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ABSTRACT

In this paper we propose a self-occlusion and 3D pose estima-
tion model for human figures in still images based on a user-
provided 2D skeleton. An initial segmentation model is used
to capture labeled human body parts in a 2D image. Then,
occluded body parts are detected when different body parts
overlap, and are disambiguated by analyzing the energy of the
corresponding contours around the intersection points. The
estimated occlusion results feed the 3D pose estimation algo-
rithm, which reconstructs a set of plausible 3D postures. Ex-
perimental results indicate that the proposed technique works
well in non trivial images, effectively estimating the occluded
body parts and reducing the number of possible 3D postures.

Index Terms— human body parts segmentation, self-
occlusion estimation, 3D pose estimation.

1. INTRODUCTION

Estimating 3D articulated human pose from a single view
is of great interest to numerous vision applications, includ-
ing human-computer interaction, visual surveillance, activity
recognition from images, etc. As related in [1], this problem
remains very challenging for several reasons. First, recover-
ing 3D human poses directly from 2D images is inherently
ambiguous due to loss of depth information. In addition, the
shape and appearance of articulated human body vary signif-
icantly due to factors such as clothing, lighting conditions,
viewpoints, and poses.

As related in [1], human pose estimation algorithms can
be categorized as discriminative (model-free, e.g. example-
based and learning-based) and generative (model-based, e.g.
tree structure based on prior knowledge). Exemplar-based
approaches store a set of training samples along with their
corresponding pose descriptors, and for a given test image,
a similarity search is performed to find similar candidates.
Learning-based approaches learn the direct mapping from im-
age observations to pose space using training samples. Most
discriminative pose estimation use silhouette images to per-
form pose estimation [2, 3, 4, 5]. However, it is important to
notice that silhouettes are inherently ambiguous, as different
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3D poses can have very similar silhouettes. Some generative
pose estimation uses 2D body part positions estimated by de-
tectors (e.g. [6]) for 3D pose recovery [7, 8, 9]. One drawback
of this class of approaches is the inherent ambiguity of 2D im-
ages and the occurrence of self-occlusion in certain postures.

Self-occlusion in human pose is a classic problem in
computer vision, and there are some approaches that tackle
this problems. Sigal and Black [10] presented an occlusion-
sensitive model to articulated pose estimation. The model
uses local image likelihoods that approximate the global
likelihood by accounting for occlusions and competing ex-
planations of image evidence by multiple parts. The approach
proposed by Huang and Yang [1] uses a regression model to
learn the mapping from image feature space to pose space,
but differs from [10] in that sparse representations are learned
from examples with demonstrated ability to handle occlu-
sions. Radwan et al. [11] used a Gaussian Process Regression
models to learn the parameters of occluded body parts. Kim
and Kim [12] detected whether a given body part is occluded
or not by analyzing the eigenvalues of 3D time-of-flight im-
age data gathered from the joint point of each body part.
In [13], the authors proposed a self-occlusion state estimation
method. In their approach, a Markov Random Field (MRF)
is used to model the occlusion state that represents the pair
wise depth order between two human body parts. A novel
estimation method is proposed to infer a body pose and an
occlusion state separately.

In this paper we assume that the 2D skeleton of the human
figure in the picture is given, and our goal is to find individual
body parts (with occlusions disambiguated) and to reconstruct
the 3D pose. The algorithm proposed by Taylor [14] is widely
used for this purpose, but due to the number of joints of the
skeleton (20 joints, in our case), it can produce 220 possible
solutions. The main idea of the proposed approach is to re-
duce the number of pose candidates by using biomechanics
constraints and the self-occlusion estimative to remove im-
plausible solutions.

