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ABSTRACT

In this paper we propose a skeleton-based model for hu-

man segmentation in static images. Our approach explores

edge information, orientation coherence and anthropometric-

estimated parameters to generate a graph, and the desired

contour is a path with maximal cost. Experimental results

show that the proposed technique works well in non trivial

images.

Index Terms— human body parts segmentation, seman-

tic information.

1. INTRODUCTION

The automatic segmentation of human subjects in static im-

ages is still a challenge, mainly due to the influence of nu-

merous real-world factors such as shading, image noise, oc-

clusions, background clutter and the inherent loss of depth in-

formation when a scene is captured into a 2D image, as well

as other factors associated with the dynamics of the human

being (great variability of poses, shapes, clothes, etc).

Some studies found in the literature show that people seg-

mentation in static images has become a focus of attention in

recent years, and it can be used in several applications, for ex-

ample, human pose and shape estimation (2D or 3D), image

editing, among other. Jacques Junior et al. [1] proposed to

solve this problem in an automatic way, starting with a face

detection algorithm, and then using color information and an-

thropometric parameters. It can also be initialized from a pose

estimator algorithm as in Freifeld’s work [2] combined with

a cost function that fits the best pose and shape based on a

learned model computed in a previous stage.

Another class of techniques tried to detect and segment

simultaneously human figures in images, also related to pose

estimation algorithms. The approach proposed by Mori et

al. [3] is based on segmenting the limb and torso, which

are assembled into human figures. Lin et al. [4] proposed a

Bayesian approach to achieve human detection and segmen-

tation combining local part-based and global template-based

schemes. In a similar way, Gavrila [5] presents a probabilistic

approach to hierarchical, exemplar-based shape matching.

Guan and collaborators [6] tried to solve the problem of

person segmentation in images using a semi-automatic ap-

proach. Basically they compute shape and pose parameters

of a 3D human body model directly from monocular image

cues, given a user-supplied estimate of the subject’s height

and a few clicked points on the body, generating an initial 3D

articulated body pose and shape estimative. Using this initial

guess they generate a tri-map of regions inside, outside and

on the boundary of the human, which is used to segment the

image using graph cuts.

2. OUR APPROACH

In this work we propose a semi-automatic skeleton-based hu-

man segmentation algorithm, since the user must provide a

few clicks locating joints of the human structure. The re-

mainder of the segmentation process is fully automatic, and

the basic idea is to create a graph around the skeleton model

and find out the path that maximizes a certain boundary en-

ergy. The proposed model is described in the next sections.

2.1. The skeleton model: input data

In our work, the skeleton model is composed by sixteen bones

and nineteen joints, as illustrated in Fig. 1(a). All these bones

have their widths estimated, parametrized as a function of the

height h of an average person based on anthropometric val-

ues [7]. More precisely, for a certain body part with label i,
the corresponding width wi is given by wi = hfwi, where

the proportionality factors fwi are derived from [7]. Table 1

presents all body parts used in this work, along with the cor-

responding values for fwi.

There are two different ways to obtain the height of the

person through manual intervention. When the person is

standing in the photograph and the full body is visible, the

user simply clicks on the top of the head and on the bottom of

the feet, obtaining the height directly. In any other situation,

the height is estimated from the size of the face and anthro-

pometrical relationships. More precisely, the user clicks on

the top of the head and on the tip of the chin, to compute

the height of the face hf . The height of the person is then

estimated by h = hf/0.125, where 0.125 is a weight derived

from anthropometric values [7].
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(a) (b)

Fig. 1. (a) The adopted skeleton model. (b) Illustration of the

three generated graphs, given the input skeleton, as well some

high level information (connections, distances, etc).

2.2. Graph generation

The basic idea behind our model is to split the whole contour

into groups of body parts, finding the local contour in each of

these groups as a path in a graph, and connect them together

to obtain the silhouette of the person. For that purpose, we

define three main graphs: one for the “upper body” and other

two for the “lower body” (left and right sides), as illustrated

in Fig. 1(b) in red (A), green (B) and magenta (C).

The assumption made in the proposed model is that each

body part, defined from two control points, is limited by a

contour, which should have similar orientation to their respec-

tive “bone” (except the head, hands and feet) as well to respect

some anthropometric distances constraints. The person con-

tour is described by a path in the graph, which should satisfy

a predefined condition (for example, the best path is the one

that maximizes some kind of energy value). Fig. 2 illustrates

this process for one body part.

i Bone Joints fwi

0 Head (P1 - P2) 0.0883

1 Torso (P2 - P3) 0.1751

2 & 5 Arms (P5 - P4) & (P9 - P8) 0.0608

3 & 6 Forearms (P6 - P5) & (P10 - P9) 0.0492

4 & 7 Hands (P7 - P6) & (P11 - P10) 0.0593

8 & 11 Thigh (P13 - P12) & (P17 - P16) 0.0912

9 & 12 Calf (P14 - P13) & (P18 - P17) 0.0608

10 & 13 Foot (P15 - P14) & (P19 - P18) 0.0564

14 & 15 Shoulders (P4 - P2) & (P8 - P2) 0.0608

Table 1. First column: the body parts index; second column:

the body part (bone); third column: the two joints that form

each bone (left and right sides); fourth column: the weights

used to compute the width of each bone.

