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ABSTRACT

Crowd simulation has its greatest utility in the study of safety mea-
sures for crowded events. However, total evacuation time, which
is the most important feature in crowd evacuation, can vary de-
pending on the population, the environment, the adopted strategies
to decide routes, but also because people can be panicked or not.
This paper presents a model to parametrize crowd simulation al-
lowing to increase or decrease the agents stress. We use BioCrowds
model and proposed an extension to consider new parameters to
deal with crowd relaxing and compression, as comfort and stress.
These two new parameters impact the will to go to the goal and the
individual panic in trying to save itself. Indeed, our model could
be integrated in other crowd simulators. This work discusses some
obtained results and also presents a case study regarding a real sce-
nario. We simulate the Hillsborough Disaster happened in 1989 in
order to discuss the reliability of our method. Results indicate that
our method can simulate in a coherent way the densities observed
in the real life event.
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1 INTRODUCTION

The capacity of predicting pedestrian flow and crowd behavior is of
great utility in areas such as security and safety. Crowd simulation
is also useful in other applications like simulating groups of people
for games and movies, recreating historical scenarios [8] and in
managing groups in high density situations.
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For many years one of the biggest challenge in crowd simulation
was to propose free-of-collision simulation methods while present-
ing realistic behaviors. BioCrowds was the pioneer [3] to propose
a mathematical free-of-collision model to simulate crowds while
allowing the emergence of behaviors as lane formation and others.
Recently, other free-of-collision approaches have been proposed,
as the case of the Implicit Crowds model [14]. This model uses
an energy-based model that take into account the expected future
state of agents as well as their current state to reach an integration
scheme for simulations. Another crowd simulator free-of-collisions
proposed in literature is the well used Optimal Reciprocal Collision
Avoidance (ORCA), proposed by Van Den Berg et al. [22]. They
proposed a velocity-based model for n-body collision avoidance.

In this paper we will present a re-parametrization of BioCrowds [3],
a collision free model based on space subdivision, that imitates leaf
venation patterns. Our new model aims to introduce the concepts
of stress and comfort into the agents, increasing or decreasing their
sensation of panic. This work was motivated by the fact that re-
searchers, trying to study panic in emergency situations, often have
difficulty studying how people react in real-life situations [16]. In
addition, ethical issues involved in studying panic behavior can
also arise. To deal with these difficulties, researchers have been
working with computer simulations [18]. Some evacuation simu-
lations can be a "normal life" situation, i.e. when there is no panic
and people are only moving in the same direction, sharing the same
goal. Therefore, the simulation model should also include the pos-
sibility of creating panic events and imitate the people behaviors
in hazardous situations.

In the basic BioCrowds, agents compete for markers positioned
on the floor, and their direction vector is defined by both the mark-
ers available to them and their goals. So, one can say that agents
are "panicked" but in fact they are not pushing others and trying to
survive as in a panic situation, which is a common feature of crowd
simulators, as described in [1]. In this work, we intend to deal with
this situation by reparameterizing a crowd simulator including the
possibility of vary the panic level of agents. We use two parame-
ters: comfort and stress. Our hypotheses is that the two parameters
impact the spatial behavior of agents. The comfort in our model
impacts how people are distributed in the space, so agents have a
tendency to be located around/close their goal but are not limited
to moving simply towards it, imitating the desire to seek comfort-
able place. The other parameter used in our modeling is the stress,
which is related with the possibility an agent has to push others,
i.e. without respecting the neighbors personal space and trying
to reach the goal with "urgency”. In fact, a stressed agent will be
able to steal markers from others, pushing others to reach the goal.
Using the extended model, we simulated a case scenario inspired
on the Hillsborough Disaster. In 1989, April 15th, a football match
between Liverpool and Nottingham Forest was set to be played in
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the Hillsborough Stadium in Sheffield. In attempt to let all Liverpool
supporters in before the match started, the police opened a gate to
an already over-crowded area, which lead to a crushing accident. In
this event 96 people died and 766 were injured. In addition to this
analysis this paper also shows other obtained results as discussed
in Section 4.

