provide important
concepts and basic knowledge on technologies and
the execution of the software development activities.
Internal practitioners or consultants provide trainings.
Such trainings can be designed to attend current
needs of a project or to prepare the practitioners to
play specific roles in projects to come. Trainings can
also be conducted during an organizational event,
known as ‘Feature Friday’. During that event, a set of
practitioners gathers and makes presentations of
technologies or interesting results from other
projects. Such event allows the knowledge
socialization to occur. The following quotations
present examples of such knowledge sources:

“(...) at the beginning of each year, we have a meeting
with our Line Manager who defines how is our career
today and what we define for the end of the year. (…), I

focus my career in the management area. Therefore,
my Line Manager can start to develop a career plan for
me from my own wish to pursue that area, and then I
can attend trainings on topics that can help me achieve
my final goal, which is continuing working with
management. (…)” - Interviewee 4.

“(...) The institute has a great advantage. It facilitates a
lot of things, such as the acquisition of books [written
material], or even courses [trainings]. So, let’s say that
at the time I entered the company, yeah, the institute
acquired some books that I needed to (…) Such support
from the company was important to provide the
materials to carry out the development”–Interviewee 1.

“(...) an event where you can present your projects,
concepts and workshops. I think the goal is exactly that,
share knowledge”. – Interviewee 20

4.1.2. Web, Organizational Blog/Forum and Wiki.
Team members use the Web as a source of important
knowledge to aid in the execution of their activities
from the moment they are hired. The Organizational
Blog/Forum and the organizational wiki contain
knowledge about the products that have been
developed or are under development. The difference
between these sources is the way in which one can
access the information. The Organizational
Blog/Forum has open access to anyone who has
access to the Web while the Wiki is for internal use
in the organization. We identified that the “wiki” is
an important source for practitioners to seek for
knowledge a colleague who has left the company
used to hold. Moreover, we identified, in our
qualitative analysis, a variation with respect to the
consult activity of the wiki. Such variation is: the
wiki is consulted or not consulted by practitioner.
The reasons that led to such variations are: the lack of
notification when there is an update in the wiki and
the superficiality of the described content. The
following quotation illustrates these knowledge
sources.

“(...) then, the first thing I do is that: I go to the web,
searching in a group, in that case, the Organizational
Wiki.” – Interviewee 3.

“(…) maybe because they don’t know that the
information is being put there [Wiki]. (...) I have
written papers inside the Wiki that very little people
have seen because they don’t know that I put them
there. There is no dissemination or an effort to
broadcast the results.” – Interviewee 14.

4.1.3. Experienced Software Practitioners. The
experienced practitioners are a source of tacit
knowledge. When there are questions regarding a
certain technology or the software development
process activities, the others practitioners often
appeal to the more experienced practitioners. The

3984

organizational environment can be an aspect that
influences such tacit knowledge sharing between the
practitioners since they work in the same office. The
following quotations, from interviewees 6 and 11,
illustrate such knowledge sharing:

“Question: When you have a difficulty in any of those
activities, what do you do? Answer: I go after someone
who has experience on that.”
“(...) if I have a question, I contact the person who is
responsible for that specific topic. Normally, it is a
person who masters that specific topic.”

There is no consensus on who should be
contacted to obtain specific knowledge. When
interviewed, the practitioners informed that they
knew who was a specialist according to their
previous projects, or they asked someone in the
organization who to go to.

4.1.4. Source Code. The source code contains
technical knowledge regarding the developed
products within the organization. Source codes
possess knowledge that is a legacy from other
development teams and the client herself.

“(...) You made the software X that contains SMS
application, do you have the source code? Do you
know how it works?” - Interviewee 10.

“He [the project manager] gave me the source code.
Then, he explained what he had done, using the source
code itself.” – Interviewee 18.

In certain software projects, a great amount of
knowledge embedded within that source code is
included in an architectural framework that contains
parts of the developed software. Such architectural
framework is described in the next subsection.

The presented knowledge sources can help the
organizations to obtain general information regarding
technologies and software development activities.
Software practitioners have to use the available
sources according to their needs. While the general
knowledge sources are regarding to knowledge basis
for software activities and technologies, the two next
categories are more related to projects and activities
executed to development software.

