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Abstract—This work presents a methodology which aims
to improve and automate the process of generating facial
animation for interactive applications. We propose an adaptive
and semiautomatic methodology, which allows to transfer facial
expressions from a face mesh to another. The model has three
main stages: rigging, expression transfer and animation, where
the output meshes can be used as key poses for blendshape-
based animation. The input of the model is a face mesh in
neutral pose and a set of face data that can be provided from
different sources, such as artist crafted meshes and motion
capture data. The model generates a set of blendshapes corre-
sponding to the input set, with minimum user intervention. We
opted to use a simple rig structure in order to provide a trivial
correspondence either with sparse facial feature points based
systems or dense geometric data supplied by RGBD based
systems. The rig structure can be refined on-the-fly to deal with
different input geometric data according to the need. The main
contribution of this work is an adaptive methodology which
aims to create facial animations with few user intervention
and capable or transferring expression details according to
the need and/or amount of input data.

Keywords-facial animation; facial rigging; expression trans-
fer

I. INTRODUCTION

In order to animate 3D face meshes, it is necessary to
establish control structures that relate their geometry (polyg-
onal mesh) and animation parameters (numerical description
of the movements). This process is called rigging. Consid-
ering the control structures that lead to mesh deformation,
we point two main approaches of facial rigging:

1) using blendshapes, i.e., a set of key poses (also called
morph targets) that can be combined by interpola-
tion with different weights and generates intermediary
poses. Usually, the key poses are created manually by
an animator using a modeling software. In this case,
the control structures are the key poses defined by the
animator. These key poses must be different enough
from each other in order to reach the space of all
the facial expressions we can do, by combining them.
The main advantages of this approach are: i) the full
animators control about the key poses, once they are
manually edited; ii) its simplicity of implementation;
and iii) the low computational cost. As cons, we can
cite i) the need of an artist to prepare each key pose for

every different character model; and ii) to determine
the amount of key poses are essential to generate all
the desired facial expressions.

2) using control structures (such as feature points,
bones, pseudo-muscles,etc), which are responsible by
the generation of the mesh deformation, according
with their constraints. Usually these structures are de-
fined taking in consideration a parametrization model
(such as MPEG-4 [1], FACS [2], etc). The main advan-
tage of this type of rigging is that it does not require
the modeling of key expressions. The animator instead
should associate the polygonal mesh to the control
structures. However, it continues to be a manual step
which is time consuming task. As cons, the animator
does not have total control over the mesh as it is
with the blendshapes, once this control is delegated
to the rig control structures. Computational cost is
given according to the deformation technique adopted
(such as Free Form Deformations [3], Radial Basis
Functions [4], [5], etc).

Usually, the rigging is made manually by the animators
and it is a time-consuming task. Some work concerning fa-
cial animation focus on expression transfer among different
face geometries. This is called expression cloning [5], [6] or
rigging by example [7], [8]. These work, however, require
pre-processing with substantial user intervention in order to
associate (register) the meshes. Also, these work use dense
correspondence (point cloud/mesh registration) of data from
the source to the target mesh. On the other hand, there are
some work that use simple control structures to animate the
faces [9], [10]. These work require less user intervention in
the preparation of the control structure, but the drawback
is the loss of details from the source face (because of the
simplified control structure).

Contribution. In this context, we propose an adaptive
facial expression transfer methodology which aims to create
facial animations with few user intervention (without pre-
processing) and capable of transferring expression details
according to the need and/or amount of input data. Our
approach differs from the state-of-the-art papers because it
uses a simplified control mask instead dense correspondence
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between the source and target meshes. This control mesh can
be refined on-the-fly in order to get more details and can
generate the animation from a set of blendshapes crafted by
an artist or by data provided by images and depth sensors.

II. RELATED WORK

Due to the advantages of high mesh control and low com-
putational cost, the use of blendshapes shows an effective
way to generate real-time facial animations. As consequence,
we can note that several state-of-the-art work have invested
in the use of them [11]–[13].

The simpler control structures that lead to mesh defor-
mation are the feature points (FPs), that usually are a set
of vertices of the face mesh semantically aligned with a
parametrization model, such as MPEG-4 Facial Animation
Standard [1] or FACS action units [14]. However, it is
necessary to assign for each mesh vertex what control points
influence them and how much (weights) they influence.
Approaches to handle this require manual intervention or
registration methods. Sanchez et al. [9] propose a geometry-
based solution to associate the mesh vertices to the control
structures. Moreover, instead of considering each feature
point independently as a control structure, such as in [10],
[15], they propose an approach in which a polygonal mesh
created using the MPEG-4 feature points is the surface that
control the deformations. Each triangle of this mesh is a
control structure that influence the other vertices of the
mesh, acting as a planar bone. Their technique reformulates
Surface Oriented Free Form Deformation (SOFFDs) to adapt
it specifically to face meshes.

