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Abstract—Pedestrian segmentation is a problem of consider-
able practical interest. In this work we propose a shape-based
model for pedestrian segmentation. Our model is initialized by
a bounding-box of the person under analysis, which can be
estimated by a person detector. The basic idea of the proposed
model is to create a graph around the detected person, based
on a scale invariant shape model and the estimated contour
is given by a path in the graph that maximizes certain
boundary energy. In practice, such energy should be large in
the boundary between the foreground/background. To cope
with pose/shape variations, the final estimate is given by a
selection scheme, which takes into consideration the individual
estimate given by different generated graphs. Experimental
results indicated that the proposed technique works well in
non trivial images, with comparable accuracy to the state-of-
the-art.
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I. INTRODUCTION

The automatic segmentation of human subjects in static

images is still a challenge, mainly due to the influence

of numerous real-world factors such as shading, image

noise, occlusions, background clutter as well as other factors

associated with the dynamics of the human being (great

variability of poses, shapes, clothes, etc). Pedestrian seg-

mentation can be considered a special case of person/human

segmentation. As related in the work of Dollar et al. [1],

people analysis, by computer vision techniques, makes the

use of datasets containing people in unconstrained pose

in a wide range of domains whilst the area of pedestrian

analysis uses datasets containing upright people (standing or

walking), typically viewed from more restricted viewpoints.

Pedestrian segmentation can be used in several applica-

tions, including robotics, surveillance systems, driver assis-

tance models, among others. Farenzena and his group [2],

for example, assume the presence of the silhouette of an

individual, obtained for each person by inferring over the

STEL generative model [3], to extract appearance features

applied in a person re-identification problem.

In this work we focus on the case where an external pedes-

trian detector is used to provide regions of interest to our

segmentation model (i.e., bounding boxes, as in [4], [5], [6],

[7], [8], which can be estimated by a person detector [9]). In

a nutshell, the basic idea of the proposed model is to create

structured graphs around the detected person (with different

shapes, in order to deal with pose/shape variations), then

defining the contour by a path in one of these graphs, which

is given by a selection scheme.

The main contributions of the proposed model is an

automatic and scale invariant approach to estimate pedestrian

contours in still images, proposed to be robust to occlusion,

shape/pose variations, as well as to cope with pedestrians

captured by different views (i.e., frontal/back foot closed,

rightwards feet open, etc.). In addition, the proposed model

is executed without appearance cues (e.g., color or texture-

based features) as most state-of-the-art models do. Such

characteristic could be taken into consideration when color

cues are missed or weakened (e.g., at night conditions or

when infrared/thermal cameras are employed [10]).

II. RELATED WORK

Numerous approaches have been proposed for pedestrian

segmentation in the last years, employing global segmen-

tation [11], [4], [5] or part-based schemes [6], [7], [8].

Gao et al. [11] presented a pedestrian detector approach

exploring the Local Segmentation Self-Similarity (LSSS)

descriptor. The shape segmentation is the base of their work.

To attain satisfactory pedestrian contour, they employ a

strategy using color features in the Lab colorspace, which

is adopted from [12]. Firstly, a saliency map is obtained

by a histogram based contrast method (HC) which integrate

spatial relationships into region level contrast computation,

then GrabCut [13] is applied to refine the segmentation result

initially obtained by thresholding the saliency map. Flohr

and Gavrial [4] presented an iterative EM-like framework

(Expectation-Maximization-like) for accurate pedestrian seg-

mentation, combining generative shape models and multi-

ple data cues. In the initialization phase, pedestrian shape

exemplars are obtained manually and processed in order

to obtain 12 clusters. In the segmentation step, EM-like

framework is proposed. In E-step, a Conditional Random

Field formulation is used combining color, texture and

disparity cues (when given). Active Shape Model is used

in M-step and then EM process iteratively.

Li et al. [5] presented an approach to segment pedestrians

in still images, combining shape and appearance cues. A

hierarchical shape matching is employed to extract pedes-

trian silhouette and skeleton (transferred from the template,
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learned in a previous stage, to the image), used to refine

the segmentation via Graph Cuts. Head-torso detections and

parsing are applied to fine tuning the initial shape matching.

Eslami and Williams [6] extend the Shape Boltzmann Ma-

chine [14] model (SBM), applied for the task of modeling

binary shape images, to account for the object’s parts. Their

Multinomial SBM is combined with an appearance model

to form a fully generative model of images of objects.

Parts-based object segmentations are obtained by performing

probabilistic inference in the model.