4.2. Architectural Frameworks

The project manager is typically responsible for a
set of projects that possesses a similar architecture.
Therefore, aiming at reducing rework, common
knowledge to the projects of the same manager is
added to architectural frameworks. These
frameworks are created to standardize the
development of applications and architectures. The
standardized structure allows a better understanding
of the knowledge contained within these frameworks.

Such frameworks contains only technical
knowledge, i.e., it contains: (1) the source code –
allows its constant maintenance and is a source of
technical knowledge; (2) comments of the
implemented solutions – allows other practitioners to
understand more easily the code, thus reducing the
negative impact in the development; and, (3)
architectural decisions – decisions made by the
projects team regarding the projects architecture.

“(...) [that framework] is updated. In fact, that is what
I was doing right now. Since we are in a time when
there is no project’s tasks, we use the exceeding time to
perform these improvements and generate the
framework documentation. Actually, I was gathering
things that were well performed in another project and
trying to put that into the framework.” – Interviewee 3.

“(...) at the beginning of this year, a huge project
began with several small projects beginning in a way.
Then, the small projects end, and then we have a short
amount of time to gather and join everything into the
framework. After that, we work in the next cycle of
projects, which already uses what was previously
created before. Finally, we arrive to the end of the year
with a very robust framework, which is stored in our
repository.” – Interviewee 4.

The architectural frameworks can also assist
distributed development teams. In certain situations,
the client already possesses an initial framework of a
project. Such framework contains codes that are
necessary for developing the project.

“I once worked in a project where they, I mean… it
was here in Manaus and people in Boston were
involved, so we... they sent us code, the framework that
they created there. Then, we had to understand and use
what they had already created.”

4.3. Lessons Learned

During the retrospective meetings the
practitioners identify lessons learned regarding the
projects. In the studied organization, such lessons are
divided into three categories, namely: positive facts,
negative facts, and improvement opportunities.
Positive facts describe what happened that was good
during the execution of a project. Negative facts are
events that constrained the execution of the project,
while improvement opportunities are things that
worked well but could have been better. The
identified negative facts and improvement
opportunities are associated with action items since
they offer the chance for improvements.

There is also the context of the lesson learned.
Some lessons are related to the organization as a
whole and some are related to the development team.
Lessons learned that should be implemented in the
organization as a whole are shared with the managers

3985

by the Scrum Master. Moreover, lessons learned
regarding the team are related to the improvement of
the collective work.

“Yeah... at first, we carry out a review on the Sprint.
Then, we will analyze what was good, bad, and then,
what is related to the organization and to the team.
Based on that, we make an action plan, trying to solve
the things that went badly.” – Interviewee 7.

“(...) We classified what was bad for the team and bad
for the organization.” – Interviewee 3.

After the meetings, the Scrum Master or the
assigned person documented the lessons learned. We
present next how accessible the lessons learned are to
the team members and how the lessons learned
management are handled by the project manners.
This analysis is important because some concerns
regarding such availability and management of
lessons learned influence directly the knowledge
creation and loss.

4.3.1. Availability of the lessons learned. We
identified that there are distinct perceptions about the
availability of the lessons learned. This maybe
because the Scrum Master is the one deciding how to
handle and make available these lessons to the team.
Table 4 presents such subcategory proprieties,
showing the variation of this subcategory [9]. In this
case, the variation is about the frequency in which
software developers access the lessons learned.
Excerpts below illustrate the respondents’ perception
about the lessons learned availability:

“Do you have access to that material? I mean, that
document [the lessons learned registration]? Answer: I
don’t know, I never accessed it, “oh, can I see?” well, I
don’t know if I had an easy access to that information. I
don’t know what to tell you.”- interviewee 10.
“(...) Do you have access to those facts [lessons
learned]? Answer: Yes, he [the Scrum Master]
provides them.
- Where, exactly? Answer: We have a shared folder.” -
interviewee 6.

“Is it available to you for consultation during the
Sprint? Answer: I think it is available, but not that
accessible since it is a document that is sent to the
project manager.” - interviewee 27.

Table 4. Properties of “Availability of the lessons
learned”.