2. OUR MODEL

In this work we propose an approach to detect and disam-
biguate self-occlusion for human figures in 2D still images,
with applications in 3D pose estimation. Figure 1 illustrates
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the main steps of our model. The first step is to associate
a 2D skeleton model (Figure 1(a)) to the person in the pic-
ture (Figure 1(b), in cyan). This stage can be done manually
or automatically, depending on the application. The second
stage is to segment the person in the picture. For this purpose,
we use the algorithm proposed by Jacques Junior et al. [15],
which segments a person in a picture with semantic informa-
tion based on an energy contour value for each body part,
based on gradient information, coherence to the bone of the
corresponding body part and anthropometric distances. Such
model produces a closed contour, where each point is associ-
ated to a specific body part, as illustrated in Figure 1(b) using
different colors. The third step of the model is to identify the
intersections of body parts, in a higher level (e.g. the arm and
the torso are intercepting – Figure 1(c)), characterizing the oc-
clusions. The fourth stage is to analyze in a lower level each
intersection candidate (the red dots shown in Figure 1(c)) to
identify which body part is under occlusion. Disambiguation
of occluded body parts is done by evaluating the behavior of
the contour energy function in the neighborhood of the inter-
section points. The output of the self-occlusion model is a list
of intersection pars and the self-occlusion information (the
body part under occlusion, e.g. right arm, in Figure 1(d), is
occluded by the left hand). This kind of information feed the
3D pose estimation algorithm, which is used to reconstruct
the 3D pose (Figure 1(e)). The proposed model is described
in the next sections.
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Fig. 1. Overview of the proposed model. (a) Adopted skele-
ton model. (b) Segmentation result. (c) Intersections between
body parts and the intersection points (in red). (d) Illustration
of the self-occlusion estimation result. (e) 3D estimated pose.

2.1. Finding and disambiguating occlusions

Given a 2D skeleton, the human segmentation model pro-
posed by Jacques Junior et al. [15] explores edge information,
orientation coherence and anthropometric estimated parame-
ters to generate a weighted acyclic directed graph (WADG)
around the 2D skeleton of the person. The graph is formed
by levels orthogonal to the “bone” of the corresponding body
part, and the contour with semantic information is a path with
maximal cost containing exactly one vertex at each level. Fig-
ure 1(b) illustrates the segmented contour (with labeled body
parts) based on the 2D skeleton provided in Figure 1(a).

To identify body part occlusions, we initially identify the
2D regions (blobs) associated to each body part based on the
labeled contour information. Theoretically, an occlusion hap-
pens when the 2D projections of the corresponding regions
overlap. However, due to inaccuracies when obtaining the
contour of the person, several false intersections are detected,
usually related to the intersection of just a few pixels. To re-
duce the number of false intersections, we use an area thresh-
old. Thus, only body parts with intersection area higher than
Th are considered (illustrated in Figure 1(c) – both forearms
and hands). The threshold Th is defined as a fraction (set
experimentally to 0.25) of the area of the smallest body part
under analysis, considering pair wise blob comparisons.

Given an intersection region satisfying the area constraint,
there are two possibilities: i) Contours do not intersect: in
some cases, some intersection does not return a intersection
point between the contours of the two body parts (e.g. the
hand in front of the torso). In such case we use the hierar-
chy of the human body: for example, the hand has the same
answer (occluded or not) of their previous adjacent body part
(in this case, the forearm) and so on, until the pair of body
parts being analyzed presents some contour intersection. ii)
Contours intersect: there is at least one intersection point
between the contours of the intersection regions. When it
happens, we first compute the intersection points of body con-
tours (e. g. the red dots shown in Figure 1(c)). For each inter-
section point, the energy of the contour is evaluated in a small
neighborhood inside the occlusion region, for both body parts
under analysis. More precisely, we consider the portion of the
contour comprised in the N = 2 closest levels of the graph
inside the occlusion area, as illustrated in Figures 2(a) and (b)
for the left forearm, where the blue line segments denote the
levels of the graph. Let consider an intersection point i and a
body part mi adjacent to i. Let Mi denote the neighborhood
of the contour related to mi that lies within the closest N
graph levels in the occluded portion of mi. The local contour
strength of the mi is given by

S(mi) = median
p∈Mi

{E(p)}, (1)

where p is a pixel on the contour, and E(·) is the energy map
used to compute the silhouette as defined in [15]. The oc-
cluding region is expected to present a larger energy strength
S, since the image edges of the occluding region tend to be
visible, and hence E tends to be larger. Thus, if mi and ni

are two intersecting body parts in the neighborhood of inter-
section point i, we decide (locally) that mi is the occluding
region if S(mi) > S(ni), and ni is the occluding region
otherwise. For instance, Figure 2(c) illustrates the energy
maps E related to the forearm-torso intersection shown in
Figure 2(b). The local contour strength related to the fore-
arm is S(mi) = 8.8897, whereas the local contour strength
related to the torso is S(ni) = 4.2874. Hence, the forearm is
(locally) occluding the torso in the neighborhood of the inter-
section point, which is the correct decision.
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Fig. 2. (a) Example of occlusion and the WADG used to ob-
tain the contour. (b) zoom of (a), highlighting the intersection
point between the left forearm and the torso (shown in Fig-
ure 1(c)). (c) Analyzed contour points for the left forearm (in
red) and the torso (in magenta).