Mattos et al. [16], [17] and Dutreve et al. [18] uses
a rig structure similar to ours using feature points-based
control. In [16], they describe a facial animation method
that uses real three-dimensional models of people, acquired
by a 3D scanner. The focus of the work is how to address
the correspondence between the scanned point-cloud and
the 3D face meshes. They proposed an alternative to the
dense correspondence computation by introducing the idea
of selecting a sparse set of corresponding points and setting
an initial triangulation refined through a subdivision process
that matches the intermediate points. Their approach uses
structural graph matching to automatically detect the initial
set of points, given a 3D face in which the landmarks are
previously selected.

The work of Li et al. [7] proposes a model to the
generation of a set of blendshapes to a neutral face mesh
from a set of example blendshapes created previously by an
artist. This approach alternates two steps of optimizations in
gradient space, in order to better transfer the expression from
the source to target face. It can be done iteratively in order
to achieve the desired level of refinement. But currently, the
algorithm is not fast enough to produce interactive rates and
it was the main reason we opted to explore the simplified
control mask in our method. In Weise et al. [19], Li’s

model is used in a pre-processing step using the user motion
captured data to generate the animations. In Li et al. [12], the
expression retargeting is done using Laplacian deformation,
using RGBD data with correctives on-the-fly.

There are other work that explore ways to automate the
association with the control structures, such as the work of
Orvalho [20], which automatically transfers a rig defined by
an artist to other face meshes. But we opted to explore an
approach similar to Sanchez [9], using a control mask, due
to three main reasons: i) it works in real-time; and ii) it
is still based on feature points displacements, which is an
appropriate approach to handle fast mapping of facial motion
capture data provided by Computer Vision algorithms, such
as provided by Faceware Live SDK1; and iii) it has minimal
user intervention.

III. METHODOLOGY

Figure 1 shows the overall architecture of this
model/framework. The model has 3 main stages, which
can work separately (using preprocessed inputs) or together,
providing a complete facial animation approach:

1) Rigging Model: this stage prepares any 3D face mesh
for animation. We propose a Generic Rig Setup and
a Semiautomatic Rigging methodology that generates
the rig structure. This model requires some user inter-
vention to setup the initial data.

2) Expression Transfer Model: this stage transfers the
expression data to any rigged face, generating a set
of deformed meshes according to the input. Currently
we support blendshape-based animation. The facial
expressions are generated as key poses, which can be
used directly or combined for the generation of the
animation frames. The Blendshape Generation module
is the responsible of transferring the expressions from
different sources to the input rigged faces. In this
work, we performed expression transfer coming from
two sources:

a) an Example Set (key poses already crafted by
an artist or edited using our Animation Control
GUI); and

b) masks provided by some PDA (Performance-
driven Animation) model compliant with our
Generic Rig approach and generates the Control
Masks Displacements needed as input to the
Blendshape Generation model.

3) Animation Model: this model allows to create anima-
tion sequences using blendshapes. We can specify the
animation timeline by scripts either manually edited
or provided by other input source. Optionally, we can
create additional blendshapes using a GUI, providing
a way that allows the user to perform manual adjusts
on generated expressions.

1Live Driver http://www.image-metrics.com/livedriver
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Figure 1: Overall Architecture of the proposed model, showing our 3 main stages/modules.

In order to rig a 3D face mesh, the Rigging model (Sec-
tion IV) requires some input data and user setup procedures,
as following:

1) at least one 3D face mesh in neutral pose;
2) to configure the Generic Rig Setup , it is necessary to

inform (via script or graphical interface) the vertices
that will serve as feature points to control the defor-
mations. Optionally, we can provide other data that
will personalize the control structure (explained with
details in Sections IV-A).

The output is a Rigged Face with the vertex associations,
as described in Section IV and the RBF regions of influence.

To generate a set of blendshapes using the Expression
Transfer model (Section V), the input necessary is:

1) at least one Rigged Face (3D face mesh + rig data
files, describing the Generic Rig Setup for such 3D
mesh);

2) a set of Control Mask Displacements data, which can
be provided by different input sources (explained with
details in Section V-A);

3) optionally, if we want to refine the Control Mask,
we must to provide the number of subdivisions and
the triangles/regions of the mask to be subdivided
(explained with details in Section V-A1).