Category Availability of the lessons learned

Concept The way how practitioners access the
lessons learned created in software projects

Variation
axis

Positive: Accessing a lot
Positive: Accessing a little
Negative: Not accessing
Negative: Not aware of the existence of the
lessons learned

4.3.2. Management of the lessons learned. The
most important person in charge of managing the
lessons learned is the Scrum Master. Some Scrum
Masters even insert the activities that were defined in
the action items created to address the lessons learned
into the project schedule. However, such activities
can become implicit for the practitioners. Other
Scrum Masters present to the project team what
needs to be improved. Such Scrum Masters do not
share the file that contains the lessons learned. This
way, we identified the variation of management of
the lessons learned subcategory: (i) scrum master
does not provide the lessons and (ii) scrum master
provides the lessons. Such variation was defined
based on the following quotations.

“(...) the actions items end up becoming part of the
kanban board of the Scrum Master. There is also a
“mini kanban board” in our board that has our
constrains, action items and extras.” – Interviewee 5.
“- Is the information that is shared during the
retrospective meeting stored somewhere? Answer: Yes,
it is. The Scrum Master stores all the suggestions that
we put there.
- And do you have access to that information? Answer:
Hum, no. No.
- How is that you remember which are the things that
should be improved in the next Sprint? Answer: The
Scrum Master show us and then we say ‘Oh, OK’. They
also discuss with the manager and normally nobody
has access to those things. (...) It stays too dependent of
the Scrum Master.” – Interviewee 23.

We observed that the way in which the Scrum
Master manages the lessons learned can influence the
access to those lessons learned by the practitioners.
Figure 1 presents the relationship between the
subcategory “availability of the lesson learned” and
“management of the lesson learned” and their
variations.

Figure 1. Relationship between subcategories

5. Discussion

In this section, we discuss our findings regarding
knowledge creation and loss. This way, it is possible

3986

to understand how our findings can contribute to
knowledge creation and avoidance of knowledge
loss. Additionally, we compare our findings with
previous literature. Researchers should constantly
compare theory and data in order to contribute for a
better comprehension of their findings [22]. Such
comparison aims at verifying how literature relates to
the emerging data from this research [23].

5.1. Knowledge creation and loss

Knowledge sources can aid in the creation of
knowledge within the organization. The Web and the
written material document knowledge that is obtained
from other sources. Thus, it is not possible to analyze
the creation of such sources. The trainings facilitate
the creation of knowledge for practitioners, since
practices can be carried out in order to fixate the
transferred knowledge. These trainings can
complement both technical and software
development knowledge. Training is important for
allowing one to access knowledge [24]. Moreover,
Kukko and Helander [16] found that lack of training
is a barrier related to technological issues. This
barrier can constrain the creation of necessary
knowledge for the elaboration of products and the
execution of software processes. In trainings, the
presentations do not always remain available to the
entire organization. Therefore, the collaborators who
do not participate in the event might not have access
to the knowledge that was created/shared through the
discussion during the presentations.

The wiki also allows the knowledge creation.
However, we noticed that the information within the
wikis is superficial. We identified a variation point
related to the creation/update of the knowledge inside
the wiki. We verified that the update will depend on
the development team. There are projects in which
only the leader updates the wiki, and others in which
we can see that the majority of the other practitioners
carry out the updates. However it is not a common
organizational practice. Thus, knowledge from the
other team members can be lost at end of the some
projects. It is also necessary to check the degree of
utilization and update of wikis. Ras [25] found that
knowledge embedded in wikis is related to the tools
and processes of software engineering.

Some practitioners tend to ask experienced
practitioners for further information. These
experienced practitioners possess specialized
knowledge on certain topics. This way, such
experienced practitioners support the knowledge
creation. We notice that these experienced
practitioners are the key players for knowledge
socialization. The usage of experience practitioners

has strong relations to exploit knowledge [26]. In our
findings, we identified that people look for
experienced practitioners within the organization that
could aid in the execution of their activities. The
knowledge is retained within the practitioners who
participate in the socialization. However, performing
the externalization of all created knowledge through
socialization with experienced practitioners can be
very costly for the organization. Moreover, according
to our findings presented in Section 4, it is possible
that externalized knowledge is not used. Finally, the
source code aids in knowledge creation/update.