The procedure described so far works for disambiguating
occlusions locally around one contour intersection point. In
general, overlapping body parts may have more than one con-
tour intersection point, and a final decision is made based on
the local decisions at each intersection point. Let i1, i2,...,ik
denote k intersection points related to a pair of occluding
body parts mi and ni, and let D(ik) be the local decision
at point ik (either mi or ni). The final decision is given by:

• Most voted wins: if a given body part gets more than
k/2 votes, it is selected as the occluding region.

• Largest strength wins: if there is a tie in the voting, we
decided based on the largest local strength, i.e., mi is
selected if max

j=1,...k
{S(mij

)} > max
j=1,...k

{S(nij
)}.

Finally, conflicts are analyzed: if an estimated occlusion
generates a conflict, for example, the left hand is in front of
the right arm and at same time it is behind the right forearm,
we choose the answer based on the maximum local strength
of each body part under conflict (in this case, the hand will be
in front of the both right arm and forearm or behind them).

2.2. 3D Pose Recovery

Our solution to obtain the 3D postures is based on Taylor’s
work [14], which presents a method for recovering infor-
mation about articulated objects from a single image. The
similarities with our work are that both methods assume a
scaled orthographic projection and both use geometrical in-
formation as constraints. According to Taylor, if we have a
line segment of known length l in the image under scaled or-
thographic projection (in our case the line segment is a bone
in the skeleton), the corresponding 3D end points (x1, y1, z1)
and (x2, y2, z2), which represent joints in the correspond-
ing bone, are projected to image coordinates (u1, v1) and
(u2, v2), respectively. If the scale factor s of the projection
model is known, it would be a simple matter to compute the
relative depth of the two joints, denoted by ∆z = z1 − z2,
using the following equation [14]:

∆z2 = l2 −
(u1 − u2)

2
+ (v1 − v2)

2

s2
. (2)

Given the depth zJ1
of the first joint J1 in the hierarchical

skeleton, we compute the depth variation ∆z for the “bone”
connecting J1 and J2 (and hence the depth zJ2

) and so on, un-
til the extremities of the limbs are reached. However, since the
sign of ∆z can not be determined (i.e., we can have z1 > z2 or
z2 > z1), such formulation generates a set of ambiguous 3D
postures for each 2D skeleton. More precisely, if the skeleton
has twenty joints, there at most 220 possible postures in the
worst scenario (∆zJi

6= 0 for all joints i). Fortunately, biome-
chanics constraints can be used to reduce ambiguity and/or
eliminate impossible/implausible postures for human beings.

2.2.1. Biomechanical Constraints for 3D Pose Estimation

The biomechanical constraints consider the relationship of
bones linked through joints, and also the angles of rotation
of the bones. The constraints preserve the distances between
any two joints regardless of the movement of a human body,
avoiding angles in the estimated posture that are not possible
for a real human being. Our assumptions and Biomechanical
constraints are presented next.

i) zJ1
= 0. Assumption 1: The top of the head is always in the

picture plane (i.e. defined as z = 0).
ii) sign(∆zJ4

) = sign(∆zJ3
) = sign(∆zJ2

). Constraint 1:
The goal is to avoid having sequential joints alternated posi-
tively and negatively. To this end, once ∆zJ2

is determined,
∆zJ3

and ∆zJ4
are set accordingly.

iii) ∆zJ5
≥ 0 and ∆zJ9

≥ 0 . Assumption 2: We firstly assume
that ∆zJ5

and ∆zJ9
are positive, but they can be manually

defined by the user. Constraint 2: In order to avoid anthropo-
metric inconsistencies, we include a biomechanical constraint
to deal with angles between the two shoulders, defined in two
vectors: ~v = J5 −J2 and ~u = J9 −J2. If the inner angle be-
tween ~v and ~u is smaller than 165◦ (according to [16]), then
the sign of ∆zP9 is opposite to ∆zP5.

iv) ∆zJ8
≥ 0, ∆zJ12

≥ 0, ∆zJ16
≥ 0and∆zJ20

≥ 0. As-
sumption 3: The hand and foot extremities are always posi-
tively displaced.

v) ∆zJ13
≥ 0 and ∆zJ17

≥ 0. Assumption 4: Similar to
Assumption 2. Constraint 3: Analog to Constraint 2, but
using the vectors between points J13, J4 and J17, setting
~v = J13−J4 and ~u = J17−J4, and testing if the inner angle
is smaller than 180◦ [16]. If it is true, the sign of ∆zJ17

is
opposite to ∆zJ13

.