The output is a set of 3D face meshes deformed according
to the provided Control Masks Displacements, which can
be used as key poses to a blendshape-based animation
model. We called this set of meshes just as Blendshapes,
once our Animation model is blendshape-based. To generate
animations, the input necessary is the set of blendshapes
and a script describing the timeline (explained with details
in Section VI).

IV. RIGGING MODEL

In order to animate 3D face meshes, it is necessary to
establish control structures that relate their geometry (polyg-
onal mesh) and animation parameters (numerical description
of the movements).This process is a critical step in the
animation of faces for Computer Graphics application, since
it provides to a face mesh the control structures that allow
its animation. Usually, the rigging is made manually by the
animators and it is a time-consuming task.

Our approach proposes a simple rig structure in order to
provide a trivial correspondence either with sparse facial
feature points based systems or dense geometric data sup-
plied by RGBD based systems, we called Generic Rig Setup.
Using the Generic Rig Setup, the Semiautomatic Rigging
module creates rigged faces with minimum user intervention.

A. Generic Rig Setup

As we mentioned, the Generic Rig Setup was planned to
be adaptive in order to deal with different input geometric
data according to the need. It is composed by the Control
Mask and its rig definitions, explained in sequence. Our
control structure is inspired by the one from Planar Bones
work [9], we called Control Mask. In [9], it is a triangle
mesh in which the vertices are the feature points specified by
the MPEG-4 Facial Animation standard [1]. For our mask,
we added 20 feature points provided by Faceware Live2,
intending the integration with the Persona model [21] which
uses this development toolkit. Figure 2 shows the Control
Mask.

The mask has 84 vertices (feature points) and 136 trian-
gles.To setup a Control Mask we first have to assign the
vertices. Currently, we are doing this step manually but our
intention is to integrate with an automated model as future

2http://facewaretech.com/products/software/realtime-live/
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MPEG-4 FP mask
(64 vertices, 104 triangles)

Live Driver tracked points

Our new control mask
(84 vertices, 136 triangles)

Figure 2: Structure of the Control Mask, inspired
by [9],which is MPEG-4 compliant (on top of corner left)
and the tracked feature points supplied by the Faceware Live
development toolkit (on bottom of the corner left).

work (this is the reason the model is not fully automatic).
This is the only manual step required to the Semiautomatic
Rigging model create a rigged face.

As we explain later in Section V-A3, our approach to
deform the meshes is done using Radial Basis Functions.
To deform a mesh using RBFs, we need to define the set
of control points that will lead the displacements, creating
their regions of influence (ROIs). In our approach, each
triangle of the Control Mask define a RBF that deform
the vertices associated with it. The control points of each
RBF are the vertices from the control triangle and from its
adjacent triangles (the triangles which share vertices with the
control triangle). Figure 3 shows the generic ROI structure
we adopted to this work.

Figure 3: Some RBF ROIs (orange triangles) defined by our
model for each selected triangle (red triangles).

Notice that the influence zones can overlap, i.e., most
of the triangles of the control mesh belongs to more than
one ROI. It means that one FP can influence vertices from
different patches. However, each vertice is influenced by
just one ROI. We opted to overlap the influence zones in
order to produce smoother deformations. This generic ROI
structure is computed by the Semiautomatic Rigging model,
as explained in Section IV-B. Optionally, we can edit ROIs
to make adjusts, if we need. Thus, the Generic Rig Setup is
composed by the Control Mask and the generic ROI structure
information (we also mention this as rig definitions).

B. Semiautomatic Rigging

The Semiautomatic Rigging methodology is responsible to
generate rigged faces with minimum user intervention. The
overall architecture of our model is showed in Figure 4. As
input, the user must provide at least one 3D face mesh in
neutral pose, as well as the Generic Rig Setup. As output, the
model generates a Rigged Face with the vertex associations
and the final RBF ROIs configuration.

Defining the Influence 
Zones

3D Face 
Mesh(es)

Rigged
Face(s)

Assigning  Vertices to the 
Control Mask

Semiautomatic Rigging

Generic Rig 
Setup

(Control Mask and 
Rig Definitions)

Figure 4: Architecture of the Semiautomatic Rigging model.

The entire rigging pipeline is described in the next sec-
tions.

1) Defining the Influence Zones: As described in Sec-
tion IV-A, the generic ROI structure is composed by a
Control Mask triangle and its adjacent neighbors. Figure 5 a)
illustrates a ROI of the triangle in red, which considers also
the vertices from the triangles in orange, that is automatically
computed.

