
On the Empirical Evaluation of BDD Scenarios
Quality: Preliminary Findings of an Empirical Study

Gabriel Oliveira, Sabrina Marczak
Computer Science School, PUCRS

Porto Alegre, Brazil

gabriel.pimentel@acad.pucrs.br,

sabrina.marczak@pucrs.br

Abstract—Behavior-Driven Development (BDD) is a set of
software engineering practices which uses a ubiquitous language,
one that business and technical people can understand, to describe
and model a system by a series of textual scenarios. However, we
believe that the value of those textual scenarios is connected with
how well they convey and document the details discussed by the
team about the behaviors needed to fulfill customer needs. Thus,
there is the need to define what would be a ”good” BDD scenario
and how to evaluate scenarios. On this research design paper,
we describe a study designed to understand how known quality
attributes from other types of requirements specifications (like use
cases or user stories) can be used with BDD scenarios. We also
report our preliminary findings after performing it with novice
evaluators. Those findings indicate that some of those attributes
can be used to support BDD scenarios assessments.

Keywords—documentation quality, documentation evaluation,
behavior-driven development, empirical study

I. INTRODUCTION

Behavior-Driven Development (BDD) is a set of practices
that bring business analysts, developers, and testers together to
collaboratively understand and define executable solution re-
quirements in the form of scenarios. Smart [1] states that those
scenarios common language allows an easy, less ambiguous
path from end-user business requirements to the specification
on how the software should behave, serving as a guide the
developers in building a working software with only the
features that are known to really matter to the business.

However, there is a lack of studies who evaluates how those
scenarios are written. It is well known that bad requirements
are one of potential causes of a project failure [2] and that bad
scenarios documentation can lead to misleading information
that will negatively impact the tests ability to reflect the system
coverage and the team confidence on them [3].

We judge it necessary to better understand how we can
prevent BDD scenarios, that brings many benefits to the
development team, to suffer from those problems caused by
bad documentation. To address that, a master’s degree research
is being performed, with the goal to propose guidelines on
how to write ”good” BDD scenarios. As a first step to support
that goal, we organized an empirical study with post-graduate
students to understand how novice evaluators use known
quality criteria to judge the quality of BDD scenarios. Next,
based on the list of identified criteria, we plan to validate
them with industry practitioners (second step) and ask for
recommendations on how to write ”good” BDD scenarios

(final step). This paper aims to highlight our efforts on the
first step - the validation of a list of known quality criteria
that would give us some insights to guide later discussions
with practitioners about their criteria.

Therefore, this paper proceeds as follows: Section 2 re-
views the concepts of Requirements, Use cases and BDD and
reflects upon the different set of criteria to validate require-
ments. Section 3 presents the study design we performed to
acquire a deeper understanding of how quality attributes could
be used to validate BDD scenarios and the preliminary findings
during of this study. Section 4 and 5 concludes this paper by
summarizing our perceptions about the study and outlining
some directions for our on-going research, respectively.

II. BACKGROUND

A. Traditional Requirements

In this paper, we focus on solution requirements, which
describes the capabilities of a solution and provide the ap-
propriate level of details to allow the proper implementation
of that solution [4]. More precisely, we focus on functional
requirements, that describes the capabilities a solution must
have in terms of system behaviors. A traditional format to
describe system behavior is trough use cases.

Cockburn [5] says that a use case captures a contract
between the stakeholders of a system about its behavior and
describes the system’s behavior under various conditions by
interacting with one of the stakeholders (the primary actor,
who wants to perform an action and achieve a certain goal).
They are used to express solution requirements for software
systems and can be put into service to stimulate discussion
within a team about an upcoming system. Besides the primary
actor, that interacts with the system, a use case consists of:
the scope identifies the system that we are discussing, the
preconditions and guarantees say what must be true before and
after the use case runs, the main success scenario represents a
case in which nothing goes wrong and the extensions section
describes what can happen differently during that scenario.

B. Behavior-Driven Development

Most agile methodologies tend to not use traditional re-
quirements or use cases, but represents requirements using user
stories. For Cohn [6], a user story describes functionality that
will be valuable to either a user or purchaser of a system or
software. Lucassen et. al [7] summarize that user stories only

2017 IEEE 25th International Requirements Engineering Conference Workshops

978-1-5386-3488-2/17 $31.00 © 2017 IEEE

DOI 10.1109/REW.2017.62

299

capture the essential elements of a requirement: who it is for,
what it expects from the system, and why it is important.