The proposed constraints indeed reduce the number of
ambiguities to a maximum 29 possible poses1. An additional
rule we created in order to reduce the possible postures is con-
cerned with impossible leg poses. This restriction is only ap-
plied in cases where the angle between the thigh and lower leg
is larger than 180◦ [16], and it prevents poses with “broken
knees”. Indeed, in most cases, the number of possible pos-
tures is smaller than 512 due to the intrinsic nature of usual
pictures, i.e. presenting many joints with ∆z = 0.

1List of joints that can generate ambiguities if ∆zjoint 6= 0: J2, J6, J7,
J10, J11, J14, J15, J18 and J19.

2541



2.2.2. Ambiguity minimization using self-occlusion detection

To further reduce the number of candidate 3D poses related
to a 2D skeleton, we validate each 3D posture after applying
the biomechanical constraints with the self-occlusion results.
More precisely, we compute a simple edge intersection be-
tween the 2D projections of the 3D bones involved in a de-
tected self-occlusion. Based on the depths (z coordinates) of
the intersection point computed for both bones, we can ver-
ify if the 3D posture is in agreement with the self-occlusion
result. If not, the posture is removed. An example is shown
in Figure 3(a-c). Figure 3(a) illustrates the input image with
detected body parts and occlusion detection. Figure 3(b) illus-
trates one of 3 incorrect 3D poses obtained by using only Tay-
lor’s approach and biomechanical constraints (the left forearm
is behind the torso). The addition of the self-occlusion infor-
mation discards incorrect 3D poses, and only one 3D pose
(correct) remains, illustrated in Figure 3(c).

(a) (b) (c) (d)

Fig. 3. (a) Detected self-occlusion. Possible poses imposing
only biomechanical constraints (b) and also self-occlusions
(c). (d) Number of 3D poses per image, using only biome-
chanics constraints (blue) and including self-occlusion (red).

3. EXPERIMENTAL RESULTS

In this section we illustrate some results of the proposed
model2. The experimental results were generated using a
dataset of 41 images containing self-occlusion. To quanti-
tative analyze the self-occlusion estimation model, we gen-
erated ground truth data manually, where the information of
self-occlusion is annotated (for each image) in a higher level
(which pairs of body parts are conflicting) and also in a lower
level (which body part is in front of which).

The total number of occlusions in this dataset observed by
the user was 106. The proposed occlusion detection approach
identified correctly 89.6% of them, of which 83.16% were
correctly disambiguated. The detection procedure also pro-
duced around 10% of false positives, i.e. detection results that
were not corroborated by ground truth data. It is important to
point out that all the computation was done using grayscale
images (as in [15]), and the use of color images could im-
prove the segmentation results as well as the self-occlusion
estimation. One limitation of the self-occlusion estimation
model arises when the limbs are not approximately on the
image plane (which affects the anthropometrical estimates in

2See www.cpca.pucrs.br/icip13 for more results.

the projected image [15] and prevents a simple identification
of the blob associated to each body part).

As for the 3D pose estimation problem, validation was
performed by visual inspection, since we do not know ex-
actly which 3D posture relates to a given 2D image. Correct
poses were manually annotated in the dataset and used to nu-
merically compare results and inform percentages of success.
Figure 3(d) illustrates the number of plausible poses detected
using only biomechanical constraints (blue bars) and using
both biomechanical constraints and self-occlusion results (red
bars). The average number of postures in these two scenarios
are 7.52 and 3.04, respectively. Considering the full approach
(biomechanics + occlusions), the correct pose was within the
set of selected poses in 73.17% of the cases. The exclusion of
the correct pose happens due to errors in the occlusion de-
tection/disambiguation approach, usually associated to bad
segmentation results. Also, in a few cases (e.g. images 39,
40 and 41 – Figure 3(d)), Taylor’s work [14] conflicts with
the self-occlusion detection (probably related to errors in the
occlusion handling or perspective problems), resulting in an
empty set of possible postures.

(a) (b) (c) (d) (e) (f)

Fig. 4. Self-occlusion and 3D pose estimation results.