The work presented by Bo and Fowlkes [7] described

a model for pedestrian parsing based on his shape. This

technique assembles candidate parts from an oversegmen-

tation of the image and matches them to a library of

exemplars. Authors use a hierarchical decomposition into

a variable number of parts and computes scores on partial

matching in order to prune the search space of candidate

segment. In addition, color and texture histograms are used

to capture the appearance of specific body parts. Luo et

al. [8] proposed a Deep Decompositional Network (DDN),

using HOG features [9] as input, for parsing pedestrian

images into semantic regions, such as hair, head, body, arms,

and legs. They argue that DDN can jointly estimate occluded

regions and segment body parts by stacking three types of

hidden layers: occlusion estimation layers, completion layers

and decomposition layers.

III. THE PROPOSED MODEL

The main idea of the proposed model is to create a

directed weighted graph around the detected person, based

on a scale invariant shape model (i.e., the graph can be

resized according to the height of the detected person,

which is derived from his/her bounding-box size), and to

find a path in the graph that maximizes certain boundary

energy, describing the person’s contour. This formulation

was derived from our previous work [15], proposed for

the problem of head-shoulder human contour estimation

(considering people captured in frontal poses, initialized by

a face detector and assuming one single omega-like shape).

We propose to extend the original work [15] to deal with the

full human body (more specifically, pedestrian figures). The

main differences from our previous work are related to the

shape model generation (different shape models are learned),

the initialization procedure (which is bounding-box based),

the way the graph is built (considering the full body) and

the way the final segmentation is obtained (using a selection

scheme), as described next.

The proposed bounding-box based initialization method

enables pedestrian segmentation when the usage of face

detectors are usually considered impracticable (e.g., when

low resolution images are employed and many facial features

are missed, making difficult its detection, or when the object

of interest is viewed from the back). In addition, the usage of

different learned shapes combined with a selection scheme

provides an efficient way to deal with a wide variation in

shapes and poses, as well as to give a initial guess of the

2D pedestrian’s pose/orientation.

A. Shape Model Generation

In this work we use a shape model to guide the compu-

tation of the best path in the graph. Next, we describe how

the pedestrian shape model is generated as well as how the

segmentation is performed.

1) Learning Dataset: The shape model of the pedestrian

is generated based on manual annotations associated to the

adopted dataset. The exemplars from the walking actions

in the HumanEVA dataset [16], used in the work of Bo

and Fowlkes [7]1, are defined in the proposed model as

training data. It contains a total of 937 manually segmented

exemplars from 4 individuals into the 6 body parts, captured

by 8 different viewpoints, providing a range of people’s

shape, image resolution, poses and occlusions problems.

2) Learning the Pedestrian Shape Model: As we are

not interested in segmenting the individual body parts, the

training images are initially labeled as foreground and back-

ground. Then, images are manually grouped into 9 classes

c, as follows: ci (for i = 1 to 4) representing pedestrians

oriented to the left; c5 representing the frontal/back view;

and ci (for i = 6 to 9) representing pedestrians oriented

to the right. Images from the left view classes are flipped

in the y axis (vertical), aiming to increase the number of

samples and to deal with small angle orientations on the

image plane, and added to the respective right view class

(and vice versa - generating, at the end, the same shape for

each left/right class, but rotated in the vertical axis). Such

flipping procedure is done for the frontal/back view class,

but in this case the flipped images are added in the same

class. In a second stage we compute, for each class, the

average person’s height μci (related to the height hp of each

person, derived from its bounding-box). For simplicity, the

rest of the shape model generation is described considering

the c5 class (the procedure is the same for the others).

The region of each person is represented by a binary

image (Fig. 1(a)), limited by a bounding-box, smoothed with

a Gaussian filter (to deal with inaccuracies coming from the

manual annotation) and resized by a factor fl = μc5/hp.

The head position Hp of each person (illustrated in

Fig. 1(a) by a red cross) is estimated by projecting the pixels

of its binary image on the horizontal axis and retrieving the

point with maximum value as x coordinate and its respective

projected value as y coordinate (adjusted to consider the

origin of the Cartesian plane in the upper left corner of

the image). The head position is estimated considering only

the upper body region of the binary image (illustrated in

Fig. 1(a) by a dotted line), defined experimentally as the

top half region of the bounding-box. The estimated head

1http://vision.ics.uci.edu/datasets
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positions are then used to compute the following reference

values (used to align the final shape model to the image

under analysis, detailed in Sec. III-B): Hμ and Hσ (each

one is a 2D vector composed by x and y values, normalized

by μc5 ), related to the average head position and standard

deviation.

