
Evaluating Collaborative Practices in Acquiring
Programming Skills: Findings of a Controlled

Experiment
Bernardo Estácio*, Roberto Oliveira†, Sabrina Marczak*, Marcos Kalinowski¥, Alessandro Garcia†,

Rafael Prikladnicki*, Carlos Lucena†

*PUCRS, Porto Alegre, Brazil

{bernardo.estacio, sabrina.marczak, rafaelp}@pucrs.br
†PUC-Rio, Rio de Janeiro, Brazil

{rfelicio, afgarcia, lucena}@inf.puc-rio.br
¥Universidade Federal Fluminense, Rio de Janeiro, Brazil

kalinowski@ic.uff.br

Abstract — [Context] Collaborative programming is achieved
when two or more programmers develop software together. Pair
Programming and Coding Dojo Randori are two increasingly
adopted practices for collaborative programming. While the
former encourages the collaboration in pairs, the latter promotes
collaboration in groups. However, there is no broad
understanding about the impact of these practices on the
acquisition of programming skills. [Goal] In this study, we
empirically compare the influence of both collaborative practices
on two essential aspects of skill acquisition: motivation and
learning. [Method] We conducted a controlled experiment with
novice programmers applying solo programming and both
collaborative practices to three different programming exercises
using a crossed design. [Results] Our results showed that, while
both practices outperformed solo programming, they also
presented complementary benefits on acquiring programming
skills. For instance, the programmers inserted less code
anomalies in Coding Dojo Randori sessions than in Pair
Programming sessions. On the other hand, the motivation was
often considered to be stronger in the latter than in the former.
[Conclusions] Our results suggest that the use of collaborative
practices is particularly promising for acquiring programming
skills, when programmers have little or no practical experience
with software development.

Keywords — Collaborative Programming; Pair Programming;
Coding Dojo Randori; Programming Skills; Controlled
Experiment.

I. INTRODUCTION
Collaborative programming consists of at least two

programmers working jointly in the same algorithm or code
[12]. Collaboration plays an important role in the context of
acquiring programming skills, through the learning of new
concepts and providing motivation for the programmers. In this
context, students not only need to know how to develop
software that can be easily understood by others, but they also
need to learn how to develop software with others, knowing
what it means working on a team [23]. In addition, in
professional software development, the developer in often part
of a team. Software is the result of the efforts of many
individuals who contribute with different skills. Therefore,

there is a need to investigate and to understand the impact of
different types of collaborative practices in skill acquisition.

Collaborative programming practices mainly differ in the
way the number of participants is allocated to the software
development activity. While some of them encourage the
collaboration in pairs [21], others promote collaboration in
teams [10]. Pair Programming (PP) is a typical representative
of the former, while Coding Dojo is an emerging technique for
team-based collaboration. PP promotes collaboration between
two programmers. Pair Programming is known as one of the
main practices of Extreme Programming (XP), a widely
adopted agile method [15]. Over the years, PP has been
established an important role in computer higher education [3,6
21].

More recently, Coding Dojo has emerged as a team-based
programming practice, providing an environment that supports
social interaction and programming training [10]. There are
several variants of Coding Dojo [10] and one of them is called
Coding Dojo Randori (CDR). In this variant, a group of
programmers gather to train software development activities.
Proponents of CDR speculate that team-based collaboration
would naturally promote better acquisition of programming
skills than other collaborative practices [13].

However, there is no comparison about the influence of
pair-based and team-based collaboration practices on the
process of acquiring programming skills. Existing studies [10,
14] do not provide an analysis of key aspects on skill
acquisition, i.e. motivation and learning. Most studies have
either assessed each collaborative practice in isolation or
focused on a particular aspect of skill acquisition. For example,
PP has been studied from certain points of view, such as
effectiveness in software development [27] and learning
support [21]. However, such previous studies do not contrast
PP with other collaborative practices, such as CDR. In
addition, the study of Salleh et al. [21] considers a narrow
overview of learning in existing PP empirical studies and does
not take into account motivational aspects. Even worse,
empirical studies have not fully assessed the impact of CDR on
acquisition of programming skills, i.e in relation to learning
and motivation. Some studies [14, 24] only report positive

2015 29th Brazilian Symposium on Software Engineering

978-1-4673-9272-3/15 $31.00 © 2015 IEEE

DOI 10.1109/SBES.2015.24

150

results on the learning of agile practices, such as Test-Driven
Development (TDD). Even though these studies promoted a
good starting point on the state-of-the-art, they fail in: (i)
performing a comprehensive comparison of different
collaborative practices, and (ii) analyzing aspects of each
practice in relation to acquiring programming skills.

The study reported in this paper differs from the
aforementioned studies by aiming at investigating the impact
of different collaborative practices on the acquisition of
programming skills. We selected Pair Programming and
Coding Dojo Randori as representatives of pair-based and
team-based practices, respectively. We have also compared
these practices with solo programming in our quantitative
analysis in order to better distinguish their impact on learning.
Our study was conducted as a controlled experiment with
novice programmers, i.e. undergraduate computer science
students with limited experience in industry. The experiment
adds to the previously conducted studies by offering the
following main contributions:

• Providing an empirical comparative analysis based on
the evaluation of both, Pair Programming and Coding
Dojo Randori, regarding the acquisition of
programming skills in terms of learning and motivation;

• Providing an analysis about two different levels of
collaboration, pairs and groups, with respect to
acquiring programming skills by novice programmers.