4. CONCLUSION

This paper presented a new approach for self-occlusion de-
tection and disambiguation of human figures in still images.
The proposed approach is based on the detection of individual
body parts and their intersection in the image domain, explor-
ing also the expected edge-based energy along the contour of
each body part. The paper also presented an application of the
self-occlusion method to the problem of 3D pose estimation,
including also biomechanical constraints. Experimental re-
sults indicate that self-occlusions can be successfully detected
in 89.6% of the cases, from which 83.16% are correctly dis-
ambiguated. Also, we have shown that the proposed 3D pose
estimation model presents a significantly smaller number of
plausible postures compared to [14], retrieving the correct
pose in 73.17% of the cases. Future work will concentrate
on exploring color information to measure the energy of the
contour, as well as in the segmentation approach.

2542



5. REFERENCES

[1] Jia-Bin Huang and Ming-Hsuan Yang, “Estimating hu-
man pose from occluded images,” in 9th Asian Confer-
ence on Computer Vision, 2010, pp. 48–60.

[2] A. Agarwal and B. Triggs, “Recovering 3d human pose
from monocular images,” Pattern Analysis and Machine
Intelligence, vol. 28, pp. 44 –58, 2006.

[3] Ahmed Elgammal and Chan-Su Lee, “Inferring 3d body
pose from silhouettes using activity manifold learning,”
in IEEE Conference on Computer Vision and Pattern
Recognition, Washington, USA, 2004, pp. 681–688.

[4] G. Mori and J. Malik, “Recovering 3d human body con-
figurations using shape contexts,” Pattern Analysis and
Machine Intelligence, IEEE Transactions on, vol. 28,
no. 7, pp. 1052 –1062, july 2006.

[5] G. Rogez, J. Rihan, S. Ramalingam, C. Orrite, and
P.H.S. Torr, “Randomized trees for human pose detec-
tion,” in IEEE Conference on Computer Vision and Pat-
tern Recognition, 2008, pp. 1 –8.

[6] M. Andriluka, S. Roth, and B. Schiele, “Pictorial struc-
tures revisited: People detection and articulated pose es-
timation,” IEEE Conference on Computer Vision and
Pattern Recognition, pp. 1014–1021, 2009.

[7] M. Andriluka, S. Roth, and B. Schiele, “Monocular 3d
pose estimation and tracking by detection,” in IEEE
Conference on Computer Vision and Pattern Recogni-
tion, 2010, pp. 623–630.

[8] Yi Yang and Deva Ramanan, “Articulated pose esti-
mation with flexible mixtures-of-parts,” in IEEE Con-
ference on Computer Vision and Pattern Recognition,
2011, pp. 1385–1392.

[9] E. Simo-Serra, A. Ramisa, G. Alenya, C. Torras, and
F. Moreno-Noguer, “Single image 3d human pose esti-
mation from noisy observations,” in IEEE Conference
on Computer Vision and Pattern Recognition, 2012, pp.
2673 –2680.

[10] Leonid Sigal and Michael J. Black, “Measure locally,
reason globally: Occlusion-sensitive articulated pose es-
timation,” in IEEE Conference on Computer Vision and
Pattern Recognition, Washington, USA, 2006, vol. 2,
pp. 2041–2048.

[11] Ibrahim Radwan, Abhinav Dhall, Jyoti Joshi, and
Roland Goecke, “Regression based pose estimation
with automatic occlusion detection and rectification,”
in IEEE International Conference on Multimedia and
Expo, Washington, USA, 2012, pp. 121–127.

[12] Daehwan Kim and Daijin Kim, “Self-occlusion han-
dling for human body motion tracking from 3d tof image
sequence,” in Proceedings of the 1st International Work-
shop on 3D Video Processing, New York, USA, 2010,
pp. 57–62, ACM.

[13] Nam-Gyu Cho, Alan Yuille, and Seong-Whan Lee,
“Self-occlusion robust 3d human pose tracking from
monocular image sequence,” in IEEE International
Conference on Systems, Man, and Cybernetics, 2012,
pp. 254 –257.

[14] Camillo J. Taylor, “Reconstruction of articulated objects
from point correspondences in a single uncalibrated im-
age,” Computer Vision and Image Understanding, vol.
80, pp. 349–363, 2000.

[15] J. C. S. Jacques Junior, C. R. Jung, and S. R. Musse,
“Skeleton-based human segmentation in still images,”
in IEEE International Conference on Image Processing,
Orlando, USA, 2012, pp. 1–4.

[16] B.M. Nigg and W. Herzog, Biomechanics of the
Musculo-skeletal System, John Wiley and Sons, inc,
1994.

2543