This paper is structured as follows. Related works and their
importance to this model are discussed in Section 2. The method
we propose is presented and described in Section 3. Simulation
results are shown and evaluated in Section 4, while conclusions and
possible directions this work may take in the future are addressed
in Section 5.

2 RELATED WORK

Throughout decades of research in crowd simulation, many meth-
ods were created and used. Many of these models are either Physics
based animations or based on agents. Although the existence of a
large number of techniques in literature for control and parametriza-
tions of crowds [2, 4, 11, 19, 21, 23], most of them are focused on a
specific situation to be simulated, where agents are endowed with
skills to perceive the world, seek goals, avoid collisions and other
related behaviors.

One of the most known Physically based method is the social
force proposed by Helbing and Molnar [12]. This method takes into
account the hypothesis that agents influence each other through
a social force. Consequently, agents maintain their desired per-
sonal space apart from others. In addition, they can be also at-
tracted to others, creating groups in specific situations, like families
and groups of friends. Another Physics-based model is proposed
by Hughes [13], were crowds are treated as continuum flow of
pedestrians.

The model we used in this paper is based on the approach pro-
posed by de Lima Bicho et al. [3]. BioCrowds is an infinitesimal
agents model based on a space colonization algorithm, where auxins
are distributed on the leafs to guide the venation growing Runions
et al. [20]. In BioCrowds, auxins are mapped to markers, distributed
on the floor, that represent resources that agents should have to
move. Indeed, agents compete for markers while also trying to
reach their individual goals. Using this method, many of the phe-
nomena seen in real crowds behavior occur, such as lane formation,
smooth trajectories and speed reduction in crowded spaces.

Since one of our focus in this work is to use our model to simulate
the accident occurred in Hillsborough, the more information we
have about it the better we can recreate the disaster. Having that
in mind, the work by Nicholson and Roebuck [17], focused on
analyzing the Health and Safety Executive investigation of this
specific incident, provides important information for the simulation.
Approximations on the density of the crowd, characterization of the
state of the barriers inside the pens, before and after the crushing,
and the description of the events that occurred are examples of
important characterization of the real life event. This data provides
a solid base to compare to our model.

Many of the works related with crowd dynamics address the
movement of crowds in a panic or urgent state. Helbing et al. [9]
analyze many of the behaviors and tendencies of groups of people
in those situations. He introduced the concept of creation of arcs
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of people in bottlenecks and concluded that when individuals try
to have a really high speed in crowded situations, they end up
making the average speed of the crowd go down. Lee and Hughes
[15] also worked in this area and analyzed the causes of various
crowd accidents and provided a mathematical model for this kind of
events. In this paper, they conclude that the density of the crowd is
directly related to the likelihood of an accident but the occurrence
of it depends on crowd composition or random events. They also
simulated the Hillsborough disaster with the model of the contin-
uum flow of pedestrians [13] and reached density results similar to
the ones from the real event.

3 OUR MODEL

This section describes our model to provide agents endowed with
stress and comfort attributes, in order to allow the simulation of
high compression of individuals. Firstly, in Section 3.1 we briefly
describe BioCrowds.

3.1 BioCrowds Model

BioCrowds method proposes the use of space discretization, popu-
lating the environment with uniformly distributed markers. Agents
in the environment compete for these markers, based on proximity
criteria, and use them to determine their movement vectors. Indeed,
each agent i accesses the markers inside its personal space R; to
search for markers that are closest to i than any other agent j. So, a
marker is only available to the closest agent.

For a given agent i, with a set of N available markers S =

{a1, a2, - ,an}, we calculate it’s movement vector m using Equa-
tion 1:
N
= ) wildg - %), (1)
k=1

where dy. is the marker’s position and ¥ is the agent’s position. wy
is that marker’s weight, calculated in Equation 2:

o JGRE=D
SN fG-%d-%)
where g is the position of agent i goal.