Both practices presented positive results in acquiring
programming skills and outperformed solo programming.
However, different outcomes were identified in some
perspectives. Our qualitative analysis has indicated that CDR
exerted a good side effect on Algorithm Design. The same
qualitative analysis also revealed that the use of PP had a good
effect on learning Java Syntax and Oriented-Object
Programming. However, motivation was often an issue on the
use of CDR. In particular, it was often not trivial to get a
consensus amongst all the participants taking part of a CDR
team. In relation to the motivation, Pair Programming showed
more acceptance by the subjects in comparison to CDR. On the
other hand, programmers inserted less code anomalies in CDR
sessions than in pair.

The remainder of this paper is organized as follows:
Section 2 describes the background for this research,
presenting related work to ours. Section 3 describes the
research methods used, presenting the settings of the
experiment. Section 4 presents the results of the study while
Section 5 concerns to its threats to validity. Section 6 discusses
our findings. Section 7 concludes the paper with final
considerations and an outline of our intended future work.

II. BACKGROUND

A. Pair Programming
Pair Programming consists in two programmers working

collaboratively on the same development-related activity, such
as: designing an algorithm, structuring the code, or analyzing
and testing a system [15,16]. In a PP session, one of the
developers acts as driver and develops the code, controlling the
keyboard and mouse. The other developer acts as the navigator

(or observer), being responsible for reviewing the code,
preventing and identifying logical and syntactical errors in the
code. During a session, the pairs can switch the roles in
specific time boxes [6]. PP is often related with agile practices
and it has gained popularity as a primary practice of XP [15].

Several previous empirical studies aimed at exploring the
effects of PP in the academia context by investigating specific
aspects under programming skills. In relation to students’
performance, two studies showed that PP helped programmers
to better conduct their activities [6, 20]. Ramli and Fauzi [20]
reported that students had a better performance in the activities
in pairs than individually. McDowell et al. [6] showed two
different performance metrics: code quality and the ability of
students to apply the concepts taught during the course. At the
end, code quality was assessed in a very subjective manner,
and only the final grade obtained by the students was actually
used as a parameter to evaluate the practice [6]. However, all
these studies have focused on evaluating only PP as part of a
computer science higher education course.

Nagappan and colleagues [19] and Carver et al. [5] showed
that PP is a favorable practice for learning. Both studies
reported that PP helps to reduce students’ evasion in
introductory programming courses. Chigona and Pollock [30]
and McDowell and colleagues [6] conducted survey-based
studies and showed that students were more motivated and had
more satisfaction when using PP. Although these studies
evaluate learning aspects, they do not focus in evaluating this
variable specifically in the context of programming skills.

In the academia context, the aforementioned studies are
limited to comparing pair programming with solo
programming. Therefore, our assessment covers a gap of the
previous studies by presenting an evaluation between two types
of collaborative practices on programming skill acquisition.
We also tried to gather additional evidence on how the students
actually learned to program properly. To this end, we explored
the impact of the collaborative practices on code anomalies
[17]. Code anomalies were used to measure code quality of
students’ programs as they serve to indicate when the subjects
have or not assimilated certain programming concepts.

B. Coding Dojo Randori
Coding Dojo consists in a collaborative practice in which a

group of participants gathers together to learn and practice
software development activities. Therefore, it serves the
purpose of helping individuals on acquiring skills required to
work on the field [10]. In the literature, Coding Dojo is often
related to the learning of agile practices, such as TDD and
refactoring [10].

There are several types of Coding Dojo, and one of the
variants is called Coding Dojo Randori [14]. In a Randori
session, a group of participants work together with the
following dynamics: (i) one participant acts as the driver, (ii)
another one as the navigator, and (iii) the remaining
participants act as the audience that stays most of the time in
silence during the pairing, paying attention to the pairs.
However, the entire audience is able to participate in a
coordinated way when certain events occur; for instance, if the
unit tests are passed [10]. The roles of individuals are changed

151

in rounds. Sato et al. [10] recommends that each round should
last from 5 to 7 minutes. At the end of a round, the driver
moves to the audience, the navigator turns into the driver and
someone of the audience starts to act as a navigator [10]. Every
participant acts at least once as the driver and once as the
navigator.

There are only few studies empirically assessing CDR. Sato
et al. [10] reported that Coding Dojo presents good results
regarding the learning of TDD and Ruby programming. This
study was a first attempt to evaluate CDR, but the authors did
not contrast it with other collaborative practices. More recently,
Da Luz et al. [24] reported a Randori experience that aimed at
investigating the learning of TDD through Coding Dojo. Their
results showed that the session helped learning TDD and that
Pair Programming in the Randori format supported in leveling
the understanding of the group. However, they focused in
assessing CDR as a practice for teaching TDD.