(a) Example of a RBF re-
gion of influence

(b) The labeled lip re-
gions to separate upper
and lower lips.

Figure 5: The RBF influence regions structure.

However, the generic ROIs can not work well with mouth
and eyelid regions. Depending of the topology of the 3D
mesh, we can generate artifacts on deformation. As an
alternative strategy to the use of the texture masks proposed

1414



by Sanchez et al. [9] to overcome this problem, our model
allows to edit ROIs according to the need.

For eyes and mouth regions, we suggest to edit regions
for upper and lower eyelids and lips on the control mesh,
which are taken into account at the moment we obtain the
adjacent triangles to create the ROIs. Figure 5 b) shows
the triangles labeled as upper and lower lips. Deformation
using RBFs using our ROI structure is explained in details
in Section V-A3.

The Defining the Influence Zones stage basically receives
the Generic Rig Setup, adjusts the ROIs according to user
input and computes automatically the other ROIs, if needed.

2) Assigning Vertices to the Control Mask: As we men-
tioned previously, the vertices of the Control Mask must be
provided by the user. In our prototype, we allow the user to
select the vertices either by script or GUI. Then, based on the
Generic Rig Setup, the generic ROI structure is computed.

Now it is necessary to associate the vertices of the 3D
face mesh with the Control Mask. The Assigning vertices
to the Control Mask stage is important to assure the quality
of deformations. Each vertex of the target neutral mesh is
associated to one triangle of the control mask, considering
the Generic Rig Setup (Section IV-A).

As in [9], the triangle mask is the main rig unit. Differ-
ently from their approach, our association is fully automated.
First, we raycast the mesh vertex normals towards the
animation control mask. When there is an intersection, we
keep the closer intercepted triangle, if the angle between it
and the normal of the intercepted triangle is less than 90◦

(to avoid, for example, to associate lower and upper lips
wrongly when there is not labeled regions).

If the vertex does not intercept any triangle or the angle is
bigger than 90◦, we associate it with the triangle which has
the vertex with the smallest geodesic path (inspired by [22]).
Geodesic path is the shortest path between two points on a
surface [22]. Considering the face mesh as a graph, we used
the BSF (Breadth Seach First) algorithm [23] for computing
the geodesic path from the mesh vertices to the Control
Mask FPs. We just considered the number of the edges
to represent the path, but more accurate solution should
be explored as future work [24], [25]. Figure 6 illustrates
the geodesic path between vertices and FPs, showing that
conectivity helps to find the best association for the vertices.

The association step is required just once to each new
mesh we want to animate.

V. EXPRESSION TRANSFER MODEL

The Expression Transfer Model transfers the expression
data to any rigged face, generating a set of deformed meshes
according to the input. The facial expressions (which also
can play the role of microexpressions) are generated as
key poses, which can be used directly or combined as
blendshapes. In this work, we performed expression transfer
using data coming from two different kind of sources:

FP 2.3

FP 2.2

Figure 6: Ilustration of the geodesic path to stablish the
correct association between vertices and FPs. Consider the
selected vertex (in pink) and the two FPs (3.1 and 3.2,
named before MPEG-4). If the mesh is in neutral pose, FPs
2.2(bottom of superior inner lip) and 2.3 (top of inferior
inner lip) usually are placed very close (Euclidian distance).
So, if we consider just the Euclidian distance between the
selected vertex and these FPs, it can be errouneously asso-
ciated with the 2.2. However, if we consider the conectivity
using geodesic distance, we clearly see that FP 2.3 is the
correct one.

1) an Example Set (key poses already crafted by an artist
or edited using our Animation Control GUI); and

2) masks provided by PDA models which is fully com-
pliant with our Generic Rig approach and generates
the Control Masks Displacements needed as input to
the Blendshape Generation model.

The Blendshape Generation module is the responsible of
transferring the expressions from different sources to the
input rigged faces, as we describe in the next section.

A. Blendshape Generation

Figure 7 shows the architecture of the Blendshape Gen-
eration module. In the current stage of this work, the
Expression Transfer Model always generate, as output, a set
of blendshapes (deformed meshes). As we chose to work
with blendshape-based animation, our Animation Module
just performs the blendshape interpolation to create the final
frames. Each stage from Figure 7 is explained in the next
sections.