To determine function f, let us first assume that all markers a;
affecting agent i are at the same distance @ —x from this agent. Such
function should prioritize markers that lead the agent directly to
its goal, i.e., it should (i) reach its maximum when the (nondirected)
angle 0 between §—x and @y —X is equal to 0°; (ii) reach its minimum
when 6 = 180°; and (iii) decrease monotonically as 8 increases from
0 to 180°. Also, if the distances dj — X differ, the markers further
from the agent should have relatively smaller weights, to prevent
them from dominating the computation of the tentative motion
vector m. A possible choice for f that satisfies these assumptions is
defined in Equation 3:

@)

1+ cosf

Tl ®

fley) =

where 6 is the angle between x and y. Please refer to BioCrowds
original paper [3] for further details about the method.
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The weights will cause the agent to move towards it’s goal as long
as there are markers available along the way. An agent’s movement
will be blocked by the absence of markers.

3.2 BioCrowds Extension

The original BioCrowds does not allow the agents motion when
there are no attainable markers on the ground. Because this charac-
teristic of BioCrowds (agents move only when there are available
markers), the method achieves the collision avoidance, but as an
effect there is a maximum density (people per sqm) that BioCrowds
permits as a function of available markers in the space, and agents
do not push to open free space to move. Again, this is a common
characteristic in many crowd simulators [5] [7] [9]. Firstly, as seen
before, BioCrowds is a goal based approach. It means that agents
have goals and try to achieve them. BioCrowds model achieves
emergent behaviors, e.g. lanes formation, so people respect the
others personal space in the sense that there is a maximum density
achieved in the method.

In this work we use two agent factors (comfort and stress) to
improve the realism of agents behaviors in evacuation scenarios.
These factors are used to model agent behaviour according to the
context of the evacuation. Next sections describe our model to
simulate normal life and panic situations in BioCrowds.

3.2.1 Normal Life Evacuations. Helbing et al. [10] present some
main characteristics of people in normal life evacuations: i) In
general, pedestrians take into account detours as well as the comfort
of walking, thereby minimizing the effort to reach their destination;
ii) Pedestrians prefer to walk with an individual desired speed,
which corresponds to the most comfortable walking speed as long
as it is not necessary to go faster in order to reach the destination
in time; iii) Pedestrians keep a certain distance to other pedestrians
and borders. We propose the term comfort (c) as a function of
available area for each agent. According to Helbing et al. [10] this
area is smaller the more a pedestrian is in a hurry, and it also
decreases with growing pedestrian density. In the case of this work,
we adapted the sense of personal area to the number of markers a
each agent has (as discussed in previous section).

So, c is defined as a function of the number of available markers
of agent (the set S;) a certain agent i has. If the number of markers
N; decreases, then c; decreases too. So, the agent will gradually shift
its focus from its designated goal to looking for a more comfortable
space i.e. with more available markers. Actually, we normalize S;
dividing by the maximum number of markers (empirically defined
as 80, once it is impacted by the world configurations). With this
definition, we maintain a comfort factor range in the interval [0; 1]
for agent i, according toc; = % where Nj is the number of markers
for agent i and M is the maximum number of markers for all agents,
considered fixed the size of their personal region R.

Original BioCrowds computes the weight of each marker, as de-
fined in Equation 2, by comparing the angle difference between the
direction defined from the agent towards its goals and all available
markers.

Figure 1a shows an environment (100 sqm) where 100 agents
have the same goal (indicated as a black rectangle in the image).
The arrows indicate the places from where the agents arrive, the
figure shows the final situation of the simulation. The maximum
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observed density in the simulation utilizing original BioCrowds is
7.75 people/sqm. In this work, we propose a new way to compute
the markers weights in order to endow agents with the previously
described behavior, i.e to look for more comfortable space. The new
weight affected by comfort (w,’c) for agent i is defined by Equation 4:

W/,c,l' = 5i'wk,i +(1-96;), (4)

where wy ; is the original weight calculated by BioCrowds in Equa-
tion 2 and §; is the comfort bias for agent i defined by Equation 5:

8 = sin(ci.%). 5)

Related to Equation 4, agents behave according to original BioCrowds

when §; = 1, i.e. markers weights vary according to the goal di-
rection. However, when the number of markers decreases, the bias
decreases as well, resulting in their weights being more similar,
causing the agent to go towards the available markers, even if those
do not lead to the goal. Figure 1b shows the same scenario simulated
in Figure 1a. It is easy to see how the densities are lower. Important
to highlight that in this simulation we do not have group behaviors,
that could be a reason why agents are homogeneously distributed
in the space. If we simulate groups, maybe people could be closer to
the members of their groups. The situation illustrated in the figure
imitates a situation where people should evacuate from the same
place, share the same goal, but they are not friends with others.