Knowledge generated by architectural framework
can aid in the knowledge creation and its
maintenance for the organization. A body of
knowledge that is common for that set of projects is
then created. The creation and maintenance of
knowledge through the architectural framework are
also activities performed by certain practitioners. The
context derived from this framework is related to the
explicit and technical knowledge. In the literature, the
source code aids in explicit knowledge learning. For
instance, Faegri et al. [27] described a source code
that aids new developers to understand the product
that the organization develops. Anquetil et al. [28]
identified that thoroughly analyzing the source code
demands cost and effort. Our results show that by
following the procedures/standards for maintaining
the architectural framework do facilitate the software
development and knowledge flow for other
practitioners who will use the framework. This way,
such framework improves the organization’s
productivity and avoids knowledge loss.

Despite the fact that some frameworks possessed
knowledge that came from what worked well in other
projects, only a group within the organization has
permission to contribute to the creation of new
knowledge. Just who is part of the architecture group
has access to the framework. In our investigation,
only three interviewees commented on creating
knowledge in the frameworks. Due to the low
number of practitioners who contribute to the
evolution of the frameworks, relevant technical
knowledge can be lost.

 In definition of lessons learned, we identified that
such lessons allow the creation of both technical
knowledge and knowledge on the software process.
Nonetheless, it is necessary to adequately handle
these lessons learned in order to avoid their loss.
Passos et al. [29] found that the reuse of experiences
and lessons learned can assist the improvement of the
project results in terms of time productivity and
product quality.

Regarding knowledge loss in lessons learned, we
noted that not always the action items are provided to

3987

the team members. Despite knowing that the lessons
learned are being documented, some teams do not
know what is actually being done with that
knowledge. Such lack of dissemination of the lessons
learned can make the practitioners forget what can be
improved in the next project/sprint. Additionally, the
lack of knowledge on the goal for reporting lessons
and their access can lead to the loss of knowledge
and can cause problems to repeat in other projects.

5.2. Implications for Industry and Research

The results of our exploratory case study have
implications for both practitioners and research. The
execution of an exploratory case study allowed us to
analyze what is going on in the organization
regarding the creation and loss of knowledge of the
developed products, technologies, and activities
within the development process. Our results show
how knowledge is created in practice and issues that
can lead to the loss of knowledge. This understanding
allows us to better prepare the available knowledge
that is provided in software organizations in case
newcomers enter the organization or experienced
practitioners leave it.

Practitioners must consider that our case study is
not able to identify all knowledge creation and loss
issues. However our findings can be used as a
starting point to analyze and improve the identified
issues in other software organizations. Practitioners
must bear in mind that each context has its specific
aspects and therefore knowledge creation and loss
issues must be adapted to fit the organizations’
expectations within a determined context. Our
outcomes and those in the literature can help future
organizational knowledge practices, particularly, in
similar organizations.

We also identified insights and new ideas for
future research such as the analysis of the technical
knowledge embedded within the source code of the
architectural framework, in order to classify that
knowledge and instantiate it in the organization.
Furthermore, an action-research can be performed
with the aim of minimizing issues regarding
knowledge loss within the organization.

6. Final Remarks

Exploratory case studies are carried out to verify
what is going on in the real world and generate
insights and ideas [18]. In this paper, we report on an
exploratory case study about knowledge creation and
loss in a software organization. Our data collection
and analysis were based on semi-structured
interviews and GT techniques, respectively.

The major contribution of this paper is the
analysis, in industrial setting, of three main topics
that influence knowledge creation and loss in a
software organization. First, the knowledge sources
that provides a way for creating and maintaining
basic organizational knowledge. Second, the
architectural frameworks that possess source codes,
comments, and architectural decisions on a set of
projects. The framework is maintained by the
organization. Therefore, the technical knowledge
contained in this framework is always updated. The
last topic that we identified in our results is regarding
lessons learned. In this sense, lessons learned handle
knowledge that is not supported by the frameworks,
such as improvement opportunities for the teams and
issues regarding the execution of the software
processes. The results obtained with this case study
can be used to guide software organization on how to
improve their practices regarding the creation of
knowledge. KM within the organization can be
adapted, aiming at reducing issues regarding
knowledge loss. Furthermore, it can standardize the
knowledge creation activities during the retrospective
meetings. This way, the organization can avoid the
knowledge loss.