1) Adaptive Subdivsion: With the objective of obtaining
more details from the source mesh, we propose an Adaptive
Subdivision stage, inspired by Mattos et al. work [17]. As
mentioned previously, we can point two main reasons to
propose this approach:

1) to deal with different input source data coming from
different acquisition systems, such as feature points,
point clouds and other meshes, taking advantage of
using different amount of information provided by
them;

2) to avoid the use of all dense data provided by RGBD
systems or meshes which topologies are not compati-
ble with real-time applications.

It is import to say that, at the current stage of this work,
we are not working with RGBD data. For now, we used
this methodology only in 3D meshes, but it also possible to
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Figure 7: Architecture of the Blendshape Generation model.

use point clouds, if the Control Mask feature points were
accordingly labeled.

The Adaptive Subdivision is performed using the Control
Mask. The user must to specify the number of subdivisions
and optionally the triangles he/she wants to be subdivided.
This data is called Adaptive Control Setup. If the user
does not configure this setup, there are no subdivision and
the original Control Mask is used in the another stages
of the pipeline. Also, if user specifies only the number
of subdivisions, all triangles of the Control Mask will be
subdivided, as default.

This stage works by creating new triangles from the initial
ones and adding the new vertices as control points to the
RBFs ROIs of these triangles. We can subdivide recursively
the new triangles according to the need, i.e., the number
of subdivisions defined by the user. Figure 8 illustrates the
subdivision process. The new vertices from the face mesh are
chosen according to their Euclidean distance to the computed
triangle centroid located on control mask. Figure 9 illustrates
a Control Mask after one and two recursive subdivisions.

By adding more triangles to the control mask, we can pre-
serve more details from the Example Set (if it is composed
by 3D meshes or point clouds).

2) Mapping the Input Source Set to Control Mask Dis-
placements, Displacements scaling and Displacing the Con-
trol Mask FPs: The next three steps of the Blendshape
Generation model make the mapping between the input
Control Mask Displacements and the target mesh (the 3D
face mesh which the expressions will be transferred):

• Mapping the Input Source Set to Control Mask Dis-

FPi

FPj
FPk

vm

vn vo

c

FPi

FPj
FPk

FPc

vn vo

Triangle tijc
Triangle tikc

Triangle tjkc

a) b) c)
FPi

FPj
FPk

Triangle tijk

Figure 8: Steps of mask subdivision: a) Control Mask
triangle composed by the FPs i, j and k; b) the centroid c of
the triangle is computed; c) for each vertice v associated to
the triangle, it is computed the Euclidian distance from v to
c, and the closer vertice is chosen (notice that the computed
centroid is a point located on the triangle plane, and not a
vertex of the face mesh).

Figure 9: Example of Control Mask subdivision. From left
to right: original, after 1 and 2 subdivisions.

placements: considering that the Example Set has
vertex correspondence, so we have a set B =
{b0, b1, ...bn} of n control masks (b0 is the mesh in
neutral pose). For each bi, we get the displacement

1616



vector ~di from bi to b0 (~di = bi − b0).
• Displacements scaling: in this step, we scale the set of

displacements D = {d0, d1, ...dn} using the MPEG-4
FAPU of the source face sFAPU . These key distances
must be computed to each face mesh, and it assures a
coherent transference of the FPs displacements among
different face topologies. The displacement is divided
by FAPU, according to the FP is corresponding to di,
as Equation 1 shows:

~sdi = ~di/sFAPU. (1)

• Displacing the Control Mask FPs: using FAPU scaling,
it is trivial to displace the vertices of the target Control
Mask, just rescaling to its FAPU. In this stage, the
scaled displacement ~sdi is now scaled to the FAPU
of the target mesh tFAPU . Then, the new of the FPi

is given by Equation 2:

b′i = b0 + ~sditFAPU. (2)

3) Deformation of the target mesh: The last stage of
the model is the Deformation of the target mesh, which
deforms the target mesh and generates the blendshapes with
the input expressions. In this work, we used the approach
developed by Noh et al. [4] (which proposes the animation
of faces using RBFs), and also the methodology presented
by Dutreve et al. [10] (who uses the RBFs to map the
real and virtual parameter spaces). In both articles, the
multi-quadratic RBF funcion is used. Each RBF ROI is
defined considering the triangles neighborhood as described
previously (Figure 10 shows an example of a RBF ROI of
a rigged face).