Let Gi = (S, E) be a graph generated for each body part

i, consisting of a finite set S of vertices and a set of edges E.

The vertices form a grid-like structure, and they are placed

along a region where the contour of the body part is expected

(a) (b) (c) (d) (e)

Fig. 2. (a) input image. (b) gradient magnitude. (c) nodes and

edges of a graph. (d) zoom on image (c). (e) the best path.

to appear (Fig. 2(d) shows the graph related to the external

contour of the right arm). The vertices form levels along the

grid, and each level is orthogonal to the line segment con-

necting two control points (Pi′ and Pi′′ ), which are associ-

ated with the respective body part (“bone”). The extent of

each level, as well as the number of vertices along the lev-

els are based on anthropometric values (described in Table 1)

that provide the expected width of each body part. The ver-

tices are labeled Sm,n, where m = 1, ...,M denotes the level

of the vertex, and n = 1, ..., N is the position of the ver-

tex in such level, so that smaller values of n are closer to the

corresponding bone. The values of M and N were set exper-

imentally to M = 0.1‖(Pi′ −Pi′′)‖ and N = 0.33wi (where

i = 2 for the graph A and i = 8 for the graphs B and C), i.e.

the number of levels for each body part is proportional to the

length of the corresponding bone, and the number of vertices

per level is proportional to the width of the arm for the upper

graph A and to the width of the thigh for the lower graphs (B
and C).

(a) (b)

Fig. 3. (a) Illustration of the graph generation for the outer

part of the right arm. (b) Illustration of the energy term

‖∇I‖Ri(x, y).

2.2.1. Connecting individual graphs and special cases

The graph definition described so far is focused on a single

body part. The three main graphs used in our work are formed

by several body parts, so that the graphs related to each indi-

vidual body part must be connected. When a body part is con-

nected to another, the regions delimited by the corresponding

graphs may overlap or leave gaps, depending mostly on the

angle α formed by the connection joint. In a general way,

there is overlap when α < 180◦, so that levels must be re-

moved, and gaps when α > 180◦, so that levels must be in-

serted to fill the gaps. An example of creation and removal
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of levels is shown in Fig. 1(b), in particular the connection of

the calf and the foot. In the outer contour of such connection,

the graphs overlap and levels must be removed; in the inner

part of the connection, however, there is a gap between the

individual graphs, so that new levels must be created. Also,

it should be mentioned that if α = 180◦, then the graphs are

simply concatenated. As the number of nodes at each level is

the same for each main graph (A, B and C), the connectivity

is maintained along the “bone” direction.

Although most body parts generate a graph placed in a

rectangular region, as described previously, some specific

body parts present a different shape, such as head, hands and

feet. The hands and feet are modeled as circular sectors, and

the levels are radial lines discretized by an angle of 22.5◦,

chosen experimentally.

The head is modeled by an hexagonal shape. Basically,

the “bone” of the skeleton associated with the head is de-

creased in the top by a factor (set experimentally to wneck/2)

and in the bottom to wneck, where wneck = 0.0333h (based

on [7]). So the initial graph of the head is generated with the

same width of the arms around the hexagon, to maintain a

certain global coherence in the graph A. Finally, the graph of

the head is connected to the graph of the shoulders in the in-

tersection point of their boundaries, as illustrated in Fig. 1(b).

Each “bone” of the shoulders is initially decreased by a

factor (set experimentally to the half of neck’s width) in the

side of the neck. The graph generation is similar to a regular

body part (arms and legs, for example), but now the graph is

created only for one side of the “bone” (the upper side), using

the same width used for the arms.

The torso is modeled by two different graphs (one for each

side - left and right). Basically, we create two line segments,

connecting each femur (points P12 and P16) to their associ-

ated shoulder, in the average point of each respective shoulder

“bone”. This line segment is decreased in the top by a factor

(set experimentally to the length of the chest lchest, where

lchest = 0.0980h), to deal with the underarms, and the graph

of the torso is generated as other regular body parts. Finally,

the internal parts of the graphs of the legs are also cut on their

upper extremity by an estimated distance (the length of the

hip lhip, where lhip = 0.0492h).