Heinonen et al. [14] conducted Coding Dojo sessions when
teaching agile methodologies as part of an undergraduate
software engineering course. The survey filled by the
participants presented good results in the learning of TDD. In
addition, most of the students reported perceiving the sessions
as a relaxing and non-competitive environment. In this study,
Heinonen and colleagues [14] did not explore aspects of
motivation and specific skills that CDR could affect; they only
focused on the analysis of the practice in terms of teaching
TDD.

Rooksby et al. [13] reported a lack of studies evaluating the
effectiveness of CDR, specifically in learning and training
aspects. The authors aimed to analyze the theory behind the
learning process in CDR. They analyzed two CDR sessions
under the perspective of reflective practice — a learning theory
that states that the subjects learn by their actions during the
practice [9]. They conclude that this theory offers a good way
to understand the cooperative learning in CDR.

 In our previous efforts, we evaluate CDR and PP practices
when teaching mockup development [1]. In this study, PP
presented positive results in learning, motivation and user
experience between the students. CDR, on the other hand,
showed good results in learning. However, students reported
challenges in user experience. To the best of our knowledge,
this study was the first attempt to compare two collaborative
practices in Computer Science higher education. As an initial
study, we did not evaluate other aspects concerning the
acquisition of programming skills, specifically code
programming tasks. The study reported in this paper addresses
the gap of evaluating different collaborative practices in terms
of acquiring programming skills.

III. METHOD

A. Goal

The main goal of this study is to investigate the use of
Collaborative Practices — Pair Programming and Coding
Dojo, specifically the Randori version — in acquiring
programming skills. The detailed goal, following the GQM
template [28], is described as presented in Table
1. Based on our goal definition, we derived two specific

research questions: one concerning learning (RQ1) and one
concerning motivation (RQ2). The questions are presented and
discussed below.

TABLE I. DETAILED GQM TEMPLATE OF THE EXPERIMENT

To Analyze Coding Dojo and Pair Programming

For the purpose of Evaluation

With respect to Acquiring Programming Skills (Learning
and Motivation)

From the point of view of Researchers

In the context of Novice programmers

RQ1. How do collaborative practices affect the learning of
programming skills by novice programmers?

We divided RQ1 in two sub questions, the first concerning
qualitative data on the perception of the novice programmers
and the second concerning quantitative data gathered from the
produced source code.

RQ1.1. How do collaborative practices affect the
perception of novice programmers on their learning of
programming skills?

To address this research question, we analyzed qualitative
data collected through an experiment follow-up questionnaire.
The questionnaire was built based on the constructs proposed
by Wangenheim et al. [7]. The use of these constructs enables
us to evaluate the effect on learning and on motivation.

RQ1.2. How do collaborative practices affect the learning
of programming skills by novice programmers in practice?

For this research question we adopted the number of code
anomalies inserted in practice during programming exercises to
analyze the learning of specific skills from a quantitative
perspective. The presence of an anomaly would indicate the
subjects did not assimilate a certain programming skill. We
included Solo Programming as a control group to support the
evaluation of the results. The following null and alternative
hypotheses were formulated for this research question.

H00. Collaborative practices do not affect the learning of
programming skills by novice programmers (inserted code
anomalies), when compared to solo programming.

HA1.1. PP improves the learning of programming skills
by novice programmers (reduces the number of inserted code
anomalies), when compared to solo programming.

HA1.2 Coding Dojo Randori improves the learning of
programming skills by novice programmers (reduces the
number of inserted code anomalies), when compared to solo
programming.

HA1.3 Coding Dojo Randori improves the learning of
programming skills by novice programmers (reduces the
number of inserted code anomalies), when compared to pair
programming.

RQ2. How collaborative practices affect motivation of the
novice programmers?

152

As done for RQ1.1, to address this research question, we
analyzed qualitative data collected through the experiment
follow-up questionnaire.

B. Subjects
The study was conducted in an Agile Software

Development course, called Software Kaizen [2]. This course
provides undergraduate Computer Science students an
immersion of four months in real projects with industry.
Fourteen intern students participated in the experiment. In
order to participate in the study, all the students signed a
consent form. They also filled out a characterization form with
objective questions to inform us about their expertise in the
topics related to the study: (a) their experience in
programming; (b) their expertise in Java; (c) their expertise
with PP; and (d) their expertise with Coding Dojo.

We collected the data characterization form from each
student and ranked it into: none (N), low (L), medium (M), and
high (H) experience for each expertise topic. For instance,
regarding programming and Java expertise, the subject was
characterized as having: (a) No experience, if she never had
contact with the Java language; (b) Low experience, if she had
contact with programming only in the classes or reading a
support material; (c) Medium experience if she had contact
with programming in an academic project; or (d) High

experience if she had experience in the industry. Similarly, the
expertise for PP and Coding Dojo was assigned according to
the number of sessions in which the subject had worked in such
activities: (a) No experience; (b) Low experience: 1 session; (c)
Medium experience: more than 1 to less than 4 sessions; and
(d) High experience: more than 4 sessions.

After characterizing the participants’ experience, to
mitigate threats to validity concerning the distribution of
subjects between the groups we applied the principles of
balancing, blocking and random assignment [8]. For balancing
we tried to create equally-sized groups. However, we had to
create one of the groups with 6 subjects because we aimed to
evaluate the interaction of programmers in a large group within
a Coding Dojo session. Concerning blocking, we mean that we
avoided that one team had more experienced subjects than the
other in order to avoid biased results of a team performing
better in the assigned tasks. Finally, subjects of equal
experience were randomly assigned to the groups. Table 2
shows each of the defined groups and the expertise of each of
its members, we highlighted with grey-tone the most
experienced and left without color the less experienced in each
group.