Let be S = (~s1, ~s2, . . . , ~sN ) the source FP set (corre-
sponding to the neutral face) of a ROI. The first step is to
train the RBF using this set. Then, for each target FP set
(corresponding to the displaced FPs) T = (~t1,~t2, . . . ,~tN ),
the set of weights W = (w1, w2, . . . , wN ) is obtained so
that, when applied to the multi-quadratics RBF F (~sj) of
all the other points j of the ROI, will determine their new
position (~tj = F (~sj)). Each one of these steps is briefly
described below [10]:

• Training: to train the RBF, it is necessary to determine
the matrix H , which contains the multi-quadrics func-
tion applied to all pairs of elements of S, according to
the Equation 3

Hij = h(‖~sj − ~si‖) =
√

(‖~sj − ~si‖)2 + sc2j , (3)

where sc2j = minj 6=i(‖~sj−~si‖) is a stiffness coefficient
sugested by Eck [26] to smooth the deformations where
the FPs are sparse and to reinforce where they are very
close.

Figure 10: Example of a RBF ROI, corresponding to the
triangle in red. Yellow points are the vertices associated to
the triangle. The orange triangles are the neighborhood of
the red triangle, which compose its ROI. The yellow points
are influenced by the red points.

Animation Control

Script Processor

Animation
Scripts

Blendshapes
Animation 

Frames
Animation 

Frames
Animation 

Frames

Example Set
(Artist-crafted 
blendshapes)

GUI

Figure 11: Overview of the Animation Control module.

• Obtaining the weight vector: let be Tx =
(tx1 , t

x
2 , . . . , t

x
N ) the set with the new positions of the

FPs (txj is the x coordinate of the ~tj), we obtain the
weight vector for the x axis (and also for the y and z
in the same way), as shown in the Equation 4:

Tx = H ·WxWx = H−1Tx (4)

• Obtaining the new positions: once the RBF has been
trained for each axis, the new position for each point ~tj
of each ~sj of the ROI is obtained through the function
F (~sj), as shown in the Equation 5:

~tj = F (~sj) =
N∑
i=1

~wi · h(‖~sj − ~si‖) (5)

VI. ANIMATION MODEL

The Animation Model is the last stage of our animation
model. Overal architecture of the Animation Control is
showed in Figure 11. We can specify the animation timeline
by Animation Scripts either manually edited or provided by
other input sources (such as Braun [21]). Optionally, we can
create additional blendshapes using a GUI, providing a way
that allows the user to perform manual adjusts on generated
expressions.
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Basically, these scripts inform the durations of each
expression and the blendshapes weights to compose it. So,
each line of the script contains the duration followed by a
stream of weights. We perform linear interpolation between
the expressions, according to the specified durations. The
scripts are processed by the Script Processor stage, which
interpolates the blendshapes and generate the Animation
Frames.

Finally, we added a simple GUI that allows the user to
make adjusts on the generated blendshapes or just create
new key poses combining blendshape weights and saving
them to be used for generating animations or being part of
an Example Set (transferred to another face meshes using
the Expression Transfer model.

VII. RESULTS

The prototype was developed using the C++ program-
ming language and OpenGL/Glut as graphic API (Ap-
plication Programming Interface). Generally speaking, the
prototype provides a GUI for the 5 kinds of user intervention
the framework requests (see the user faces illustrated in
Figure 12) by implementing two pieces of software (we
called Rigging and Expression Transfer (R&T) and Animator
tools):

(a) Edit/Debug Mode for
the Control Mask

(b) Edit/Debug Mode for
the RBF ROIs

(c) Edit/Debug Mode
for the Adaptive Control
Setup

(d) Edit/Debug Mode
for the Adaptive Control
Setup (with another face)

Figure 13: Four screenshots showing the prototype GUI for
Rigging and Expression Transfer.

1) for the Generic Rig Setup configuration, as explained
in Section IV (illustrated in Figure 13 a) and b)),
the R&T GUI provides an interface for clicking on
the vertices of the mesh that we want to define as
the control mask feature points and also to configure
the ROIs, if the user wants to use personalized ROIs,
as discussed in Section IV-A. The user can add or
delete triangles of a neighborhood and also label
semantic regions (for example, the upper and bottom
lips regions showed previously in Figure 5 b));

Figure 14: Screenshot showing the prototype GUI for blend-
shape manual composition and generation of the animations
(by loading scripts).