3.2.2  Panic Situations. In order to simulate the panic situation,
we propose a stress level (u) for the agents. The goal is to include
some extreme behaviors that will arise from stressed agents, such
as pushing and disrespect to others spaces. Crowd density will in-
crease as a consequence of a decreasing respect for others’ personal
space. If ji; = 0, the agent is calm and will walk without pushing
others pedestrians. Otherwise, agent’s ability to take markers from
other agents, when competing for free space, is increased. We in-
troduced a stress factor which can change as a function of two
situations: i) lack of movement and ii) amount of agents inside
the intimate distance, as defined by Hall [6]. That is accomplished
by the following Equations. Equation 6 states for the stress factor
related to the number of agents inside the intimate distance [6] (45
cm) as a function of time:

3} = ﬁ.n} + kii.tg, (6)

where 9% states for the stress factor related to the density for agent

i at frame f,  and k; are constants and regulates the obtained
values (we used f = 0.02 and k; = 10). n} is the number of agents

in intimate distance of agent i and tg is the counter of time that
determines how much time (in frames) that n]’, > 0.

Equation 7 describes the stress caused by the lack of movement,
i.e. we assume the hypothesis that agents are more stressed when
there are no motion allowed.

y} =p.(1- mov}) + k%.ty, (7)

where y fl states for the stress factor related to the lack of motion for

agent i at frame f, p is a constant and regulates the obtained range
of values (we used p = 0.4). mov} is a value in the interval [0; 1]
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(a) Original BioCrowds

(b) With Confort Factor

G. Rockenbach et al.

(c) With Panic Factor

Figure 1: Scenarios containing 100 agents simulated using BioCrowds: (a) shows Original simulation without added parameters,
in (b) the simulation uses the comfort factor and in (c) it uses the stress factor

and states for a normalization value using the maximum speed. t,,
is the counter of time that determines how much time (in frames)

that mov} < kg, where kj is a threshold defined as 0.2. Finally the

stress factor of agent i at frame f is given by a} = 19} + y}. The

stress factor works as an incremental value in the stress attribute
of each individual at each frame, as described in Equation 8:
pp = Hp_y +(ap —ap )1 = ). ®)
Stress was modeled to affect the agent’s competition for markers.
Our goal is to define behaviors such that when an agent’s stress is
increased, it has a higher chance of acquiring a marker in it’s desired
path than a calm agent. The idea is to change the competition for
space between agents, giving more priority for agents who are
more stressed. In standard BioCrowds, such comparison aims to
allow the marker to be taken by the closer agent, as described in
C(ag) = ||dg1ll < l|dg2]l, where dy,, is the distance vector between
agent n and marker k, defined as di, = ar — x,, where a. is the
marker’s position and x,, is the agent position, where agent 1 is the
the current owner of marker k. In the new model, a weight has been
added to the previous comparison C(ag) = hyq||dk1| < hgqlldi2lls
where hy,, is defined in Equation 9 and aims to propose a weight
where agents with high stress have a higher chance to capture
markers currently positioned in the agent’s desired path. Thus, h
should be minimized if the marker’s position coincides with the
agent’s goal vector while the agent’s stress is maximum.
Thus, equation 9 was defined to follow the specified properties:

hin = s0(gn — xn, dip) + (1 - 3), )
where:
. i T
s= s1n(uf5), (10)
3 — cos
w(x,y) = — (11)

where 0 is the angle between x and y .

The w function calculates the new weight according to the angle
difference between the relative distance vector between the agent
and the auxin (dg,) and the agent’s goal vector (g, — x5, where g,
is the goal position and x, the agent’s position), and the s param-
eter modulates ’s effect according to the agent’s stress. s has a
similar function to the § parameter in comfort weight Equation 5,
but using stress as a parameter instead of comfort: when y is 0, s
is zero causing the weight h to equal 1, with this the agent’s dis-
tance comparison parameter will be the same as regular BioCrowds.
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When the stress is maximum, s = 1 and h = o, causing the new
weight to fully affect the comparison. When the angle difference is
0 degrees, w is minimum, returning 1. When the difference is 180
degrees, o is maximum at value 2. When the weight is affecting the
comparison, since the agent with the lowest distance factor takes
the auxin, stressed agents will more easily take markers located
in the direction they want to move towards than those in other
directions. In a crowd of stressed agents, this translates to agents
"stealing" markers from other agents in front of them, increasing
the crowd density.