TABLE II. EXPERTISE PER PARTICIPANT IN EACH GROUP

C. Experiment Design
We planned our experiment design to include one factor

with three treatments (Solo Programming, Pair Programming
and Coding Dojo) and three different tasks (different
programming exercises, objects of the study). We adopted a
crossed design in order to enable all the treatments to be
applied to all the tasks. It also helped to mitigate threats to
validity of our experiment concerning: (i) differences among
experimental tasks (the influence of the provided exercises in
the results), and (ii) the fact that one task could favor a specific

treatment. This design also helps to isolate the learning effect,
given that each group will apply the practices in a different
sequence. It is noteworthy that the principles applied to
distribute the subjects between the groups still enable
comparing the results for each individual exercise. The crossed
design is shown in Figure 1.

Group Id Programming Java Pair Programming Coding Dojo

1

Participant 1 High Low Medium Medium

Participant 2 Medium Medium Medium Low

Participant 3 Low Low Low Low

Participant 4 Low Low Low Low

Participant 5 Medium Low Low Low

Participant 6 Low Low Medium Medium

2

Participant 7 Medium Medium Low Low

Participant 8 Low Low Medium Medium

Participant 9 Medium Medium Low Low

Participant 10 High Medium Medium Low

3

Participant 11 High Medium Medium Low

Participant 12 Low Low Low Low

Participant13 Medium Low Low Low

Participant 14 High Medium Medium Medium

153

Fig. 1. Configuration of the crossed design in the experiment.

D. Procedures and Materials
Concerning the procedures and materials [22], in the first

step of the experiment (cf. Figure 1) exercise "A" was applied
to participants 1 to 6 with the solo programming treatment, to
participants 11 to 14 with the PP treatment, and to participants
7 to 10 with the Coding Dojo treatment. Thereafter, in the
second step, exercise "B" was applied to participants 7 to 10
with the solo programming treatment, to participants from 1 to
6 with the PP treatment, and to participants 11 to 14 with the
Coding Dojo treatment. Finally, exercise "C" was applied to
participants 11 to 14 with the solo programming treatment, to
participants 7 to 10 with the PP treatment, and to participants 1
to 6 with the Coding Dojo treatment. The formation of the
pairs in PP sessions within each group was similar to how it
was performed by Braught et al. [11], pairing experienced
subjects with one less experienced subjects. In the CDR
session, the sequence of the pairs was determined by the
convenience of the participants.

Each programming exercise was complex [22]. For
example, in the exercise "A", the participants had to develop an
application to simulate Animal Guessing game. The main
objective of this application was to implement the interaction
between an interviewer and a respondent. In the exercise "B",
the participants had to develop some features of an Automated
Teller Machine (ATM). Finally, in the exercise "C", they
developed an application to control a bookstore inventory.
Subjects should have to implement at least ten classes as a
constraint. In order to realize the exercise tasks, the developers
should explore programming logic and key mechanisms of OO
programming, such as inheritance and polymorphism. The
study was conducted online (simultaneously and observed by
researchers) and lasted approximately two hours for each
group. They worked on their tasks simultaneously in different
rooms. At the end of the study, each participant answered a
follow-up questionnaire and sent the implemented code to the
researchers. In order to identify the quality of the software
developed by the students, we evaluate and analyze two
complementary strategies for the identification of code
anomalies [17]: (i) manual inspection, and (ii) inspection with
the aid of a tool for semi-automatic identification of anomalies
[18]. The combination of these two strategies generated a list
of existing anomalies. We took into consideration the
anomalies documented in the Fowler’s catalogue [17]. Each of
these anomalies is an indicator that certain programming skills

are not assimilated. For instance, the presence of a God Class
or a Feature Envy [17] reveals that the subjects did not master
the proper use of one or more object-oriented programming
concepts, such as classes and encapsulation. The manual
inspection was conducted by two co-authors of this paper. This
inspection also enabled us to identify the code anomalies that
were not properly detected by the employed tool [18]. The final
list of code anomalies was checked by a second co-author of
this paper, and the results were discussed with the other paper
co-authors in order to address discrepancies.

The follow-up questionnaire aimed at capturing
information concerning learning (RQ1.1) and motivation
(RQ2). The questionnaire was adapted from Wangenheim et al.
[7]. The dimensions and respective arguments that we have
adapted were listed in Table 3. The study was executed in a
different context but has a specific framework to assess both
learning and motivation. The follow-up questionnaire consists
of: (i) 5 fixed questions concerning motivation and learning,
and (ii) 5 dimensions on a Likert-scale for each of these
questions, with response alternatives ranging from strongly
disagree (−2) to strongly agree (2) (being −2 strong disagree,
−1 disagree, 0 neutral, 1 agree, 2 strong agree).Regarding
learning, we also added questions to elicit the perceived
knowledge level before and after the practice in respect to the
concepts taught and in accordance to Bloom’s taxonomy [4]. In
order to answer this questionnaire, the students should provide
grades ranging from 1 to 5 to each question based on three
categories of programming skills: Java Syntax, Oriented-
Object Programming and Algorithm Design. These grades
were provided before and after the programming exercises. We
also customized the follow-up questionnaire, adding two open
questions so that students could explain perceived benefits and
disadvantages about PP and Coding Dojo.