Cohn [6] and Jeffries [8] state that a user story is composed
of three elements. The Card, an expression of the essential
elements of a requirement, represents customer requirements
rather than document them - it has just enough information to
identify the requirement and remind everyone what the story is
about. The Conversation is an exchange of thoughts, opinions,
and feelings - largely verbal but can be supplemented with doc-
uments. The best supplements are examples, representations of
the Confirmation with the goal to let customers tell developers
how she will confirm that they have done what is needed.
That Confirmation, provided by those examples, is what makes
possible the simple approach of Card and Conversation. When
the conversation about a card gets down to the details, the
customer and programmer specify what needs to be done in
the format of acceptance tests.

Behavior-Driven Development (BDD) is an umbrella term
that encapsulates a set of practices that uses scenarios as
a ubiquitous language to describe and model a system as
executable specifications [1]. Scenarios are expressed in a
format known as Gherkin, that is designed to be both easily
understandable for business stakeholders and easy to automate
using dedicated tools. Each scenario is made up of a number
of steps, where each step starts with one of a small number
of keywords. The natural order of a scenario is Given a pre-
condition When an action is performed Then... a result is
observed, similar to the guarantees seen on use cases. For
different actions, different scenarios should be created, an
approach similar in purpose with the use case’s extension.

It is a known fact that BDD scenario is a format to represent
acceptance tests [9]. It fulfills the role of the Confirmation term
defined by Jeffries [8] by specifying scenarios who convey the
product behavior - thus, describing solution requirements.

C. Requirements Validation

Requirements validation is a phase on traditional require-
ments engineering process that is known to support the three
other activities - requirements elicitation, requirements analysis
and requirements specification - by identifying and correcting
errors in the requirements [10].

The Business Analyst Body of Knowledge (BABOK)
newest edition [11] states that while quality is ultimately
determined by the needs of the stakeholders who will use the
requirements or the designs, acceptable quality requirements
exhibit many characteristics. It lists some characteristics a
requirement must have in order to be a quality one, as follows:
atomic, complete, consistent, concise, feasible, unambiguous,
testable, prioritized, and understandable. A slightly different
list is found on a prior version [4], as follows: cohesion, com-
pleteness, consistency, correction, viability, adaptability, unam-
biguity, and testability. Although the characteristics’ meaning
is defined, no measurement guidance is given. Cockburn [5]
takes inspiration on those attributes to define rules on how to
validate use cases. Those rules are summarized in a pass/fails
questionnaire to be applied on use cases - good use cases are
those that yield an ”yes” answer to all of them.

For user stories, a format to represent agile re-
quirements, the INVEST (Independent-Negotiable-Valuable-

Estimable-Scalable-Testable) acronym presented by Cohn [6]
seems to be one of the mostly used criteria in use by industry
practitioners, as Heck and Zaidman [12] have stated on their
practitioners interviews. Despite the INVEST acronym popu-
larity, Heck and Zaidman [12][13] expand the use of criteria
with a framework of their own, as they believe that the notion
of quality for agile requirements is different from the notion
of quality for traditional up-front requirements. Lucassen et.
al [7] define additional criteria on top of Heck and Zaidman
[13] to evaluate user stories on their QUS Framework. Those
extensions to the INVEST acronym were tailored to be used by
user stories only, a requirement format that lacks the detailed
description found on BDD scenarios – therefore, we decided
to use on our empirical study only the generic attributes found
on the INVEST acronym and not those extensions.

Little attention is being given to the quality of the written
documentation expressed on BDD scenarios format. BDD
scenarios can be only evaluated based on characteristics taken
from the Smart [1] experience, such as: scenarios steps expres-
siveness, focused on what goal the user want to accomplish and
not on implementation details or on screen interactions (writing
it in a declarative way and not on a imperative way); the
use of preconditions on the past tense, to make it transparent
that those are actions that have already occurred in order to
begin that test; the reuse of information to avoid unnecessary
repetition of words; and the scenarios independence.