Our study has some limitations regarding its
participants. Some practitioners might have answered
differently if they felt they were being evaluated by
the researcher during the interviews. This behavior
can bias our findings, since a practitioner can say
what he/she thought was more appropriate instead of
the truth. In order to mitigate this threat to the
validity of our results, we provided a consent form
explaining that the study aimed at obtaining
information regarding the organization and not to
evaluate the performance of the practitioners. Also,
we informed the practitioners that all personal data
would remain confident. Additionally, our data
collection involved practitioners in a usual software
working environment. This way, we selected a
natural setting required by the case study approach.
We also know that generalization is a limitation when
one studies a single case. Despite this limitation, we
believe that our study offers relevant contributions to
literature since it aids to advancing the state of art in
the topic, providing evidence that can be later tested
using quantitative methods. In short, our study helps
to build a body of knowledge about knowledge
creation and loss. It is important to observe what
happens in a real software development context in
order to contribute for improving the organizational
knowledge practices.

Our next step will be to replicate this study in
other software organizations with the purpose of
corroborating our findings. If possible, we also intend

3988

to identify further issues regarding the creation and
loss of knowledge within software organizations.

7. Acknowledgments

The authors would like to thank the INDT. The
first author would like to thank Luis Rivero for his
remarks on this paper. Also, we would like to thank
the support granted by FAPEAM through processes:
062.00146/2012; 062.00600/2014; 062.00578/2014;
01135/2011; Edital 009/2012 - RHTI Doutorado.

8. References

[1] Levy, M., and Hazzan, O., "Knowledge Management in
Practice: The Case of Agile Software Development". in ICSE
Workshop on Cooperative and Human Aspects on Software
Engineering, 2009. CHASE '09. Vancouver, 2009, pp. 60-65.
[2] Mendonça, M.G., Seaman, C.B., Basili, V.R., and Kim, Y.-
M., "A Prototype Experience Management System for a
Software Consulting Organization", in Proc. of the SEKE
2001. Buenos Aires, AR, 2001, pp. 29-36.
[3] Begel, A., and Simon, B., "Novice Software Developers,
All over Again", in Proc. of the Fourth international Workshop
on Computing Education Research, ACM, 2008, pp. 3-14.
[4] Sundaresan, S., and Zuopeng, Z., "Facilitating Knowledge
Transfer in Organizations through Incentive Alignment and It
Investment", in Proceedings of the 37th Annual Hawaii
International Conference on System Sciences, 2004, pp. 10 pp.
[5] Nonaka, I., Toyama, R., and Konno, N., "Seci, Ba and
Leadership: A Unified Model of Dynamic Knowledge
Creation", Long Range Planning, 33(1), 2000, pp. 5-34.
[6] Dingsoyr, T., Bjornson, F.O., and Shull, F., "What Do We
Know About Knowledge Management? Practical Implications
for Software Eng.", IEEE Software, 26(3), 2009, pp. 100-103.
[7] Ruhe, G., "Software Engineering Decision Support – a
New Paradigm for Learning Software Organizations", in
(Henninger, S., and Maurer, F., 'eds.'): Advances in LSO,
Springer Berlin Heidelberg, 2003, pp. 104-113.
[8] Mitchell, S.M., and Seaman, C.B., "Software Process
Improvement through the Identification and Removal of
Project-Level Knowledge Flow Obstacles", in Proc. of the
ICSE, 2012, pp. 1265-1268.
[9] Strauss, A. and Corbin, J., Basics of Qualitative Research:
Techniques and Procedures for Developing Grounded Theory,
Sage, 1998.
[10] Chau, T., Maurer, F., and Melnik, G., "Knowledge
Sharing: Agile Methods Vs. Tayloristic Methods", in IEEE
21st International Workshop on Enabling Technologies:
Infrastructure for Collaborative Enterprises, 2003, pp. 302-302.
[11] Schneider, K., Experience and Knowledge Management
in Software Engineering, Springer Heidelberg, 2009.
[12] Bjørnson, F.O., and Dingsøyr, T., "Knowledge
Management in Software Engineering: A Systematic Review
of Studied Concepts, Findings and Research Methods Used",
Information and Software Tech, 50(11), 2008, pp. 1055-1068.
[13] Aurum, A., Daneshgar, F., and Ward, J., "Investigating
Knowledge Management Practices in Software Development