TABLE III. QUESTIONS LIKERT-SCALE ADAPTED FROM
WANGENHEIM ET AL. [7]

Motivation

Attention
There was something interesting in the practice

that got my attention.
Adapted

Relevance
Confidence

The practice dynamics suits well my way of
learning.

Adapted

As I worked on the practice, I felt confident
that I was learning.

Adapted

Learning
Long-term

learning
The experience with the practice will improve
my performance in future projects.

Adapted

IV. RESULTS
We analyzed the quantitative data (Section 3A) in order to

test the hypotheses described in RQ1.2. This sub question in
concerned with learning in terms of the quality of the
developed source code. The quality was measured in terms of
the number of anomalies inserted in the code during the
exercises (Section 3D). On the other hand, the qualitative data
(Section 4B) was collected and analyzed to answer both
RQ1.1 and RQ2. The qualitative data was gathered from the
follow-up questionnaires (Section 3D).

154

A. Quantitative Analysis

We analyzed the answers regarding the types of code
anomalies reported by Fowler [17]. We also applied statistical
analyses on the quantitative data on the number of inserted
code anomalies obtained from the developed code. Such
statistical analyses were carried out with support of the R tool
[25]. This tool supports applying the statistical test considered
in this study: Wilcoxon-Mann-Whitney test [26]. This test is a
nonparametric test of the null hypothesis that two samples
come from the same population against an alternative
hypothesis. We applied it to the values associated with the
produced anomaly instances. We chose this nonparametric test
for not requiring a normalized and homoscedastic distribution
of the data and for accepting different sample sizes for the
analysis.

Figure 2 presents the average number of code anomalies
inserted by each practice in each of the three exercises.
Therefore, the columns highlighted in black represent the
results of solo programming, in light gray represent the results
of pair programming in dark gray represent the results of
coding dojo.

Comparing solo programming with PP, we verified that in
the exercise A, solo programmers inserted an average number
of 4.83 anomalies while pairs inserted an average number of 2
anomalies. So, solo programmers inserted 58.6% more
anomalies than pairs. In this exercise, when applying the
Wilcoxon-Mann-Whitney test the alternative hypothesis HA1.1
is supported with confidence level of 94.3% (p-value 0.057). In
exercise B, solo programmers inserted 87.2% more anomalies,
also supporting the alternative hypothesis, this time with a
confidence of 85.8% (p-value 0.142). Finally, in the exercise
C, solo programmers inserted 47.5% more anomalies than
pairs. For this exercise, the alternative hypothesis was
supported, with a confidence level of 95.8% (p-value 0.042).

Although there is some preliminary indication supporting
HA1.1, replications should be performed in the future with
more subjects in order to enable achieving higher confidence
levels. A potential explanation for this preliminary indication is
that coding by pairs might allow programmers to discuss and
share ideas, thus complementing the knowledge of each other
and consequently coding software with less structural
problems.

Comparing solo programming with CDR, we verified that
in the exercise A, solo programmers inserted an average
number of 4.83 anomalies while in Coding Dojo Randori
session they inserted an average number of 4.75 anomalies.
Therefore, the solo programmers inserted 1.6% more
anomalies than groups in the CDR session. This result does not
support the alternative hypothesis because p-value is 0.490. In
the exercise B, this percentage was even higher, i.e., solo
programmers inserted 92.24% more anomalies. Supporting
alternative hypothesis with confidence level 98,6% (p-value
0.014). Finally, in the exercise C, solo programmers inserted
80.92% more anomalies than groups in the CDR session.
Supporting alternative hypothesis with confidence level 99,6%
(p-value 0.004).

A possible reason for this superior result of Coding Dojo is
this practice’s dynamics, which encourages programmers to
participate collaboratively.

With the comparison between PP and CDR, it was possible
to observe in the exercise A, that pairs inserted an average
number of 2 anomalies while CDR teams inserted an average
number of 4,75 anomalies. Therefore, the programmers in pairs
inserted 57.9% less anomalies than those working in CDR
session. For this exercise, the alternative hypothesis was not
confirmed as the p-value is 1.0.

However, in exercises B and C, pairs inserted more
anomalies. In the case of exercise B, they inserted 62.69%
more anomalies. Supporting alternative hypothesis with
confidence level 73,4% (p-value 0.266). Finally, in exercise C,
they inserted 63.63% more than their counterparts in the CDR
session. Also Supporting alternative hypothesis with
confidence level 99,6% (p-value 0.004). A possible reason for
this superior result of the CDR is the collaboration by
combining knowledge, experience, competence and efforts of
the group to achieve their goals.

Fig. 2. Comparing the average of inserted code anomalies

B. Qualitative analysis
We have gathered qualitative data in the Likert-scale

questions from the follow-up questionnaire.