The resized images are then projected into a plane

(aligned by Hp), accumulating the value of each pixel

and generating the initial shape model S0, as illustrated in

Fig. 1(b). The white dot in the top of Fig. 1(b) represents

the reference point Rs, which will be used to align the final

shape model to the bounding-box of the detected person in

the image under analysis. We defined Rsy = Hμy
hs (where

hs is the height of S0, derived from the projected pixels

interval), and Rsx is defined by the average x coordinate of

those pixels (with highest value) in S0 at y = Rsy location.

The initial shape model S0 is then thresholded through

visual inspection. The thresholded image (Fig. 1(c)) is then

used to obtain what we call the “average” pedestrian’s body

contour Bf , defined by the boundary of the thresholded

image, as shown in Fig. 1(d), which is used to create the final

shape model Sf as well as to guide the graph generation.

The final shape model Sf (Fig. 1(f)) is computed using a

Gaussian function, as defined on Eq. 1.

Sf (x, y) = e
−Dt(x,y)2

(τ1μc)2 , (1)

where x, y are the spatial coordinates of each pixel, Dt

is the Distance Transform (Fig. 1(e)) computed using Bf

and the scale factor of the Gaussian is given by τ1μc (set

based on experiments2). The shape model can be viewed as a

prior confidence map on the location of the pedestrian’s body

contour, and it is combined with image data to obtain the

final contour, as explained next. For the sake of illustration,

Fig. 1(g-j) shows the generated average contours for the left

view classes (or for the right view when flipped in y axis).

B. Pedestrian segmentation

For simplicity, the segmentation procedure is firstly de-

scribed considering the c5 class. Let G = (V,E) be the gen-

erated graph, consisting of a finite set V of vertices and a set

of edges E. The vertices form a grid-like structure, and they

are placed along a region where the contour of the person is

expected to appear (Fig. 2(a)). The number of the levels of

the graph, the length of each level, as well as the number of

vertices along the levels is parameterized according to the

bounding-box of the detected person, as described next. As

the bounding-box does not give us a well defined reference

of the person’s head, we firstly need to define such point,

to further align the shape model to it by Rs, as well as to

guide the construction of the grid-like structure of the graph.

The bounding-box reference point Rb is defined as follows:

2In all experiments we used τ1 = 0.08 and τ2 = 0.025.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j)

Figure 1. Shape model generation. (a) input training image sample and the
estimated head position Hp; (b) initial shape model S0 and the reference
point Rs; (c) thresholded image; (d) estimated “average” pedestrian’s
boundary Bf ; (e) distance transform Dt of (d); (f) the final shape model
Sf ; (g-j) obtained average contours for the left view classes.

Rby = hpHμy and Rbx = 0.5wp, where wp is the bounding-

box width. To deal with misalignment we include two other

values as its x coordinate, considering the standard deviation

of the head positions, computed in the learning stage, defined

as follows: Rbx′ = Rbx −hpHσx
and Rbx′′ = Rbx +hpHσx

.

Consider the estimated “average” pedestrian’s boundary

Bf (Fig. 1(d)), resized according to fs = hp/μc5 , to deal

with scale variations and aligned to the reference point of

the bounding-box Rb by Rs (also resized by fs). The goal

of using in this stage fs instead of fl is to adapt the learned

shape model to the input image resolution, avoiding the loss

of data when the resolution is reduced. Next, the points of

this curve (Bf ) are discretized from one another by d =
τ2hp pixels. Then, for each two consecutive points of this

curve, a level of the graph is generated orthogonal to the line

segment that connects these points. Each level, with a length

L = τ1hp pixels, is centered on its respective line segment.

The vertices are labeled Vm,n, where m = 1, ...,M denotes

the level of the vertex, and n = 1, ..., N is the position of the

vertex in such level. The number of levels M are based on

the number of points of the estimated “average” pedestrian’s

body boundary and the d value, and the number of nodes in

each level is set to N = L/2. The levels of the entire graph,

for a given image, are illustrated by blue lines in Fig. 2(a)

and a detailed illustration of it is shown in Fig. 2(b).

The edges of the graph relate to line segments connecting

two nodes belonging to adjacent levels. More precisely, each

node in a level m can be connected to the k = 3 (up to)

nearest nodes in the level m+ 1, as illustrated in Fig. 2(b).