Even though Smart [1] specifies a few examples of good
and bad scenarios in order to demonstrate those characteristics
he described, we feel it would be important to have a refined
quality questionnaire built by the collective knowledge of
other practitioners, similar to the one used on Cockburn’s use
cases [5]. Using Jeffreys [8] terms, we believe that, if the
Confirmation in the form of BDD scenarios is not a good
representation of the details discussed in the Conversations
by the team and the customer, the simple and lightweight
approach of writing customer needs on Cards is not effective.

III. EVALUATING BDD SCENARIOS QUALITY

As we have no knowledge about a quality questionnaire to
evaluate BDD scenarios, we must understand what criteria are
important to evaluate the quality of BDD scenarios and from
there build our own questionnaire. Therefore, our purpose is
to find a list of quality attributes that would work with BDD
scenarios, in a similar way that traditional attributes [4][11]
work with requirements documents and INVEST[6] works
with user-stories. We find inspiration on what similar studies
did with Use Cases [5][14] and User Stories [12][7].

In preparation to creating that quality attributes list, we first
seek to gain insight on whether the existing quality attributes
would work with BDD scenarios. To that end, we organized a
study with 15 post-graduate students to understand how they
evaluate BDD scenarios. All of those students have previous
experience working in the industry as developers, technical
leads or even managers. They also have declared to know well
how to write use cases, but not much about how to write user
stories or BDD scenarios. The quality attributes used on the
study were: atomic, complete, consistent, concise, estimable,
feasible, independent, negotiable, prioritized, small, testable,
understandable, unambiguous, and valuable.

300

However, we had three concerns before starting: (a) how
a person’s evaluation of a textual document using quality
attributes would differ based on the representation format and
(b) how would an evaluator experience with the product affect
his analysis of a requirement and (c) how the use of traditional
requirements attributes would be different from INVEST ones.

To address our first concern, we judged it necessary to
compare how the same quality attributes would be used to
evaluate BDD scenarios and Use Cases, in order to clarify a
person’s motives and analysis rationale. The choice of formats
to compare was based on the fact that both, scenarios and
use cases, seems to prefer a more declarative way to describe
a behavior, rather than imperative, to stay detached from the
implementation details [5][1]. Also a use case execution path
seems to be a BDD scenario on a different format - on
Cockburn’s book [5], the main scenario is always described.
Additionally, writing requirements represented as use cases
was among the skills that all the students had.

To address our second concern, we judged it necessary to
first ask the students to write requirements to two fictional
products (PA and PB) in different domains, using the two
requirements formats we have chosen, so they could feel more
familiar with the product domain and the requirements formats
before evaluating other students’ work.

To address our third concern, we mixed traditional at-
tributes from both BABOK editions [4][11] and the INVEST
framework [6] in a single alphabetically ordered list. We let the
scope of the analysis - if one should evaluate each scenario or
use case separately or together with the others from the same
feature - open to interpretation to measure this aspect.

A. Fictional Products

The products were presented to the students in a product
vision board format [15]. On that occasion, they had the
chance to ask questions, straighten their understanding on how
to solve the business problem presented, and collaboratively
draft a list of high-level requirements expressed as a use
case scope format [5] and a user story format [5]. After
this initial discussion, we took their suggestions and created
the final high-level requirements. Finally, a new discussion
round was performed to allow the students to read the final
high-level requirements, validate them, negotiate their details
and decide whether each one should be part of the scope
or not. Those discussion sessions were planned to guarantee
a common ground of understanding before producing use
cases (based on the high-level requirements represented by
scope statements) and BDD scenarios (based on high-level
requirements represented by user stories). After the last round
of discussions, the students then proceeded to perform their
tasks in individual manners.

Product A aim was to develop a mobile app to help people
with food allergy find places to eat free of ingredients that
cause them allergy and distress. The user should be able to
have an easy way to indicate which kind of food allergy
or restrictions one has. There were two target groups: Users
with any kind of food allergy that are quickly (e.g., while
driving, walking, chatting with another person, etc) looking for
a place to eat; and Customers, owners of restaurants, whose
company business reputation would be improved if they used

TABLE I. SAMPLE OF STUDY ORGANIZATION FOR 4 STUDENTS

(S1 TO S4)

ID Task 1 Task 2 Task 3 Task 4

S1
Write
UC
for PA

Write
US+BDD
for PB

Evaluate
US+BDD
for PA
(S2 task 1)

Evaluate
UC
for PB
(S4 task 2)

S2
Write
US+BDD
for PA

Write
UC
for PB

Evaluate
UC
for PA
(S1 task 1)