1) Learning
In relation to RQ1, the majority of the participants also

expressed that they believe that both practices contributed
positively to their long-term learning. Figure 2 indicates this
outcome for both Pair Programming (in the left side) and
Coding Dojo (right side). Additionally, the students indicated
that these practices could be useful in a real working
environment. In addition, they reported that CDR provided
initial knowledge on how they can make decisions in a project,
trough the discussion of specific points in the source code.

In relation to learning based on Bloom’s Taxonomy [4], we
use a scale between 1-5 to measure skills of the students in
each practice. As shown in Figures 4 and 5, we perceived a
significant increase of knowledge with respect to all three
categories of skills: Java Syntax, Object-Oriented
Programming and Algorithm Design by the code produced.

155

Fig. 3. Frequency diagram about Motivation in Pair Programming and Coding Dojo Randori.

Fig. 4. Grades of Bloom Taxonomy’s in Pair Programming [4].

Fig. 5. Grades of Bloom Taxonomy’s in Coding Dojo Randori [4].

2) Motivation
As far as the Motivation of RQ2 is concerned, students

perceived a positive contribution of Pair Programming when
developing the programming tasks. This information is based
on the responses related to PP and CDR obtained through the
Likert-Scale for each argument of the follow-up questionnaire.
Figure 6 indicates the answers for both practices.

When we analyzed individually the dimensions, for
instance Attention, both practices presented positive results.
The main aspect that got the attention of the participants in
both practices was the interaction between the subjects.
Participant 3 reported in relation of PP: “I like to discuss the
solution and design of the task with my peer and this helped to
get my attention through the session time”.

Regarding the Relevance dimension, PP presented positive
results with most of the students in relation to acceptance of the
practice, but CDR was not widely accepted. Four participants

reported that the practice did not suit with their way of
learning. In PP, Participant 4 reported: “Pair Programming is
better to get a consensus than Coding Dojo; when we were in a
Coding Dojo session, it was very difficult to agree with
everyone else”.

Concerning the Confidence dimension, the items related to
understanding and ease of use of the practice, both PP and
CDR presented positive results. PP presented the most positive
results about the students’ impression of confidence in
learning. However, CDR also presented positive results.
Participant 4 reported: “In the Coding Dojo Randori session
experienced programmers could support us during all the
session, so we have more confidence in doing the right
things”.

156

Fig. 6. Frequency diagram about Motivation in Pair Programming and

Coding Dojo Randori.

V. THREATS TO VALIDITY
In this section we discuss the potential threats that are

relevant for our study and how they are addressed.

A. Construct Validity
Construct validity concerns the relationship between theory

and the observation, i.e., if the treatment correctly reflects the
cause construct and if the result correctly reflects the effect
construct [8]. In this study we evaluated the effect on learning
and motivation by following the constructs proposed by
Wangenheim et al. [7]. Also, for code quality, we evaluate the
effect by measuring the inserted anomalies, as defined by
Fowler [17]. Thus, we believe that the treatment (the
collaborative practice was the only difference in the treatments)
does represent the cause and that the metrics do represent the
effect. Still we are aware that there are some threats to
construct validity that are difficult to control, such as subjects
behaving differently when being observed and thus the
potential influence of the presence of the researcher in the
experiment.

B. Internal Validity
Internal validity concerns a causal relationship between the

experiment treatment and the observed results, without the
influence of potential confounding factors that are not
controlled or measured [8]. In this study, we considered the
following main threats to the internal validity: (a) difference

among subjects related to experience and ability (e.g.,
programming and Java knowledge, pair programming and
coding dojo expertise), and (b) differences among experimental
tasks (the provided exercises could have influenced the
results). To mitigate the threat of differences among subjects
we applied the design principles of balancing, blocking and
random assignment, as suggested by Wohlin et al. [8].
Regarding the influence of the experimental tasks (exercises),
we applied the control action of applying a crossed design, in
which all treatments were applied to all tasks by independent
groups. Leading us to three independent trials. It is noteworthy
that the principles applied to distribute the subjects between the
groups still enable comparing the results for each individual
task. This design also helped to isolate the learning effect,
given that each group applied the practices in a different
sequence.

C. External Validity
External validity refers to the generalization of the results

to a larger population or to other environments and to
populations that differ from the one studied. This study
presents several threats to external validity (e.g., related to the
representatives of the subjects, the representativeness of the
provided tasks, and the specific experimental environment). All
the students in the study came from the same course. For this
reason, the data extracted from this study presents important
results related to motivation, learning and code quality, but
cannot be generalized at this time. Therefore, as an initial study
on this subject, we do not raise any external validity claims and
ask for replications (e.g., with different subjects, using different
tasks, in different environments) to allow further generalizing
the results.

D. Conclusion Validity
Finally, conclusion validity (or statistical conclusion

validity) regards the relation between the treatment and the
results in terms of statistical significance [8]. In this study, the
major limitation is the small sample size which led us to use
high alpha values and thus to a lower confidence level of the
achieved results. Thus, more studies and replications are also
needed to improve the conclusion validity.