Figure 1c shows the same scenario simulated in Figure 1a. It is
easy to see how the densities are much greater (maximum 13.5 peo-
ple/sqm). The situation illustrated in the figure imitates a situation
where people should evacuate from the same place, share the same
goal and are very stressed. As discussed later we set the maximum
stress as 1, so this is the final frame when the situation is stable, i.e.
agents can not take markers from each other, because they are all
very stressed, so there is not priority in the comparisons. If we do
not set a maximum value for stress attribute, the agents could be
more compacted. Next section presents some obtained results with
our model.

4 EXPERIMENTAL RESULTS

This section presents results obtained with our method. We firstly
compare the four configurations: i) BioCrowds, ii) BioCrowds with
Comfort, iii) BioCrowds with stress and iiii) BioCrowds with stress
and Comfort. Later we discuss the real case scenario where we
simulate a situation inspired on Hilsbourough.

4.1 Comparing BioCrowds implementations

To analyze the impact of our methodology to simulate Comfort and
Panic in Biocrowds model, we subdivided the space into a 25 cells
(5x5 meters) distribution in the area where agents should pass to
reach the goal. We then compared the average density (in all cells
and also in the more critical ones - front rows - close to the door) and
the standard deviation of obtained density. We simulated with 100,
300 and 900 agents the 4 versions of BioCrowds reparameterization
and next we present a discussion about results obtained with 900
agents simulation. The remaining populations present the same
characteristics so we detail only the most critical scenario.

In Figure 2a we present the average density in all cells. The
panic simulation, due to the effects of stress, presents high levels
of density in the front rows and this leads to the higher average. In
contrast, the comfort affects the agents in a way that they tend to



Simulating Crowd Evacuation: From Comfort to Panic Situations

Comparing Average Stress of BioCrowds Implementations
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Comparing Average Density in Front Rows of BioCrowds Implementations
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Comparing Standard Deviation of BioCrowds Implementations
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Figure 2: Analysis of the average densities in the area, its two front rows, and the standard deviation in the density metric.

avoid high density situations. It is interesting to notice that original
BioCrowds (Basic in the figure) and implementations including
Panic and Comfort ends in a very similar way, however, in the
second scenario it is easy to remark that density grows up slower
when compared to original BioCrowds. It illustrates our proposed
dynamic to having the panic as an increasing factor, as discussed
in last section. Similar behavior can be seen in Figure 2b where the
density is compared only in the two front rows of cells, the ones
with the biggest concentration of agents in the final state of the
simulation.

In Figure 2c we compare the standard deviation of the density
in all cells. A small deviation means that the agents are evenly
distributed between the cells. A larger deviation indicates that the
density of some cells (probably the ones of the front rows) are large
in the same time as other ones are basically empty (the ones in
the back rows). As can be seen in this graphic, the higher standard
deviation (8.13) happens quickly as an effect of stress, once there is
a large accumulation in the front rows and the lack of agents in the
back rows causing the deviation to be large in this simulation. On
the other hand, when only comfort is activated, agents spread as
much as possible in the space and standard deviation is very low
(0.25). The behavior seen in discussed graphics can be qualitatively
accessed in Figures 3a, 3b, 3c for crowds with 100, 300 and 900
agents. Simulations where agents are stressed (bottom-left in the
figures) show a large concentration of agents in the front and display
extremely high densities (3.25 p/sqm with 100 agents, 18.5 p/sqm
with 300 and 20.5 p/sqm with 900).

When only comfort (top-right in the figures) is used, the agents
try to avoid concentrations and the crowd becomes very dispersed.
This leads to the low observed densities (1.75 p/sqm with 100, 300
and 900 agents). When both comfort and stress act in the crowd,
it is possible to see a similar behavior to the basic BioCrowds.
However, in more lower densities, as in Figure 3a, it is possible to
observe the arc formation, very well emerged, as a function of two
new parameters in BioCrowds and higher densities if compared to
original BioCrowds.