Evaluate
US+BDD
for PB
(S3 task 2)

S3
Write
UC
for PA

Write
US+BDD
for PB

Evaluate
US+BDD
for PA
(S4 task 1)

Evaluate
US+BDD
for PB
(S2 task 2)

S4
Write
US+BDD
for PA

Write
UC
for PB

Evaluate
UC
for PA
(S3 task 1)

Evaluate
US+BDD
for PB
(S1 task 2)

this new client search channel. Product B was a social-network
website that aims to bring low cost book readers and resellers
(who sell second-hand books) together. Readers would fill their
profiles with genre interests and literature thoughts in exchange
of badges, a higher fame status, and occasional promotions
directed to them. Those social network interactions would
provide data to resellers so they could direct their marketing
efforts and promotions to the right subset of users.

B. Design Description

Therefore, we asked the students to perform the following
sequential tasks: write requirements for PA with requirement
format assigned; write requirements for PB with another re-
quirement format assigned; evaluate other student requirements
for PA and for PB. As explained before, each student was
assigned a requirements format among user stories and BDD
scenarios (US + BDD) or use cases (UC) to perform the
writing tasks (Tasks 1 and 2). Therefore, we had virtually two
group of students - Group 1 (G1) contained those who develop
US+BDD for product A and UC for product B and Group 2
(G2) those who develop UC for product A and US+BDD for
product B. For the evaluation tasks, students on one group
should receive functional requirements from the other group.
For example, students from G1 who developed BDD scenarios
for product A should now evaluate the use cases for product
A as part of Task 3. Task 4 should be executed in the same
way, but considering product B. Table I exemplifies how four
students would perform the tasks provided.

As can be seen on Table I, we made sure that the same
student would not read two requirements formats from the
same colleague when performing Tasks 3 and 4 in order to
avoid a person’s writing style to affect the evaluation of a
scenario or use case. Also, it was desirable that the student gets
the opposite requirement format to evaluate a given product.

IV. PERCEPTIONS ABOUT THE STUDY

The study has finished its execution phase, with all the
15 students having performed their four assigned tasks, but
the analysis of the data collected throughout the completion
of tasks 1 to 4 and the students interpretation about quality
attributes will still be crossed with practitioners opinions about
what makes a ”good” BDD scenario. We could already take
some degree of insight from our notes during the study and

301

from a final 2 hours long discussion round with the students
once they concluded performing their work.

When inquired about comparing their work with different
requirement formats, the students reported that BDD scenarios
are easier to write (due to the lack of description of every
user interactions with the system) but hard to analyze when
compared to use cases. Due to that opinion, BDD scenarios
description were found to be more negotiable than use cases
(one of the INVEST attributes). In the other hand, use cases
were found to be more easily testable. It’s interesting to
note their assumption that use cases descriptions need to be
more imperative (with details explicitly defined) and scenarios
descriptions need to be declarative (without implementation
details) - one we did not foreseen.

Also, the list of chosen attributes generated confusion
on the evaluation of BDD scenarios. As it mixed traditional
requirements characteristics from both versions of the BABOK
[4] [11] and the INVEST acronym provided by Cohn [6], some
students did not understand how to properly differentiate some
attributes when evaluating scenarios. For example, atomicity
from BABOK [11] and independence from INVEST [6] were
often seen as opposites, even if this is not always the case - a
requirement that specifies only one action (atomic) can have
many or none dependencies with others. One student reported
that this confusion may have come from the difficulty to see
bad examples of BDD scenarios, specially built to demonstrate
when an attribute fail. They did not reported about problems
to use INVEST acronym on use cases, though.

Some attributes may not make sense to evaluate a single
BDD scenario - completeness may only represent how a set of
scenarios cover a user story, for example. As it was said before,
we let the scope of the analysis open to interpretation on
purpose. Some students have joined the scenarios from a user
story together before analyzing them, which raises questions
on what was the rationale behind their decision.

The students also reported that inputs/outputs are important
on BDD scenarios to help on prioritization and testability.
As they don’t have use cases’ imperative description of every
user interaction with the system to help them understand the
technical steps needed to perform an action, stating inputs and
outputs clearly may impact the ability of the team to estimate
effort and analyze impact, thus impacting a requirement’s testa-
bility. A few of them understands that the lack of inputs/outputs
can be seen as a lack of the completeness attribute. Those
perceptions resembles the ones on Smart’s [1] book.