VI. DISCUSSION
Collaboration plays an important role in the context of

acquiring programming skills, through the learning of new
concepts and providing motivation for the programmers. In this
paper, we investigate the impact of collaborative practices on
the acquisition of programming skills. We selected Pair
Programming and Coding Dojo Randori as representatives of
pair-based and team-based practices, respectively. Overall, the
results showed positive results for both practices in acquiring
programming skills. However, the results were not consistently
the same from all perspectives, revealing peculiarities through
the use of each practice. We observed that there are many
opportunities to investigate the adoption of collaborative
practices in acquiring programming skills.

When we quantitatively analyzed the effect on learning, we
observed both practices present better results than solo
programming. This analysis enabled us to understand how the
students were acquiring (or not) the programming skills by

157

computing the anomalies inserted in the source code. Each of
the observed anomalies were a direct consequence of the
students not grasping a certain programming concept, construct
or principle. This result led to identify that collaborative
practices, independently of different types of collaboration (PP
or CDR), positively impact on the acquisition of programming
skills. However, the results we obtained showed a variation in
the number of anomalies inserted in the three exercises by each
collaborative practice. Consequently, future work should
further investigate in what occasions we must apply PP or
CDR in the development of a specific task.

When we analyzed the qualitative data concerning learning,
we observed that both practices support the students in the
three skills that we analyzed. Both practices showed good
results that were perceived through the grades of [4]
Taxonomy’s in all skills. CDR has received higher grades than
PP in the three skills, specifically in Algorithm Design, while
in PP we identified a better evolution (observing the range
before and after the using of the practice) in grades related with
Java Syntax and Oriented-Object Programming when we
compared with the evolution in CDR. In addition, we observed
that in CDR there was more discussion on how the team could
improve the code. These discussions sometimes did not reach
consensus, but helped in the understanding the problem and
designing the solution. But PP showed to be a practice more
consolidated than CDR, the subjects reported that the pair-
based approach affects more the working life than CDR.

In relation to the Motivation, the perception of the
participants through the questionnaires’ results shows that
CDR presented challenges in relation to the consensus on
decision making. However, some students reported that the
lack of a consensus encourages to understand further the
concepts needed to perform the task in question. On the other
hand, some students said that the audience helped them to feel
confident in learning with the programming task. This situation
were by we anticipated, therefore, to minimize this impact we
limit the audience in the CDR session. So, we did two sessions
with four students and one with six.

Qualitative and quantitative data gave some important
directions on the research of different collaborative practices.
For instance, in CDR we perceived variables that could affect
the practice, such as the type of task and the number of
participants in audience. In addition, although PP is more
consolidated in the literature [21], we have also identified some
opportunities of research, such as the formation of the pairs
(we have followed with a more experienced programmer with
a less experienced one) and time to switch the roles (if this
could impact in the activity).

VII. CONCLUSION AND FUTURE WORK
According to Basili [29], we must experiment with

practices to see how and when they really work, to understand
their limits, and to understand how to improve them. In this
paper, we presented a controlled experiment where we
investigated the use of Pair Programming and Coding Dojo
Randori practices in relation to acquiring programming skills.
The context of this study was in an Agile Software
Development course with novice programmers. Through a
qualitative and quantitative analysis, both practices presented

positive results on key aspects of acquiring programming
skills, i.e. learning and motivation. However, the analysis
revealed important differences in the outcomes of each aspect.
As far as learning is concerned, the quantitative analysis
showed that both practices outperformed solo programming. In
addition, the programmers inserted less code anomalies in
CDR sessions than in PP sessions.

 Qualitative data about learning revealed that both practices
are complementary, i.e. PP and CDR yielded better results for
specific programming skills. For instance, CDR outperformed
PP in terms of Algorithm Design, while Pair Programming
outperformed CDR in terms of Java Syntax and OPP. As far as
the motivation is concerned, the findings show that Pair
Programming is a more consolidated practice in this aspect.
Coding Dojo Randori presented challenges through the lack of
consensus.

Future steps in this work involve the planning and
execution of new empirical studies in order to evaluate CDR
and PP in relation to specific variables. Examples of these
variables include team size, the impact of specific
programming tasks, and the formation of the pairs. We also
want to evaluate the impact of CDR and PP on other software
development skills, such as refactoring and environment
configuration. We expect that our findings can be useful for
higher education teachers and students by providing first
insights for the adoption of the collaborative practices on
teaching and learning programming.

ACKNOWLEDGMENT
The authors acknowledge financial support in this research

from CNPq (processes 309000/2012-2 and 460627/2014-7),
FAPERGS, and the research agreement between PUCRS and
ThoughtWorks.

REFERENCES

[1] B. Estácio, N. Valentim, L. Rivero, T. Conte, R

Prikladnicki,“Evaluating the Use of Pair Programming and Coding Dojo
in Teaching Mockups Development: An Empirical Study,” Hawaii
International Conference on System Sciences, HICSS, 2015, pp 5084-
5083.

[2] B. Estacio, R. Prikladnicki, M. Mora, G. Notari, P. Caroli, A. Olchik,
"Software Kaizen: Using Agile to Form High-Perfomance Software
Development Teams," Agile Conference (AGILE), 2014 , pp.1-10, July
28 2014-Aug. 1 2014.

[3] B. Simon and B. Hanks, “First-year students’ impressions of pair
programming in CS1”.J. Educ. Resour. Comput., vol. 7-4, pp. 1-20,
ACM, 2008.