2.2.2. Weights of the edges

The edges in the proposed graph relate to line segments con-

necting two nodes. The weight w(ek) of each edge ek is given

by the average energy of the pixels that lie in the correspond-

ing line segment, i.e.,

w(ek) =
1
qk

qk∑

j=1

Ek(xj , yj), (1)

where qk is the number of image pixels in a raster scan along

edge ek, Ek is the energy function, and (xj , yj) are the co-

ordinates of the pixels along such scan. The proposed energy

map is composed by several factors: edge, anthropometry and

angular constraints, as explained next.

Given the luminance component I of the original image,

we initially compute the discrete gradient image ∇I using the

Sobel operator. If the contour of the person passes trough a

graph edge ek, the gradient magnitude ‖∇I‖ is expected to be

large in the pixels along ek, and the orientation of the gradient

vector should be orthogonal to the line segment related to ek.

Hence, the first term of the energy map is given by |tk · ∇I|,
where tk is a unit vector orthogonal to ek, as illustrated in

Fig. 3(a).

Another useful information is provided by anthropometric

measures, since the expected width wi of each body is related

to the person height, as shown in Table 1. In this work, we

also prioritize edges that lie at close to a distance wi/2 from

the respective “bone”. More precisely, we create two line seg-

ments parallel to the “bone” (each one at a distance wi/2) and

then compute the Distance Transform (DT), generating an an-

thropometric distance map Ri for each body part given by

Ri(x, y) = e
−Di(x,y)2

(wi/4)2 , (2)

where Di is the DT for body part i, and the scale factor of the

Gaussian is given by wi/4. For the sake of illustration, the

energy term combining gradient magnitude and anthropomet-

ric distances (‖∇I‖Ri(x, y)) for the right arm is illustrated in

Fig. 3(b).

The graph is influenced by the adjacent body parts close

to the joints. In such portions of the graph, the anthropo-

metric distance map is computed as a weighted average of

the distance maps related to the adjacent body parts, and the

weights are proportional to the distance of the pixel under

consideration to each body part. Hence, the overall distance

map R(x, y) presents smooth connections.

(a) (b)

Fig. 4. (a) Connecting the three main paths (b) Results.

The third term in the energy map (Eq. 3) aims to prioritize

graph edges that are approximately parallel to the orientation

of the corresponding bone. In fact, such term is characterized

by |u · tk|, where tk are unit vectors orthogonal to ek, as

already explained, and u is a unit vector orthogonal to the

bone, as illustrated in Fig. 3(a).

Finally, the energy map for pixels related to a graph edge

ek is given by

Ek(x, y) = |tk · ∇I(x, y)|R(x, y)|u · tk|. (3)

143



(a) (b)

Fig. 5. (a) Our results (b) Results obtained with [2]

2.3. Finding the maximum cost paths

The procedure defined so far is used to create three main

graphs (A, B and C), related to the upper and lower (left

and right) body parts. The silhouette of the person in each

of these parts is defined as the maximum cost path along the

corresponding graphs. Since the graph is acyclic, such path

can be computed using dynamic programming, as in Dijk-

stra’s algorithm [8]. In the connection of the main graphs, the

contours may intersect or leave gaps, as illustrated in Fig. 4(a)

- left. The connection points of the arms are those nearest to

the beginning of the contour of the torso. The internal points

of the thighs with the smallest distance from one another are

connected (if there are more than one, we use the one closest

to P3). The final silhouette is shown in Fig. 4(b) - right.

3. EXPERIMENTAL RESULTS

In this section we illustrate some results of the proposed

model1. It is important to notice that each point of the con-

tour has a label associated to it, so all body parts are identified.

The semantic information is also illustrated in the results by a

red contour, which divides two consecutive body parts. One

limitation of the proposed approach is to deal with poses

when the movements of the limbs are not approximately on

the image plane (which affect the anthropometrical estimates

in the projected image). Fig. 4 shows some experimental

results. Fig. 5 shows a comparison of the proposed method

and the approach described in [2]. As it can be observed,

the proposed method adapts better to the contours, while the

human body shape priors in [2] enforce a smoother contour.

4. CONCLUSION

In this paper we propose a skeleton-based model to segment

human in images. Based on the provided skeleton, a graph is

built around the expected contour region, and the silhouette

of the person is obtained as a combination of maximum cost

paths in the graph, where the weights of the edges are based

on edge information, anthropometric distances and orienta-

tion constraints. The experimental results showed that our

1See www.inf.pucrs.br/˜smusse/ICIP12 for more results.

method performs visually well for a variety of images, being

able to handle non trivial images containing self-occlusions.

When comparing to a competitive approach that also provides

the segmentation of individual body parts [2], our method

shows to produce more accurate (but less smooth) contours.

Future work will concentrate on exploring color information,

including automatic procedures for extracting the skeleton,

considering extensions to multi-view images and/or depth-

color data (e.g. Microsoft’s Kinect sensor), as well as quanti-

tative evaluations of the proposed model.
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