Organisations – an Australian Experience", Journal of
Information and Software Tech., 50(6), 2008, pp. 511-533.
[14] Desouza, K., Dingsoyr, T., and Awazu, Y., "Experiences
with Conducting Project Postmortems: Reports Vs. Stories and
Practitioner Perspective", in Proceedings of the 38th Annual
Hawaii International Conference on System Sciences, HICSS
'05., 2005, Island of Hawaii (Big Island) pp. 233-233.
[15] Dingsøyr, T., Moe, N., Schalken, J., and Stålhane, T.,
"Organizational Learning through Project Postmortem
Reviews – an Explorative Case Study", in (Abrahamsson, P. et
al., 'eds.'): Software Process Improvement, Springer Berlin
Heidelberg, 2007, pp. 136-147.
[16] Kukko, M., and Helander, N., "Knowledge Sharing
Barriers in Growing Software Companies", in Proc of the 45th
HICSS, 2012, Maui, Hawaii. pp. 3756-3765.
[17] Yin, R., Case Study Research: Design and Methods, Sage,
Beverly Hills, 2009.
[18] Runeson, P., and Höst, M., "Guidelines for Conducting
and Reporting Case Study Research in Software Engineering",
J. of Emp. Software Engineering, 14(2), 2009, pp. 131-164.
[19] Seaman, C.B., "Qualitative Methods": Guide to Advanced
Empirical Software Engineering, Springer, 2008, pp. 35-62.
[20] Schwaber, K. and Beedle, M., Agile Software
Development with Scrum, Prentice Hall, USA, 2002.
[21] Glaser, B.G., and Holton, J., "Remodeling Grounded
Theory", in Forum: Qualitative social research, 2004
[22] Taipale, O., Karhu, K., and Smolander, K., "Observing
Software Testing Practice from the Viewpoint of Organizations
and Knowledge Management", in Proceedings of First
International Symposium on Emp.Software Engineering and
Measurement (ESEM 2007). 2007, Madrid, Spain. pp. 21-30.
[23] Hoda, R., Noble, J., and Marshall, S., "Using Grounded
Theory to Study the Human Aspects of Software Engineering",
in Proceedings of Human Aspects of Software Engineering
(HAoSE '10), 2010, Nevada, USA. pp. 1-2.
[24] Newman, I., "Observations on Relationships between
Initial Professional Education for Software Engineering and
Systems Engineering-a Case Study", in Proceedings of 14th
Conference on Software Engineering Education and Training,
2001, New York, USA. pp. 172-181.
[25] Ras, E., "Investigating Wikis for Software Engineering -
Results of Two Case Studies", in Proceedings of ICSE
Workshop on Wikis for Software Engineering (WIKIS4SE
'09), 2009, Vancouver, Canada. pp. 47-55.
[26] Ehrlich, K., and Chang, K., "Leveraging Expertise in
Global Software Teams: Going Outside Boundaries", In Proc.
of International Conference on Global Software Engineering
(ICGSE), 2006, Florianopolis, Brazil. pp. 149-158.
[27] Fægri, T.E., Dybå, T., and Dingsøyr, T., "Introducing
Knowledge Redundancy Practice in Software Development:
Experiences with Job Rotation in Support Work", Information
and Software Technology, 52(10), 2010, pp. 1118-1132.
[28] Anquetil, N., De Oliveira, K.M., De Sousa, K.D., and
Batista Dias, M.G., "Software Maintenance Seen as a
Knowledge Management Issue", Information and Software
Technology, 49(5), 2007, pp. 515-529.
[29] Passos, C., Braun, A.P., Cruzes, D.S., and Mendonça, M.,
"Analyzing the Impact of Beliefs in Software Project
Practices", in Proc. of the ESEM, 2011, Banff, Canada. pp.
444-452.

3989