[4] B.S. Bloom, “Taxonomy of Educational Objectives: The Classification
of Educational Goals,”: Handbook I. Cognitive Domain, Longmans,
1956

[5] C. Carver et al., "Increased Retention of Early Computer Science and
Software Engineering Students Using Pair Programming,". In: Software
Engineering Education & Training, 2007, pp.115-122.

[6] C. Mcdowell, “The effects of pairprogrammingon performance in an
introductory programming course". In: SIGCSE technical symposium on
Computer science education, 2002, pp. 38–42.

[7] C. Wangenheim, R. Savi, R. Borgatto, “SCRUMIA—An educational
game for teaching SCRUM in computing courses,” Journal of Systems
and Software, vol. 86 - 10, Pages 2675-268, 2013.

158

[8] C. Wohlin, P. Runeson, M. Host, M. Ohlsson, B. Regnell, and A. Wessl,
“Experimentation in software engineering: an introduction, Kluwer
Academic Publishers, 2012.

[9] D.A., Schön, “Educating the Reflective Practitioner: Toward a New
Design for Teaching and Learning in the Professions,” Jossey-Bass
,1990.

[10] D.T Sato, H. Corbucci and M.V Bravo, “Coding Dojo: An Environment
for Learning and Sharing Agile Practices,” Agile Conference, (Toronto,
Canada), pp.459-464, IEEE, 2008.

[11] G. Braught, K. MacCormick and T. Wahls, “The Benefits of Pairing by
Ability,” ..In Proceedings ofSIGSE, 2010, 249-253.

[12] J. Nosek, “The case for collaborative programming. Commun,” ACM
41, 3 (March 1998).

[13] J. Rooksby, J. Hunt. And X. Wang,“The Theory and Practice of Randori
Coding Dojos,” International Agile Conference, XP, 2014, pp 251-259.

[14] K. Heinonen, K. Hirvikoski, Matti Luukkainen, and Arto Vihavainen,
“Learning agile software engineering practices using coding dojo,”.
Proceedings of the 14th annual Conference on Information Technology
Education (SIGITE '13). , (New York, USA) pp. 97-102, 2013.

[15] K. Beck and C. Andres, "Extreme Programming Explained: Embrace
Chance". Boston: Addison-Wesley, 2004.

[16] L. Williams et al. "Strengthening the Case for Pair Programming". In
IEEE Software, 17, 4, Jul. 2000, pp. 19-25.

[17] M. Fowler. et al, “Refactoring: Improving the Design of Existing
Code”., Addison-Wesley Professional, 1999.

[18] E. Murphy-Hill. and T.Black, Seven Habits of a Highly Effective Smell
Detector”, In Proceedings of RS˜SE, 2008, 36-40.

[19] N. Nagappan et al., “Improving the CS1 experience with pair
programming”. In: SIGCSE Bull, 2003, pp. 359-362.

[20] N. Ramli and S. Fauzi, “The effects of pair programming in
programming language subject”. In: International Symposium on
Information Technology, 2008, pp.1-4.

[21] N. Salleh, E. Mendes and J. Grundy, “Empirical studies of pair
programming for CS/SE teaching in higher education: A systematic
literature review,” IEEE Transactions on Software Engineering, vol.37-
4, pp. 509–525, 2011.

[22] Open-Archives. Available at: http://www.inf.puc-
rio.br/~rfelicio/pages/experiment02.html, April 2015

[23] R. Arora and S. Goel., "Learning to Write Programs with Others:
Collaborative Quadruple Programming," IEEE 25th Conference on
Software Engineering Education and Training (CSEE&T), (Nanjing,
China) , pp.32-41, IEEE, 2012.

[24] R.B. Da Luz, A.G Neto and R. Noronha, “Teaching TDD, the Coding
Dojo Style,” International Conference Advanced Learning Technologies
(ICALT), (Beijing, China),pp.371-375, IEEE, 2013.

[25] R Tool. Available in: <http://www.r-project.org/>. Access in March,
2015.

[26] S. Siegel, and J. Castellan. "Nonparametric Statistics for the Behavioral
Sciences", 2nd Edition. Mc-Grawl-Hill International Editions, 1988.

[27] T. Dyba, E. Arisholm, D.I.K Sjoberg, J.E Hannay and F. Shull, "Are
Two Heads Better than One? On the Effectiveness of Pair
Programming," Software, IEEE , vol.24, no.6, pp.12,15, Nov.-Dec.
2007.

[28] VR . Basili, V.R., C. Caldiera, H.D. Rombach, ‘Goal Question Metric
Paradigm’, Encyclopedia of Software Engineering (Marciniak, J.J.,
editor), Volume 1, John Wiley & Sons, 1994, pp. 528-532.

[29] V. R. Basili, “The role of experimentation in software engineering: past,
current, and future”. IEEE International Conference on Software
Engineering (ICSE), pp. 442-449, 1996.

[30] W. Chigona and M. Pollock "Pair programming for information systems
students new to programming: Students’ experiences and teachers’
challenges". In: Portland International Conference on Management of
Engineering & Technology, 2008, pp.1587-1594.

159