Lastly, written rigor was judged as necessary by the stu-
dents to reinforce the team’s common understanding during
conversations with customers. As they stated, the writing of
BDD scenarios is easier that use cases (due to the use of plain
English language to represent behaviors and the declarative
description format) and could be done by anyone - however,
they reported that just someone who provides good examples
would be desirable, in order to express the different ways a new
functionality can be combined with existent ones. In a similar
way, only have technical writers should be working with use
cases - to properly describe the use case in an imperative way.

V. CONCLUSION & FUTURE WORK

Our study preliminary findings seems to reinforces the
belief that a list of quality attributes can be used to guide
the quality evaluation of BDD scenarios. However, our initial
choice of attributes revealed that some may not be suited for
BDD scenarios individually (like completeness or consistency)
or may be only seen as a confusion source to the evaluator
(like atomicity or independence). Therefore, the initial list of
attributes that could work with BDD scenarios is: concise,
estimable, feasible, negotiable, prioritized, small, testable, un-
derstandable, unambiguous, and valuable.

By analyzing the students evaluations of each other sce-
narios using a content analysis method [16], we can produce
a list of synonyms for each quality attribute used on BDD
scenarios. Those synonyms can be used on the next step of our
research plan: to acquire feedback from industry practitioners
and compare their evaluation criteria with the insights we got
from our data - using those synonyms as a bridge between the
attributes acquired on the empirical study and their opinions.

Another related next step is to ask those same practitioners
if attributes lists are indeed a good way to validate BDD sce-
narios - the confusion on understanding the presence/absence
of an attribute may have revealed the need to use a direct
questionnaire, similar to Cockburn’s one [5] for use cases.

REFERENCES

[1] J. Smart, BDD in Action: Behavior-Driven Development for the Whole
Software Lifecycle. Manning Publications, 2014.

[2] M. I. Kamata and T. Tamai, “How does requirements quality relate to
project success or failure?,” in RE, IEEE, 2015.

[3] S. Neely and S. Stolt, “Continuous delivery? easy! just change every-
thing (well, maybe it is not that easy),” in Agile Conference, 2013.

[4] IIBA, A Guide to the Business Analysis Body of Knowledge (BABOK
Guide) 2nd Edition. International Institute of Business Analysis, 2009.

[5] A. Cockburn, Writing Effective Use Cases. Addison-Wesley Longman
Publishing Co., Inc., 2000.

[6] M. Cohn, User Stories Applied: For Agile Software Development.
Addison Wesley Longman Publishing Co., Inc., 2004.

[7] G. Lucassen, F. Dalpiaz, J. VanDerWerf, and S. Brinkkemper, “Forging
high-quality user stories: Towards a discipline for agile requirements,”
in International Requirements Engineering Conference, 2015.

[8] R. Jeffries, “Essential xp: Card, conversation, confirmation.” http:
//ronjeffries.com/xprog/articles/expcardconversationconfirmation, 2001.
Visited in: Jan. 2017.

[9] M. Gartner, ATDD by Example: A Practical Guide to Acceptance Test-
Driven Development. Addison-Wesley Professional, 2012.

[10] V. T. Heikkila, D. Damian, C. Lassenius, and M. Paasivaara, “A
mapping study on requirements engineering in agile software develop-
ment,” in Euromicro Conference on Software Engineering and Advanced
Applications, 2015.

[11] IIBA, A Guide to the Business Analysis Body of Knowledge (BABOK
Guide) 3rd Edition. International Institute of Business Analysis, 2015.

[12] P. Heck and A. Zaidman, “A quality framework for agile requirements:
A practitioner’s perspective,” 2014.

[13] P. Heck and A. Zaidman, “Quality criteria for just-in-time requirements:
just enough, just-in-time?,” in JITRE, IEEE, 2015.

[14] K. Cox, A. Aurum, and R. Jeffery, “An experiment in inspecting the
quality of use case descriptions,” Journal of Research and Practice in
Information Technology, 2004.

[15] R. Pichler, “The product vision board.” http://www.romanpichler.com/
blog/the-product-vision-board, 2011. Visited in: Jan. 2017.

[16] M. D. White and E. E. Marsh, “Content analysis: A flexible methodol-
ogy,” Library Trends, 2006.

302