The weight w(ek) of each edge ek is computed as:

w(ek) =
1

qk

qk∑

j=1

Ek(xj , yj), (2)

where qk is the number of image pixels in a raster scan
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along edge ek, Ek is the energy function, and (xj , yj) are

the coordinates of the pixels along such scan. The proposed

energy function is composed by several factors: edge, shape

mask and angular constraints [15]. The energy map for

pixels related to graph edges is given by Eq. 3.

Ek(x, y) = |tk · ∇I(x, y)|Sf (x, y), (3)

where Sf is the shape model, resized according to fs (as

well as Rs) and aligned by Rs to the pedestrian under

analysis by its bounding-box reference point Rb; tk is a unit

vector orthogonal to the measured graph edge (to prioritize

contour with similar orientation as the graph edge under

analysis), and ∇I(x, y) is the discrete gradient image, which

can be computed using different approaches, such as: using

the Di Zenzo operator (when using color images); or using

the Sobel operator (when the luminance component I of

the original image is considered), for example. The results

illustrated in Section IV were obtained by using the Di

Zenzo operator applied to RGB images (excluding those

illustrated in Fig. 6, where the Sobel operator was applied in

thermal images). The RGB colorspace was chosen because

it is one of the most widely used color representation in

image processing applications. As the choice of colorspace

can be very context dependent, we intend to perform a

comparative analysis about its selection, as well as to test

different gradient operators as future work.

(a) (b) (c) (d) (e)

Figure 2. (a) Generated graph; (b) illustration of the nodes/edges of the
graph; (c-d) energy terms (∇I), without and with the influence of Sf ,
respectively; (e) segmentation result.

It is important to emphasize that the people’s contour is

defined by a maximal cost path in the graph, given by a

combination of edge and geometric information. Since the

graph is acyclic (the estimated contour is connected by its

extremities as a post-processing operation), such path can

be computed using dynamic programming, as in Dijkstra’s

algorithm [17]. As the generated graphs can have different

number of levels, according to the Bf curve of each class ci,
the measured energy of each path is defined by the average

energy computed along such path.

We observed in some situations that the desired path is

not the one with maximum cost. It usually happens when the

estimated path is attracted by a very contrasting background

region of the image. To minimize such problem we apply a

penalization weight to the computed energy (εi), related to

the best path of each class ci, as defined by Eq. 4.

ε′i = εi(1− ω), (4)

where ω is the Hausdorff Distance [18], computed using

the points of the estimated contour and the ones related

to its respective (and resized) average shape Bf (both

aligned by its respective reference points and normalized

to {0, ..., 1}). The goal of such procedure is to penalize a

path with high energy value, which is very different from

its respective average shape class. The procedure described

above is computed for each class ci (for i = 1 to 9) and for

each bounding-box reference point Rb shift j (for j = 1 to

3). Then, the final contour is defined by the graph path with

maximum ε′i energy.

In case of partial occlusions edge information tends to

be weak along the desired contour, but the geometric cue

tends to attract the maximal cost path to the desired location.

Fig. 3(e) illustrates such situation, where the lower body part

of one person was occluded by a bag.

IV. EXPERIMENTAL RESULTS

In this section we illustrate some results of the proposed

model, also presenting a quantitative comparison with the

state-of-the-art on two public datasets: the Penn-Fudan [19]

and the PPSS dataset [8]. In addition, we also illutrate some

experimental results to motivate the usage of the proposed

model on thermal data [10]. Regarding the comparative

analysis, the segmentation accuracy is measured by the

intersection/union criterion (as in [4]) of the PASCAL VOC

challenge [20].

1) The Penn-Fudan dataset: It contains 170 color images

with 345 box/shape-labeled pedestrians from which 169

labels (defined in [7]) compose our test dataset.

The first columns in Table I show the measured accu-

racy of the proposed model without (ε) and with (ε′) the

penalization weight (Eq. 4). As we can see in Table I, the

penalization weight slightly improved the obtained results.

It is important to highlight that we used a significant

smaller number of shape exemplars for training (931 images)

when compared to [4] (in which 10946 images were used).

In addition, multiple data cues were used in [4], [7], whereas

the proposed model is color/texture independent, being use-

ful for nighttime applications, in which such information

could be weakened due to illumination conditions, or when

infrared/thermal cameras are employed (see Figure 6). On

the other hand, the proposed model, which we consider

a very simple approach (and with a small set of input

parameters), achieved results (in this first experiment) below

to the ones obtained by the Deep Decompositional Network

(DDN) proposed in the work of Luo et al. [8]. As related

by the authors [8], DDN is trained by estimating a set of

weight matrices and corresponding biases, which can be very
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challenging due to the huge amount of parameters. Thus,

considering the values presented in Table I, we consider the

obtained results can be comparable to the state-of-the-art.