Comparing the comfort in different rows (regions in the environ-
ment as shown in Figure XX) for both the comfort and the comfort
with stress simulations, it is noticed that, in general, the average
comfort value remains high in the comfort simulation, and very low
in the comfort and stress simulation. It happens except in the row

further from the objective which average comfort value is similar in
both simulations. The acting of stress leads to decrease in comfort
in the rows that are more densely occupied and closer to the goal.

4.2 Simulation of Hillsbourough

To simulate Hillsbourough, a scenario was modeled according to
the specifications found in Nicholson and Roebuck [17], specifically
Pen 3, where the estimations for number of individuals and crowd
densities were completely assessed. The goal of our simulations
is to populate the pen with the estimated number of individuals
(1500), in the literature, and verify if the row densities match those
that were estimated. The densities of the rows 4 and 3 are the
most important, since it is the place where the people died by high
densities in 1989.

We run simulations of Pen 3, having 1500 agents, both with
and without the comfort and stress parameters included. Table 1
presents results of simulation using BioCrowds with comfort and
stress (column 3) and the original BioCrowds (column 4). As it can
be seen, the simulation with BioCrowds with comfort and stress
present a good compromise when compared with real life data,
except in the row 1. Therefore, this region (row 1) represents the
farthest region from where people were crushed. So, agents were
still far from their goal, not so concentrated in one place and they
have more free space and less density of people, so their stress were
lower. That is why the agents could be more dispersed. Comparing
the two implementations of BioCrowds, we can observe that when
in a panic situation, extended BioCrowds simulate in a more realistic
way a real life event than original BioCrowds.

5 FINAL CONSIDERATIONS

In this paper we propose an alternate version of the BioCrowds
model. This version implements the concepts of comfort and stress
in crowds, resulting in the possibility to simulate calm and panic
people.

The BioCrowds model, as a collision free model, display many
realistic agent behaviors, but it has a local density ceiling, i.e. the
agents "respect” each others personal space and do not get close
enough to achieve high densities. This make it impossible to simu-
late panic situations. To solve this problem we introduce the concept
of stress that allows agents to push others in the path to his goal
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(a) Simulating 100 agents.

(b) Simulating 300 agents.

G. Rockenbach et al.

(c) Simulating 900 agents.

Figure 3: Simulations for different quantities of agents. On the top-left there is the result of original BioCrowds when all
agents are trying to reach the door (center of the red arc); on the top-right, we show the same simulation with activated
comfort behaviour; on the bottom-left we show very stressed agents, and finally on the bottom-right we present the result of

activated stress and comfort behaviors.

Table 1: Information about density (people/sqm) in the 4
rows at Pen 3 in Hillsbourough. In column 2 we can see the
data estimated in literature about the real event, in column 3
we see the data obtained with BioCrowds including comfort
and stress, while in Column 4 we see the results of Original
BioCrowds execution.

Rows | Estimated in BioCrowds with BioCrowds
real life Comfort and Stress
1 7.5 1.89796084 2.18367544
2 7.6 8.857146 4.4897972
3 8.1 9.6938798 7.6734714
4 10 10.0204108 9

when in panic. Other concept we introduced into the model is com-
fort. This is, the tendency of agents to avoid getting too close to
others in normal life situations. This disperse the crowd and pro-
duces an homogeneous distribution of agents.We show comparisons
of BioCrowds with and without one or both of these concepts. We
also simulated the Hillsborough disaster and obtained comparisons
between our obtained densities and the ones of the real event. The
results show that the extended BioCrowds, including panic and
comfort is more adequate to simulate this real life event.

As future works in this area, we would like to adapt this model
to simulate crushing and trampling of crowds. Crushing happens
when a static crowd becomes so dense that the pressure in people
thorax unable them to breath. This is what happened in the Hills-
borough accident. Trampling happens in dynamic crowds, when
someone in a moving crowd falls and others, unaware of the fallen
person, step over. We believe this can be achieved with few changes
in our panic model.
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