2) for the Adaptive Control Setup configuration (this is
an optional step, as described in Section V (illustrated
in Figure 13 c) and d)). This is also done using the
R&T GUI, where the user can specify the number
of subdivisions and optionally select the triangles
(specific areas) he/she wants to be subdivided;

3) for defining the input data source to be used by the
Blendshape Generation module, wich can be either a
set of existing blendshapes with vertex correspondence
(Example Set);

4) for loading the Animation Scripts, using the Animator
GUI;

5) for composing and adjust blendshapes (illustrated in
Figure 14), also described in Section VI, through a
slider-based interface, where the user can combine a
set of key poses and save both the mesh and weights
(for using in within the animation scripts) into the
Animator GUI.

Using the R&T and Animator tools, we present some
obtained results from our model.

A. Transferring Expressions

The Expression Transfer is the methodology we proposed
to create personalized facial expressions to an arbitrary target
3D face mesh. To achieve this goal using our prototype, we
should perform the following steps:

1) To perform the rigging of both source and target face
meshes. The user should specify the 84 FPs according
to the Control Mask topology presented in Section IV.
Once specified the Control Mask vertices, the regions
of influence can be optionally redefined (by selecting
the neighborhood of a specific triangle). If the user
does not redefine the ROIs, the standard ROI for
each triangle is its adjacent neighbors (as described
in Section IV). After this, it is performed the mapping
of all the other vertices of the input 3D face mesh,
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Figure 12: Scheme showing the covering of the visual tools into the proposed model, considering the required user intervention
(enumerated from 1 to 5)

described in Section IV-B as the Assigning Vertices to
the Control Mask step. Then, all these data are saved
and the input 3D face mesh is rigged; and

2) To generate the blendshapes (as result of the Expres-
sion Transfer). To achive this, the user should specify
a Rigged Face, the input data source (mask displace-
ments or the blendshapes example set) and optionally
the Adaptive Control Setup, defining the number of
subdivisions and the triangles to be subdivided. Then,
a set of blendshapes with the expressions from the
input data source transferred to the target face are
generated. Both source and target face meshes must
be rigged previously. Figure 15 illustrates the results
obtained by the transferring of an 8 facial expressions
set (generated previously using some FaceGen’s basic
expressions).

Figures 16 to 19 show some results obtained by the
Expression Transfer model using the FaceGen’s meshes
as being the input Example Set using target meshes with
different topologies and our default Control Mask, without
subdivisions.

Visual results shows the viability of the proposed method-
ology. By visual inspection, we can notice that:

1) in general, the Control Mask without subdivisions
works “well”(in the sense of produce visually satis-
factory results) for the 3D meshes we tested. These
3D models are designed to be used in real-time appli-
cations, even the high-polygonal set, so these meshes
does not present small wrinkles, bulges and furrows
which could demand an special treatment

Source Expression Set Retargeted Expressions

Source Neutral Mesh Target Neutral Mesh

Figure 15: Some results obtained using our method. From
the example set (left) and the target neutral face (central
face at right), our model generates the retargeted expressions
(faces surrounding the target neutral face) by deforming the
target neutral face.

2) some results (such as Figures 17 and 19) present some
artifacts in the chin contour area. This occurs because
the vertices closer to the mask area should be also
associated to the closer mask triangle. To overcome
this problem is necessary to stablish a treshold, which
could be, for example, supplied by using the geodesic
distance (considering connectivity to chose the contour
nearby vertices).

We also got some results from exploring the Adaptive
Subdivision module, when using one, two and four recursive
subdivisions. Figure 20 plots the normalized distance errors
of generated mesh vertices from transferring a expression
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Figure 16: Some results of our model. The first row presents the expressions from the example set (neutral face and the set
of facial expressions inside the red box). Also, user must supply target face meshes in neutral pose (faces inside the blue
box). Rows/lines 2 to 4 show generated blendshapes for four different target faces.

Figure 17: A close of the ”kiss mouth” expression transfer
among different face topologies. The first face is the source,
the three remaining are the resulting meshes.

using the same mesh as source and target. To compute
these errors, we calculated the difference from each vertex
of the generated mesh to the correspondent vertex on the
source mesh. Then, we scaled these differences by the
biggest difference found. It was done just for helping in
a preliminary visual analysis. We considered to compare the
meshes using some point-cloud comparing metric, such as
the Hausdorff Distance [27], but preliminary tests showed no

Figure 18: A close of the disgust expression transfer among
different face topologies. The first face is the source, the
three remaining are the resulting meshes.

significant differences among the meshes considering all the
face mesh vertices. As future work, we intend to investigate
a better metric to perform a reliable quantitative evaluation.