Table I
RESULTS ON THE PENN-FUDAN DATASET.

Our model State-of-the-art

ε ε′ [8] [4] [7] [6]

FG 73.46 75.04 78.4 78.5 73.3 71.6

BG 76.52 77.41 85.0 81.5 81.1 73.8

AVG 74.99 76.22 81.7 80.0 77.2 72.7

Figure 3(a-e) illustrates some results of the proposed

model we consider very promising, whereas Figure 3(f)

illustrates a bad obtained results.

(a) 90.6 (b) 90.1 (c) 86.9 (d) 85.8 (e) 84.7 (f) 62.5

Figure 3. Results (with average accuracy) on Penn-Fudan dataset [19].

2) The PPSS dataset: It contains 3.673 images, from

171 videos of different surveillance scenes, where 2.064

images are occluded and 1.609 are not. The ground truth

of label maps for all these images is provided. As we are

not interested in pedestrian parsing, the body labels were

ignored in this experiment (the ground truth is used as

background/foreground mask). To make a fair comparison

against [8], we performed two experiments on this dataset.

In the first experiment, the same evaluation protocol as

in [8] was adopted, i.e., the last 71 scenes were used for

testing, containing 1.892 images. As we can see in Table II,

regarding the first experiment, the achieved results are still

slightly below to the ones obtained by [8].

Table II
COMPARISON WITH THE STATE-OF-THE-ART ON PPSS DATASET.

Our model (ε′) Luo et al. [8]

Experiment 1 2 1 2

FG 64.85 67.19 71.4 67.56

BG 80.72 83.02 80.0 80.86

AVG 72.79 75.1 75.7 74.21

It is important to emphasize that the PPSS testing dataset

includes a lot of people riding bicycles and motorcycles

(about 344 people), as well as some seated people (about

23), which we consider a big challenge, as their poses

usually are very different from an expected pedestrian pose

(upright people, standing or walking, as mentioned in the

work of Dollar et al. [1]). Figure 4 illustrates some of these

images and its respective ground truth data.

To validate our model in the PPSS dataset with only

upright people (standing or walking), we conducted a second

experiment in which these 367 images of bikers and seated

people were ignored. In this second experiment on a subset

of the PPSS dataset, the accuracy of the state-of-the-art [8]

was slightly improved by the proposed model, as we can see

on Table II (the segmentation results of [8] were computed

using the implementation provided by the authors3).

Figure 4. Undesirable “pedestrian” samples (people riding motorcycles or
seated) of the PPSS dataset [8] and respective ground truth data.

Figure 5 illustrates some experimental results on PPSS

dataset (some of them with severe occlusion).

Figure 5. Results of our model on PPSS dataset [8].

3) Thermal dataset: Figure 6 illustrates the segmentation

results in a few images captured by a thermal camera [10],

where color information is not available. In this experiment,

the bounding-box of each person were extracted by a person

detector [9] directly from the thermal images. The visible

images associated to each thermal image are shown on

their left side (for the sake of illustration - they were

not used in the segmentation stage). In this experiment,

the gradient image (used in Eq. 3) was obtained through

Sobel operator, considering the luminance component of the

respective thermal image.

Figure 6. Proposed model applied on thermal images [10].

3http://mmlab.ie.cuhk.edu.hk/projects/luoWTiccv2013DDN
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4) Computational cost: The average time (in sec. - mea-

sured in the first experiment) to obtain the best path for each

class was 1.21 (±0.19), considering an average bounding-

box height of 289.79 (±26.71). The model was implemented

using MATLAB (assuming the bounding-box of each person

is given; without considering I/O procedures). The hardware

used was an HP xw8600 Workstation, with an Intel Xeon

processor, Core2 Quad, 2.83GHz and 3Gb of memory.

V. CONCLUSION

This paper presented a new approach for pedestrian seg-

mentation, captured in a wide range of viewpoints. The

proposed model, which is scale invariant, generates a graph

around the detected person and the estimated contour is

defined by a path in the graph with maximal cost combined

with a selection scheme. The computation of the path is

guided by a shape model, which was learned from an entirely

different dataset. Obtained results indicate the proposed

model works well in non trivial images, being comparable

to the state-of-the-art. In addition, the proposed model is

color/texture independent, which can be useful in nighttime

applications (when such information could be weakened due

to illumination conditions) or when infrared/thermal cameras

are employed. Future work will concentrate on automatic

generation of shape model classes.
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