We can notice that, increasing the number of subdivisions,
we can preserve more details from the source mesh, and also
our deformation using RBFs still producing smooth surfaces.
This indicates that our adopted methodology for subdivision
using our Generig Rigging Setup (control mask and ROIs)
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Figure 19: A close of the fear expression transfer among
different face topologies. The first face is the source, the
three remaining are the resulting meshes.

0.0

0.02

0. 2

1.0

Normalized 
distance error
per vertex 

Number of subdivisions

0 1 2 4

Figure 20: Difference of each correspondent vertex distances
from source to the generated mesh using zero, one, two and
four recursive subdivisions on each triangle of the mesh.

definitions is suitable for expression transfer with different
levels of detail.

If the user wants to generate an animation using the
generated blendshapes, he/she should specify an Animation
Script to the Animator Tool. Alternatively, a script with a
set of 3D face meshes (with vertex correspondence) can be
selected and the Animator Tool supplies a GUI with sliders
to manually combine and generate new key poses.

Generally speaking, we can see that the results show the
viability of the proposed methodology, and the refinement of
the control mask contributes to preserve more details from
the source mesh. As immediate future work, we intend to
explore ways to improve the mask refinement step, providing
clues of the best triangles or regions of the mask should be
subdivided according to the source expression.

VIII. FINAL REMARKS

This work presented a methodology for generating
blendshape-based facial animation in arbitrary 3D face
meshes. Our method is capable of transferring the main
facial features of the expression performed by an individual
through a framework which deals with a simple but adaptive
control structure and different input data sources.

Recalling the main contributions of this work, this present
work provided:

1) A semiautomatic model for rigging 3D faces, based on
a flexible and adaptive rig structure we called Control

Mask. In despite of models which perform dense
correspondence among source and target facial data,
which can not be done in real-time, we proposed an
adaptive rig structure which can be refined according
to the user/application’s need. Our control mask was
designed based on two premises:

a) to keep feature points with a semantics as simple
as possible for human understanding (for ex-
ample, tip of the nose), based on MPEG-4 FA
standard, to ease the process of rigging by the
users

b) to provide a trivial correspondence with the state-
of-the-art real-time facial motion capture tools,
such as the Faceware Live3.

2) A model that can generate blendshapes from different
input sources, such as another meshes or PDA data:
as mentioned previously, the idea of adaptivity to dif-
ferent input sources was always present in the model’s
design, considering to reproduce facial expressions
either crafted by artists or captured by users.

Concerning to our proposed Rigging Model, we can state
that, although it does not present a noticeable novelty
compared to the state-of-the art, the results obtained by
the Semiautomatic Rigging module produces a robust rigged
faces with few user intervention. The proposed methodology
works with both low and high polygonal 3D mesh topolo-
gies (designed for real-time applications) and with different
representation languages (for example, with our cartoon-like
blue ogre).

The proposed RBFs ROIs scheme was designed trying to
simplify the rigging process, considering the Control Mask
FPs topology as the starting point. The possibility of labeling
semantic regions should be more deeply investigated, in
order to suggest if there is an “optimal ROI topology” (such
as in). Another utility for the semantic regions can be the
creation of semantic layers, as in Kholgade et al. [28],
where the performance of the captured actor is decomposed
in 3 different layers (emotion, speech and blink) activating
specific facial regions.

As future work, we can cite:

• Full automation of the Rigging Model, providing an
automatic FP estimation at the beginning of the rig-
ging process, aiming to supply the FPs coordinates
of an arbitrary input face mesh, using some state-of-
the-art automatic landmark detection of 3D meshes
technique [29].

• Study and proposition of a methodology aiming to
improve our FAPU-based mapping. We observed that
this mapping, based on normalizing the facial motion
displacement vector by the key-distances proposed by
the MPEG-4 FA standard should be improved in the

3http://facewaretech.com/products/software/realtime-live/
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sense of trying to find a way to fit better the displace-
ments across different face topologies. We notice that
although the traditional mapping using RBFs, used in
several work [6], [18], [20], as well as our methodology,
can generate robust results, but it sometimes seems
to conceal the target face features. We should start
by performing a comparative study among mapping
techniques, and then try to propose a model aiming
to personalize the target face without uncharacterizing
this.

• Study and proposition of metrics for detecting the
regions of the which more contributes to the expressive-
ness, in order to select automatically the control mask
triangles to be subdivided. We started a preliminary
study using the modified Hausdorff Distance [27] for
face regions, but we did not obtain results to be showed
in the scope of this work;

• Adding an expression wrinkles generation layer, to
allow the expression personalization considering the
smaller skin deformations, according to the need of the
application (but always focusing on real-time deforma-
tion).
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